From viruses to cancer: exploring the role of the hepatitis C virus NS3 protein in carcinogenesis.


Journal

Infectious agents and cancer
ISSN: 1750-9378
Titre abrégé: Infect Agent Cancer
Pays: England
ID NLM: 101276559

Informations de publication

Date de publication:
27 Aug 2024
Historique:
received: 05 07 2024
accepted: 21 08 2024
medline: 28 8 2024
pubmed: 28 8 2024
entrez: 27 8 2024
Statut: epublish

Résumé

Hepatitis C virus (HCV) chronically infects approximately 170 million people worldwide and is a known etiological agent of hepatocellular carcinoma (HCC). The molecular mechanisms of HCV-mediated carcinogenesis are not fully understood. This review article focuses on the oncogenic potential of NS3, a viral protein with transformative effects on cells, although the precise mechanisms remain elusive. Unlike the more extensively studied Core and NS5A proteins, NS3's roles in cancer development are less defined but critical. Research indicates that NS3 is implicated in several carcinogenic processes such as proliferative signaling, cell death resistance, genomic instability and mutations, invasion and metastasis, tumor-related inflammation, immune evasion, and replicative immortality. Understanding the direct impact of viral proteins such as NS3 on cellular transformation is crucial for elucidating HCV's role in HCC development. Overall, this review sheds light on the molecular mechanisms used by NS3 to contribute to hepatocarcinogenesis, and highlights its significance in the context of HCV-associated HCC, underscoring the need for further investigation into its specific molecular and cellular actions.

Identifiants

pubmed: 39192306
doi: 10.1186/s13027-024-00606-2
pii: 10.1186/s13027-024-00606-2
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

40

Subventions

Organisme : Natural Sciences and Engineering Research Council of Canada
ID : RGPIN-2022-04026

Informations de copyright

© 2024. The Author(s).

