Involvement of oncomiRs miR-23, miR-24, and miR-27 in the regulation of alternative polyadenylation in glioblastoma via CFIm25 cleavage factor.

Alternative polyadenylation CFIm25 Glioblastoma miR-23 miR-24 miR-27 microRNA oncomiR

Journal

Metabolic brain disease
ISSN: 1573-7365
Titre abrégé: Metab Brain Dis
Pays: United States
ID NLM: 8610370

Informations de publication

Date de publication:
27 Aug 2024
Historique:
received: 21 07 2023
accepted: 08 07 2024
medline: 27 8 2024
pubmed: 27 8 2024
entrez: 27 8 2024
Statut: aheadofprint

Résumé

Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. The cleavage factor Im 25 (CFIm25), a crucial component of the CFIm complex, plays a key role in regulating the length of the mRNA 3'-UTR and has been implicated in various cancers, including GBM. This study sought to investigate the regulatory influence of specific microRNAs (miRNAs) on CFIm25 expression in GBM, a highly aggressive brain tumor. Bioinformatics analysis identified miRNA candidates targeting CFIm25 mRNA, and gene expression profiles from the NCBI database (GSE90603) were used for further analysis. Expression levels of CFIm25 and selected miRNAs were assessed using qRT-PCR in GBM clinical samples (n = 20) and non-malignant brain tissues (n = 5). Additionally, the MTT assay was performed to examine the effect of miRNA overexpression on U251 cell viability. Lentivectors expressing the identified miRNAs were employed to experimentally validate their regulatory role on CFIm25 in U251 cell lines, and Western blot analysis was conducted to determine CFIm25 protein levels. We observed significantly increased levels of miR-23, miR-24, and miR-27 expression, associated with a marked reduction in CFIm25 expression in GBM samples compared to non-malignant brain tissues. In particular, overexpression of miR-23, miR-24, and miR-27 in U251 cells resulted in CFIm25 downregulation at both the mRNA and protein levels, while their inhibition increased CFIm25 and reduced cell proliferation. These observations strongly implicate miR-23, miR-24, and miR-27 in regulating CFIm25 expression in GBM, emphasizing their potential as promising therapeutic targets for enhancing treatment responses in glioblastoma.