Références

Chevaliez S, Pawlotsky JM. HCV genome and life cycle. In: Tan SL, editor. Hepatitis C viruses: genomes and molecular biology. Norfolk: Horizon Bioscience; 2006.
Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV) infection. Int J Med Sci. 2006;3(2):47–52.
pubmed: 16614742 pmcid: 1415841 doi: 10.7150/ijms.3.47
Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol. 2014;61(1):S79-90.
pubmed: 25443348 pmcid: 4435677 doi: 10.1016/j.jhep.2014.07.010
Kasprzak A, Adamek A. Role of hepatitis C virus proteins (C, NS3, NS5A) in hepatic oncogenesis. Hepatol Res. 2008;38(1):1–26.
pubmed: 17894800 doi: 10.1111/j.1872-034X.2007.00261.x
Lin C. HCV NS3–4A serine protease. In: Tan SL, editor. Hepatitis C viruses: genomes and molecular biology. Norfolk: Horizon Bioscience; 2006.
Tanji Y, Hijikata M, Satoh S, Kaneko T, Shimotohno K. Hepatitis C virus-encoded nonstructural protein NS4A has versatile functions in viral protein processing. J Virol. 1995;69(3):1575–81.
pubmed: 7853491 pmcid: 188752 doi: 10.1128/jvi.69.3.1575-1581.1995
Wölk B, Sansonno D, Kräusslich HG, Dammacco F, Rice CM, Blum HE, et al. Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J Virol. 2000;74(5):2293–304.
pubmed: 10666260 pmcid: 111711 doi: 10.1128/JVI.74.5.2293-2304.2000
Frick DN. The hepatitis C virus NS3 protein: a model RNA helicase and potential drug target. Curr Issues Mol Biol. 2007;9(1):1–20.
pubmed: 17263143
Lam AMI, Keeney D, Frick DN. Two novel conserved motifs in the hepatitis C virus NS3 protein critical for helicase action. J Biol Chem. 2003;278(45):44514–24.
pubmed: 12944414 doi: 10.1074/jbc.M306444200
Lin C, Kim JL. Structure-based mutagenesis study of hepatitis C virus NS3 helicase. J Virol. 1999;73(10):8798–807.
pubmed: 10482634 pmcid: 112901 doi: 10.1128/JVI.73.10.8798-8807.1999
Salam KA, Akimitsu N. Hepatitis C virus NS3 inhibitors: current and future perspectives. Biomed Res Int. 2013;2013: 467869.
pubmed: 24282816 pmcid: 3825274 doi: 10.1155/2013/467869
Sakamuro D, Furukawa T, Takegami T. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J Virol. 1995;69(6):3893–6.
pubmed: 7745741 pmcid: 189112 doi: 10.1128/jvi.69.6.3893-3896.1995
Zemel R, Gerechet S, Greif H, Bachmatove L, Birk Y, Golan-Goldhirsh A, et al. Cell transformation induced by hepatitis C virus NS3 serine protease. J Viral Hepatitis. 2001;8(2):96–102.
doi: 10.1046/j.1365-2893.2001.00283.x
He QQ, Cheng RX, Sun Y, Feng DY, Chen ZC, Zheng H. Hepatocyte transformation and tumor development induced by hepatitis C virus NS3 C-terminal deleted protein. World J Gastroenterol. 2003;9(3):474–8.
pubmed: 12632500 pmcid: 4621564 doi: 10.3748/wjg.v9.i3.474
Smirnova IS, Aksenov ND, Vonsky MS, Isaguliants MG. Different transformation pathways of murine fibroblast NIH 3T3 cells by hepatitis C virus core and NS3 proteins. Cell Biol Int. 2006;30(11):915–9.
pubmed: 16949842 doi: 10.1016/j.cellbi.2006.06.020
Brakha C, Arvers P, Villiers F, Marlu A, Buhot A, Livache T, et al. Relationship between humoral response against hepatitis C virus and disease overcome. Springerplus. 2014;3:56.
pubmed: 24516785 pmcid: 3915053 doi: 10.1186/2193-1801-3-56
Lamonaca V, Missale G, Urbani S, Pilli M, Boni C, Mori C, et al. Conserved hepatitis C virus sequences are highly immunogenic for CD4+ T cells: implications for vaccine development. Hepatology. 1999;30(4):1088–98.
pubmed: 10498664 doi: 10.1002/hep.510300435
Diepolder HM, Gerlach JT, Zachoval R, Hoffmann RM, Jung MC, Wierenga EA, et al. Immunodominant CD4+ T-cell epitope within nonstructural protein 3 in acute hepatitis C virus infection. J Virol. 1997;71(8):6011–9.
pubmed: 9223492 pmcid: 191858 doi: 10.1128/jvi.71.8.6011-6019.1997
Wertheimer AM, Miner C, Lewinsohn DM, Sasaki AW, Kaufman E, Rosen HR. Novel CD4+ and CD8+ T-cell determinants within the NS3 protein in subjects with spontaneously resolved HCV infection. Hepatology. 2003;37(3):577–89.
pubmed: 12601356 doi: 10.1053/jhep.2003.50115
El-Shamy A, Shindo M, Shoji I, Deng L, Okuno T, Hotta H. Polymorphisms of the core, NS3, and NS5A proteins of hepatitis C virus genotype 1b associate With development of hepatocellular carcinoma. Hepatology. 2013;58(2):555–63.
pubmed: 23281009 doi: 10.1002/hep.26205
Alaee M, Rajabi P, Sharifi Z, Farajollahi MM. Immunoreactivity assessment of hepatitis C virus NS3 protease and NS5A proteins expressed in TOPO cloning system. J Microbiol Immunol Infect. 2014;47(4):282–91.
pubmed: 23040046 doi: 10.1016/j.jmii.2012.08.016
Carlos MP, Yamamura Y, Vu Q, Conzen K, Anderson DE, Torres JV. Humoral immunity to immunodominant epitopes of Hepatitis C virus in individuals infected with genotypes 1a or 1b. Clin Immunol. 2004;111(1):22–7.
pubmed: 15093548 doi: 10.1016/j.clim.2003.11.012
Ogata S, Huab Florese R, Nagano-Fujii M, Hidajat R, Deng L, Ku Y, et al. Identification of hepatitis C virus (HCV) subtype 1b strains that are highly, or only weakly, associated with hepatocellular carcinoma on the basis of the secondary structure of an amino-terminal portion of the HCV NS3 protein. J Clin Microbiol. 2003;41(7):2835–41.
pubmed: 12843009 pmcid: 165328 doi: 10.1128/JCM.41.7.2835-2841.2003
Nishise Y, Saito T, Sugahara K, Ito JI, Saito K, Togashi H, et al. Risk of hepatocellular carcinoma and secondary structure of hepatitis C virus (HCV) NS3 protein amino-terminus, in patients infected with HCV subtype 1b. J Infect Dis. 2007;196(7):1006–9.
pubmed: 17763321 doi: 10.1086/521309
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.
pubmed: 10647931 doi: 10.1016/S0092-8674(00)81683-9
Hassan M, Ghozlan H, Abdel-Kader O. Activation of c-Jun NH2-terminal kinase (JNK) signaling pathway is essential for the stimulation of hepatitis C virus (HCV) non-structural protein 3 (NS3)-mediated cell growth. Virology. 2005;333(2):324–36.
pubmed: 15721365 doi: 10.1016/j.virol.2005.01.008
Hassan M, Selimovic D, Ghozlan H, Abdel-Kader O. Induction of high-molecular-weight (HMW) tumor necrosis factor(TNF) alpha by hepatitis C virus (HCV) non-structural protein 3 (NS3) in liver cells is AP-1 and NF-κB-dependent activation. Cell Signal. 2007;19(2):301–11.
pubmed: 16916598 doi: 10.1016/j.cellsig.2006.07.002
Bataller R, Paik Y, Lindquist JN, Lemasters JJ, Brenner DA. Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. Gastroenterology. 2004;126(2):529–40.
pubmed: 14762790 doi: 10.1053/j.gastro.2003.11.018
Li B, Li X, Li Y, Guo H, Sun SY, He QQ, et al. The effects of hepatitis C virus non-structural protein 3 on cell growth mediated by extracellular signal-related kinase cascades in human hepatocytes in vitro. Int J Mol Med. 2010;26(2):273–9.
pubmed: 20596608
Lu L, Wei L, Peng G, Mu Y, Wu K, Kang L, et al. NS3 protein of hepatitis C virus regulates cyclooxygenase-2 expression through multiple signaling pathways. Virology. 2008;371(1):61–70.
pubmed: 17964630 doi: 10.1016/j.virol.2007.09.025
Feng DY, Sun Y, Cheng RX, Ouyang XM, Zheng H. Effect of hepatitis C virus nonstructural protein NS3 on proliferation and MAPK phosphorylation of normal hepatocyte line. World J Gastroenterol. 2005;11(14):2157–61.
pubmed: 15810084 pmcid: 4305787 doi: 10.3748/wjg.v11.i14.2157
Iwai A, Takegami T, Shiozaki T, Miyazaki T. Hepatitis C virus NS3 protein can activate the notch-signaling pathway through binding to a transcription factor, SRCAP. PLoS ONE. 2011;6(6): e20718.
pubmed: 21673954 pmcid: 3108961 doi: 10.1371/journal.pone.0020718
Gramantieri L, Giovannini C, Lanzi A, Chieco P, Ravaioli M, Venturi A, et al. Aberrant Notch3 and Notch4 expression in human hepatocellular carcinoma. Liver Int. 2007;27(7):997–1007.
pubmed: 17696940 doi: 10.1111/j.1478-3231.2007.01544.x
Radtke F, Raj K. The role of Notch in tumorigenesis: Oncogene or tumour suppressor? Nat Rev Cancer. 2003;3(10):756–67.
pubmed: 14570040 doi: 10.1038/nrc1186