Identifiants

pubmed: 39190234
doi: 10.1007/s11011-024-01394-9
pii: 10.1007/s11011-024-01394-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Abadi MHJN, Shafabakhsh R, Asemi Z, Mirzaei HR, Sahebnasagh R, Mirzaei H, Hamblin MR (2019) CFIm25 and alternative polyadenylation: conflicting roles in cancer. Cancer Lett 459:112–121
doi: 10.1016/j.canlet.2019.114430 pmcid: 6660645
Bang J, Jun M, Lee S, Moon H, Ro SW (2023) Targeting EGFR/PI3K/AKT/mTOR signaling in Hepatocellular Carcinoma. Pharmaceutics 15(8):2130. https://doi.org/10.3390/pharmaceutics15082130
doi: 10.3390/pharmaceutics15082130 pubmed: 37631344 pmcid: 10458925
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233
doi: 10.1016/j.cell.2009.01.002 pubmed: 19167326 pmcid: 3794896
Chen W, Jia Q, Song Y, Fu H, Wei G, Ni T (2017) Alternative polyadenylation: methods, findings, and impacts. Genom Proteom Bioinform 15(5):287–300
doi: 10.1016/j.gpb.2017.06.001
Davis R, Shi Y (2014) The polyadenylation code: a unified model for the regulation of mRNA alternative poly adenylation. J Zhejiang Univ Sci B 15(5):429–437. https://doi.org/10.1631/jzus.B1400076
doi: 10.1631/jzus.B1400076 pubmed: 24793760 pmcid: 4076599
De Kort WWB, Spelier S, Devriese LA, Van Es RJJ, Willems SM (2021) Predictive value of EGFR-PI3K-AKT-mTOR-Pathway inhibitor biomarkers for Head and Neck squamous cell carcinoma: a systematic review. Mol Diagn Ther 25(2):123–136. https://doi.org/10.1007/s40291-021-00518-6
doi: 10.1007/s40291-021-00518-6 pubmed: 33686517 pmcid: 7956931
Dhuri K, Pradeep SP, Shi J, Anastasiadou E, Slack FJ, Gupta A, Zhong X, Bahal R (2022) Simultaneous targeting of multiple oncomiRs with phosphorothioate or PNA-Based anti-mirs in Lymphoma Cell lines. Pharm Res 39(11):2709–2720. https://doi.org/10.1007/s11095-022-03383-y
doi: 10.1007/s11095-022-03383-y pubmed: 36071352 pmcid: 9879158
Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43(6):853–866
doi: 10.1016/j.molcel.2011.08.017 pubmed: 21925375 pmcid: 3194005
Fabian MR, Sundermeier TR, Sonenberg N (2010) Understanding how miRNAs post-transcriptionally regulate Gene expression. In: Rhoads RE (ed) miRNA regulation of the Translational Machinery, vol 50. Springer, Berlin Heidelberg, pp 1–20. https://doi.org/10.1007/978-3-642-03103-8_1
doi: 10.1007/978-3-642-03103-8_1
Fang W, Huang Y, Gu W, Gan J, Wang W, Zhang S, Wang K, Zhan J, Yang Y, Huang Y, Zhao H, Zhang L (2020) PI3K-AKT-mTOR pathway alterations in advanced NSCLC patients after progression on EGFR-TKI and clinical response to EGFR-TKI plus Everolimus combination therapy. Transl Lung Cancer Res 9(4):1258–1267. https://doi.org/10.21037/tlcr-20-141
doi: 10.21037/tlcr-20-141
Fu Z, Wang L, Li S, Chen F, Au-Yeung KK-W, Shi C (2021) MicroRNA as an important target for anticancer drug development. Front Pharmacol 12:736323. https://doi.org/10.3389/fphar.2021.736323
doi: 10.3389/fphar.2021.736323 pubmed: 34512363 pmcid: 8425594
Ge Y-F, Sun J, Jin C-J, Cao B-Q, Jiang Z-F, Shao J-F (2013) AntagomiR-27a targets FOXO3a in Glioblastoma and suppresses U87 cell growth in Vitro and in vivo. Asian Pac J Cancer Prev 14(2):963–968. https://doi.org/10.7314/APJCP.2013.14.2.963
doi: 10.7314/APJCP.2013.14.2.963 pubmed: 23621269
Ghosh S, Ataman M, Bak M, Börsch A, Schmidt A, Buczak K, Martin G, Dimitriades B, Herrmann CJ, Kanitz A, Zavolan M (2022) CFIm-mediated alternative polyadenylation remodels cellular signaling and miRNA biogenesis. Nucleic Acids Res 50(6):3096–3114. https://doi.org/10.1093/nar/gkac114
doi: 10.1093/nar/gkac114 pubmed: 35234914 pmcid: 8989530
Guo T, Wu C, Zhang J, Yu J, Li G, Jiang H, Zhang X, Yu R, Liu X (2023) Dual blockade of EGFR and PI3K signaling pathways offers a therapeutic strategy for glioblastoma. Cell Commun Signal 21(1):363. https://doi.org/10.1186/s12964-023-01400-0