Brenndörfer ED, Karthe J, Frelin L, Cebula P, Erhardt A, Schulte am Esch J, et al. Nonstructural 3/4A protease of hepatitis C virus activates epithelial growth factor-induced signal transduction by cleavage of the T-cell protein tyrosine phosphatase. Hepatology. 2009;49(6):1810–20.
pubmed: 19475692 doi: 10.1002/hep.22857
Rahbin N, Frelin L, Aleman S, Hultcrantz R, Sällberg M, Brenndörfer ED. Non-structural 3 protein expression is associated with T cell protein tyrosine phosphatase and viral RNA levels in chronic hepatitis C patients. Biochem Biophys Res Commun. 2013;433(1):31–5.
pubmed: 23454379 doi: 10.1016/j.bbrc.2013.02.075
Mannová P, Beretta L. Activation of the N-Ras-PI3K-Akt-mTOR pathway by hepatitis C virus: control of cell survival and viral replication. J Virol. 2005;79(14):8742–9.
pubmed: 15994768 pmcid: 1168775 doi: 10.1128/JVI.79.14.8742-8749.2005
Schwartz N, Pellach M, Glick Y, Gil R, Levy G, Avrahami D, et al. Neuregulin 1 discovered as a cleavage target for the HCV NS3/4A protease by a microfluidic membrane protein array. New Biotechnol. 2018;45:113–22.
doi: 10.1016/j.nbt.2018.02.004
Zhang J, Ishigaki Y, Takegami T. Hepatitis C virus NS3 protein modulates the biological behaviors of malignant hepatocytes by altering the expression of host cell microRNA. Mol Med Rep. 2015;12(4):5109–15.
pubmed: 26151503 doi: 10.3892/mmr.2015.4041
Siavoshian S, Abraham JD, Kieny MP, Schuster C. HCV core, NS3, NS5A and NS5B proteins modulate cell proliferation independently from p53 expression in hepatocarcinoma cell lines. Arch Virol. 2004;149(2):323–36.
pubmed: 14745598 doi: 10.1007/s00705-003-0205-7
Ishido S, Hotta H. Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett. 1998;438(3):258–62.
pubmed: 9827557 doi: 10.1016/S0014-5793(98)01312-X
Deng L, Nagano-Fujii M, Tanaka M, Nomura-Takigawa Y, Ikeda M, Kato N, et al. NS3 protein of Hepatitis C virus associates with the tumour suppressor p53 and inhibits its function in an NS3 sequence-dependent manner. J Gen Virol. 2006;87(6):1703–13.
pubmed: 16690937 doi: 10.1099/vir.0.81735-0
Tanaka M, Nagano-Fujii M, Deng L, Ishido S, Sada K, Hotta H. Single-point mutations of hepatitis C virus NS3 that impair p53 interaction and anti-apoptotic activity of NS3. Biochem Biophys Res Commun. 2006;340(3):792–9.
pubmed: 16380082 doi: 10.1016/j.bbrc.2005.12.076
Sabri S, Idrees M, Rafique S, Ali A, Iqbal M. Studies on the role of NS3 and NS5A non-structural genes of hepatitis C virus genotype 3a local isolates in apoptosis. Int J Infect Dis. 2014;25:38–44.
pubmed: 24845365 doi: 10.1016/j.ijid.2014.01.010
Kwun HJ, Jung EY, Ahn JY, Lee MN, Jang KL. p53-dependent transcriptional repression of p21waf1 by hepatitis C virus NS3. J Gen Virol. 2001;82(9):2235–41.
pubmed: 11514734 doi: 10.1099/0022-1317-82-9-2235
Li H, Liu S, Lin Y, Shi X, Du N, Yao J, et al. Identification and verification of ubiquitin D as a gene associated with hepatitis C virus-induced hepatocellular carcinoma. Intervirology. 2022;65(4):195–205.
pubmed: 35728518 doi: 10.1159/000525543
Fujita T, Ishido S, Muramatsu S, Itoh M, Hotta H. Suppression of actinomycin D-induced apoptosis by the NS3 protein of hepatitis C virus. Biochem Biophys Res Commun. 1996;229(3):825–31.
pubmed: 8954979 doi: 10.1006/bbrc.1996.1887
Berg CP, Schlosser SF, Neukirchen DK, Papadakis C, Gregor M, Wesselborg S, et al. Hepatitis C virus core protein induces apoptosis-like caspase independent cell death. Virol J. 2009;6(1):213.
pubmed: 19951438 pmcid: 3224943 doi: 10.1186/1743-422X-6-213
Siavoshian S, Abraham JD, Thumann C, Paule Kieny M, Schuster C. Hepatitis C virus core, NS3, NS5A, NS5B proteins induce apoptosis in mature dendritic cells. J Med Virol. 2005;75(3):402–11.
pubmed: 15648076 doi: 10.1002/jmv.20283
Han Y, Niu J, Wang D, Li Y. Hepatitis C virus protein interaction network analysis based on hepatocellular carcinoma. PLoS ONE. 2016;11(4): e0153882.
pubmed: 27115606 pmcid: 4846009 doi: 10.1371/journal.pone.0153882
Prikhod’ko EA, Prikhod’ko GG, Siegel RM, Thompson P, Major ME, Cohen JI. The NS3 protein of hepatitis C virus induces caspase-8-mediated apoptosis independent of its protease or helicase activities. Virology. 2004;329(1):53–67.
pubmed: 15476874 doi: 10.1016/j.virol.2004.08.012
Thorén F, Romero A, Lindh M, Dahlgren C, Hellstrand K. A hepatitis C virus-encoded, nonstructural protein (NS3) triggers dysfunction and apoptosis in lymphocytes: role of NADPH oxidase-derived oxygen radicals. J Leukoc Biol. 2004;76(6):1180–6.
pubmed: 15371490 doi: 10.1189/jlb.0704387
Machida K, Cheng KTH, Sung VMH, Lee KJ, Levine AM, Lai MMC. Hepatitis C virus infection activates the immunologic (Type II) isoform of nitric oxide synthase and thereby enhances DNA damage and mutations of cellular genes. J Virol. 2004;78(16):8835–43.
pubmed: 15280491 pmcid: 479064 doi: 10.1128/JVI.78.16.8835-8843.2004
Machida K, McNamara G, Cheng KTH, Huang J, Wang CH, Comai L, et al. Hepatitis C virus inhibits DNA damage repair through reactive oxygen and nitrogen species and by interfering with the ATM-NBS1/Mre11/Rad50 DNA repair pathway in monocytes and hepatocytes. J Immunol. 2010;185(11):6985–98.
pubmed: 20974981 doi: 10.4049/jimmunol.1000618
Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res Fundam Mol Mech Mutagen. 1999;424(1):37–49.
doi: 10.1016/S0027-5107(99)00006-8
Podhorecka M, Skladanowski A, Bozko P. H2AX phosphorylation: its role in DNA damage response and cancer therapy. J Nucleic Acids. 2010;2010: 920161.
pubmed: 20811597 pmcid: 2929501 doi: 10.4061/2010/920161
Ariumi Y, Kuroki M, Dansako H, Abe KI, Ikeda M, Wakita T, et al. The DNA damage sensors ataxia-telangiectasia mutated kinase and checkpoint kinase 2 are required for hepatitis C virus RNA replication. J Virol. 2008;82(19):9639–46.
pubmed: 18667510 pmcid: 2546985 doi: 10.1128/JVI.00351-08
Lai CK, Jeng KS, Machida K, Cheng YS, Lai MMC. Hepatitis C virus NS3/4A protein interacts with ATM, impairs DNA repair and enhances sensitivity to ionizing radiation. Virology. 2008;370(2):295–309.
pubmed: 17931678 doi: 10.1016/j.virol.2007.08.037
Chen TI, Hsu YK, Chou CY, Chen YH, Hsu ST, Liou YS, et al. Hepatitis C virus NS3 protein plays a dual role in WRN-mediated repair of nonhomologous end joining. J Virol. 2019;93(22):e01273. https://doi.org/10.1128/jvi.01273-19 .
doi: 10.1128/jvi.01273-19 pubmed: 31462559 pmcid: 6819938
Zhou Y, Zhao Y, Gao Y, Hu W, Qu Y, Lou N, et al. Hepatitis C virus NS3 protein enhances hepatocellular carcinoma cell invasion by promoting PPM1A ubiquitination and degradation. J Exp Clin Cancer Res. 2017;36(1):42.
pubmed: 28283039 pmcid: 5345236 doi: 10.1186/s13046-017-0510-8
Lu L, Zhang Q, Wu K, Chen X, Zheng Y, Zhu C, et al. Hepatitis C virus NS3 protein enhances cancer cell invasion by activating matrix metalloproteinase-9 and cyclooxygenase-2 through ERK/p38/NF-κB signal cascade. Cancer Lett. 2015;356(2, Part B):470–8.
pubmed: 25305454 doi: 10.1016/j.canlet.2014.09.027
Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: a review. J Cell Physiol. 2019;234(5):5683–99.
pubmed: 30341914 doi: 10.1002/jcp.27411
Ninio L, Nissani A, Meirson T, Domovitz T, Genna A, Twafra S, et al. Hepatitis C virus enhances the invasiveness of hepatocellular carcinoma via EGFR-mediated invadopodia formation and activation. Cells. 2019;8(11):1395.
pubmed: 31694343 pmcid: 6912298 doi: 10.3390/cells8111395
de Chassey B, Navratil V, Tafforeau L, Hiet MS, Aublin-Gex A, Agaugué S, et al. Hepatitis C virus infection protein network. Mol Syst Biol. 2008;4:230.
pubmed: 18985028 pmcid: 2600670 doi: 10.1038/msb.2008.66
Afify SM, Hassan G, Seno A, Seno M. Cancer-inducing niche: the force of chronic inflammation. Br J Cancer. 2022;127(2):193–201.
pubmed: 35292758 pmcid: 9296522 doi: 10.1038/s41416-022-01775-w
Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71.