doi: 10.1186/s12964-023-01400-0
Hu X, Chen D, Cui Y, Li Z, Huang J (2013) Targeting microRNA-23a to inhibit glioma cell invasion via HOXD10. Sci Rep 3(1):3423. https://doi.org/10.1038/srep03423
doi: 10.1038/srep03423 pubmed: 24305689 pmcid: 3851882
Kouhkan F, Mobarra N, Soufi-Zomorrod M, Keramati F, Rad SMAH, Fathi-Roudsari M, Tavakoli R, Hajarizadeh A, Ziaei S, Lahmi R (2016) MicroRNA-129-1 acts as tumour suppressor and induces cell cycle arrest of GBM cancer cells through targeting IGF2BP3 and MAPK1. J Med Genet 53(1):24–33
doi: 10.1136/jmedgenet-2015-103225 pubmed: 26510428
Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma 9(1):1–13
doi: 10.1186/1471-2105-9-559
Lou J-C, Lan Y-L, Gao J-X, Ma B-B, Yang T, Yuan Z-B, Zhang H-Q, Zhu T-Z, Pan N, Leng S (2017) Silencing NUDT21 attenuates the mesenchymal identity of glioblastoma cells via the NF-κB pathway. Front Mol Neurosci 10:420
doi: 10.3389/fnmol.2017.00420 pubmed: 29311812 pmcid: 5742174
Luo J, Wang X, Yang Y, Mao Q (2015) Role of micro-RNA (miRNA) in pathogenesis of glioblastoma. Eur Rev Med Pharmacol Sci 19(9):1630–1639
pubmed: 26004603
Masamha CP (2023) The emerging roles of CFIm25 (NUDT21/CPSF5) in human biology and disease. WIREs RNA 14(3):e1757. https://doi.org/10.1002/wrna.1757
doi: 10.1002/wrna.1757 pubmed: 35965101
Masamha CP, Xia Z, Peart N, Collum S, Li W, Wagner EJ, Shyu A-B (2016) CFIm25 regulates glutaminase alternative terminal exon definition to modulate miR-23 function. RNA 22(6):830–838
doi: 10.1261/rna.055939.116 pubmed: 27095025 pmcid: 4878610
Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu A-B, Li W, Wagner EJ (2014) CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature 510(7505):412–416
doi: 10.1038/nature13261 pubmed: 24814343 pmcid: 4128630
Mayr C, Bartel DP (2009) Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138(4):673–684
doi: 10.1016/j.cell.2009.06.016 pubmed: 19703394 pmcid: 2819821
Meng Q, Deng Y, Lu Y, Wu C, Tang S (2023) Tumor-derived miRNAs as tumor microenvironment regulators for synergistic therapeutic options. J Cancer Res Clin Oncol 149(1):423–439. https://doi.org/10.1007/s00432-022-04432-0
doi: 10.1007/s00432-022-04432-0 pubmed: 36378341
Menon A, Abd-Aziz N, Khalid K, Poh CL, Naidu R (2022) miRNA: a promising therapeutic target in Cancer. Int J Mol Sci 23(19):11502. https://doi.org/10.3390/ijms231911502
doi: 10.3390/ijms231911502 pubmed: 36232799 pmcid: 9569513
Mizoguchi M, Guan Y, Yoshimoto K, Hata N, Amano T, Nakamizo A, Sasaki T (2013) Clinical implications of microRNAs in human glioblastoma. Front Oncol 3. https://doi.org/10.3389/fonc.2013.00019
Mocellin S, Pasquali S, Pilati P (2009) Oncomirs: from Tumor Biology to Molecularly targeted anticancer strategies. Mini-Reviews Med Chem 9(1):70–80. https://doi.org/10.2174/138955709787001802
doi: 10.2174/138955709787001802
Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, Singha RS, Malakar AK, Chakraborty S (2018) Interplay between miRNAs and human diseases. J Cell Physiol 233(3):2007–2018. https://doi.org/10.1002/jcp.25854
doi: 10.1002/jcp.25854 pubmed: 28181241
Proudfoot NJ (2011) Ending the message: poly (A) signals then and now. Genes Dev 25(17):1770–1782
doi: 10.1101/gad.17268411 pubmed: 21896654 pmcid: 3175714
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47–e47
doi: 10.1093/nar/gkv007 pubmed: 25605792 pmcid: 4402510
Rong L, Li N, Zhang Z (2022) Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res 41(1):142. https://doi.org/10.1186/s13046-022-02349-7
doi: 10.1186/s13046-022-02349-7
Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3’untranslated regions and fewer microRNA target sites. Science 320(5883):1643–1647
doi: 10.1126/science.1155390 pubmed: 18566288 pmcid: 2587246
Sun X, Li J, Sun X, Liu W, Meng X (2020) CFIm25 in solid tumors: current research progress. Technol Cancer Res Treat 19:1533033820933969
doi: 10.1177/1533033820933969 pubmed: 32643564 pmcid: 7350043
Tamaddon M, Shokri G, Hosseini Rad SMA, Rad I, Razavi E, À., Kouhkan F (2020) Involved microRNAs in alternative polyadenylation intervene in breast cancer via regulation of cleavage factor CFIm25. Sci Rep 10(1):1–11
doi: 10.1038/s41598-020-68406-3
Tan S, Li H, Zhang W, Shao Y, Liu Y, Guan H, Wu J, Kang Y, Zhao J, Yu Q (2018) NUDT21 negatively regulates PSMB2 and CXXC5 by alternative polyadenylation and contributes to hepatocellular carcinoma suppression. Oncogene 37(35):4887–4900
doi: 10.1038/s41388-018-0280-6 pubmed: 29780166
Tavakolpour V, Shokri G, Naser Moghadasi A, Mozafari Nahavandi P, Hashemi M, Kouhkan F (2018) Increased expression of mir-301a in PBMCs of patients with relapsing-remitting multiple sclerosis is associated with reduced NKRF and PIAS3 expression levels and disease activity. J Neuroimmunol 325:79–86. https://doi.org/10.1016/j.jneuroim.2018.10.002
doi: 10.1016/j.jneuroim.2018.10.002 pubmed: 30316680
Thissen D, Steinberg L, Kuang D (2002) Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. J Educ Behav Stat 27(1):77–83
doi: 10.3102/10769986027001077
Tian B, Graber JH (2012) Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdisciplinary Reviews: RNA 3(3):385–396
doi: 10.1002/wrna.116 pubmed: 22012871
Tian B, Manley JL (2017) Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 18(1):18–30
doi: 10.1038/nrm.2016.116 pubmed: 27677860
Wang Y, Xu Y, Yan W, Han P, Liu J, Gong J, Li D, Ding X, Wang H, Lin Z, Tian D, Liao J (2018) CFIm25 inhibits hepatocellular carcinoma metastasis by suppressing the p38 and JNK/c-Jun signaling pathways. Oncotarget 9(14):11783–11793. https://doi.org/10.18632/oncotarget.24364
doi: 10.18632/oncotarget.24364 pubmed: 29545935 pmcid: 5837768
Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J (2017) Package ‘corrplot’. Statistician 56(316), e24
Xiuju C, Zhen W, Yanchao S (2016) SOX7 inhibits tumor progression of glioblastoma and is regulated by miRNA-24. Open Med 11(1):133–137. https://doi.org/10.1515/med-2016-0026
doi: 10.1515/med-2016-0026
Xu W, Liu M, Peng X, Zhou P, Zhou J, Xu K, Xu H, Jiang S (2013) Mir-24-3p and miR-27a-3p promote cell proliferation in glioma cells via cooperative regulation of MXI1. Int J Oncol 42(2):757–766. https://doi.org/10.3892/ijo.2012.1742
doi: 10.3892/ijo.2012.1742 pubmed: 23254855
Yang Q, Gilmartin GM, Doublié S (2011) The structure of human cleavage factor Im hints at functions beyond UGUA-specific RNA binding: a role in alternative polyadenylation and a potential link to 5’capping and splicing. RNA Biol 8(5):748–753
doi: 10.4161/rna.8.5.16040 pubmed: 21881408 pmcid: 3256351
Yeh H-S, Yong J (2016) Alternative polyadenylation of mRNAs: 3′-untranslated region matters in gene expression. Mol Cells 39(4):281
doi: 10.14348/molcells.2016.0035 pubmed: 26912084 pmcid: 4844933
Zhao G, Yu H, Ding L, Wang W, Wang H, Hu Y, Qin L, Deng G, Xie B, Li G, Qi L (2020) WITHDRAWN: Glioblastoma cell-derived extracellular vesicle miR-27a-3p facilitates M2 macrophage polarization. https://doi.org/10.21203/rs.3.rs-24999/v1

Auteurs

Mozhgan Foroutan Kahangi (M)

Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.

Vahid Tavakolpour (V)

Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.

Iman Samiei Mosleh (I)

Plant Functional Genomics Lab, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Vienna, Austria.

Saeed Oraee-Yazdani (S)

Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Fatemeh Kouhkan (F)

Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran. f.kouhkan@yahoo.com.

Classifications MeSH