pubmed: 24154716 doi: 10.1038/nrc3611
van Loo G, Bertrand MJM. Death by TNF: a road to inflammation. Nat Rev Immunol. 2023;23(5):289–303.
pubmed: 36380021 doi: 10.1038/s41577-022-00792-3
Dolganiuc A, Kodys K, Kopasz A, Marshall C, Do T, Romics L Jr, et al. Hepatitis C virus core and nonstructural protein 3 proteins induce pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation1. J Immunol. 2003;170(11):5615–24.
pubmed: 12759441 doi: 10.4049/jimmunol.170.11.5615
Dolganiuc A, Oak S, Kodys K, Golenbock DT, Finberg RW, Kurt-Jones E, et al. Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology. 2004;127(5):1513–24.
pubmed: 15521019 doi: 10.1053/j.gastro.2004.08.067
Chang S, Dolganiuc A, Szabo G. Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J Leukoc Biol. 2007;82(3):479–87.
pubmed: 17595379 doi: 10.1189/jlb.0207128
Rajalakshmy AR, Malathi J, Madhavan HN. Hepatitis C virus NS3 mediated microglial inflammation via TLR2/TLR6 MyD88/NF-κB pathway and toll like receptor ligand treatment furnished immune tolerance. PLoS ONE. 2015;10(5): e0125419.
pubmed: 25965265 pmcid: 4428696 doi: 10.1371/journal.pone.0125419
Wu B, Sodji QH, Oyelere AK. Inflammation, fibrosis and cancer: mechanisms, therapeutic options and challenges. Cancers. 2022;14(3):552.
pubmed: 35158821 pmcid: 8833582 doi: 10.3390/cancers14030552
Sakata K, Hara M, Terada T, Watanabe N, Takaya D, Yaguchi S, et al. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor. Sci Rep. 2013;3(1):3243.
pubmed: 24263861 pmcid: 3837337 doi: 10.1038/srep03243
Bala S, Tilahun Y, Taha O, Alao H, Kodys K, Catalano D, et al. Increased microRNA-155 expression in the serum and peripheral monocytes in chronic HCV infection. J Transl Med. 2012;10:151.
pubmed: 22846613 pmcid: 3477071 doi: 10.1186/1479-5876-10-151
O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012;30(1):295–312.
pubmed: 22224773 doi: 10.1146/annurev-immunol-020711-075013
Khanizadeh S, Ravanshad M, Hosseini SY, Davoodian P, Almasian M, Khanlari Z. The effect of the hepatitis C virus (HCV) NS3 protein on the expression of miR-150, miR-199a, miR-335, miR-194 and miR-27a. Microb Pathog. 2017;110:688–93.
pubmed: 28286290 doi: 10.1016/j.micpath.2017.03.004
Khanizadeh S, Ravanshad M, Hosseini SY, Davoodian P, Zadeh AN, Sabahi F, et al. The possible role of NS3 protease activity of hepatitis C virus on fibrogenesis and miR-122 expression in hepatic stellate cells. Acta Virol. 2016;60(03):242–8.
pubmed: 27640434 doi: 10.4149/av_2016_03_242
Vettori S, Gay S, Distler O. Role of MicroRNAs in fibrosis. Open Rheumatol J. 2012;6:130–9.
pubmed: 22802911 pmcid: 3396185 doi: 10.2174/1874312901206010130
De Mitri MS, Pisi E, Poussin K, Paterlini P, Bréchot C, Baccarini P, et al. HCV-associated liver cancer without cirrhosis. Lancet. 1995;345(8947):413–5.
pubmed: 7772123 doi: 10.1016/S0140-6736(95)90400-X
Nash KL, Woodall T, Brown AS, Davies SE, Alexander GJ. Hepatocellular carcinoma in patients with chronic hepatitis C virus infection without cirrhosis. World J Gastroenterol. 2010;16(32):4061–5.
pubmed: 20731020 pmcid: 2928460 doi: 10.3748/wjg.v16.i32.4061
Yeh MM, Daniel HDJ, Torbenson M. Hepatitis C associated hepatocellular carcinomas in non-cirrhotic livers. Mod Pathol. 2010;23(2):276–83.
pubmed: 19935643 doi: 10.1038/modpathol.2009.174
Frelin L, Brenndörfer ED, Ahlén G, Weiland M, Hultgren C, Alheim M, et al. The hepatitis C virus and immune evasion: non-structural 3/4A transgenic mice are resistant to lethal tumour necrosis factor α mediated liver disease. Gut. 2006;55(10):1475–83.
pubmed: 16527836 pmcid: 1856439 doi: 10.1136/gut.2005.085050
Chen Y, He L, Peng Y, Shi X, Chen J, Zhong J, et al. The hepatitis C virus protein NS3 suppresses TNF-α–stimulated activation of NF-κB by targeting LUBAC. Sci Signal. 2015;8(403):ra118.
pubmed: 26577923 doi: 10.1126/scisignal.aab2159
Chan ST, Ou J. Hepatitis C virus-induced autophagy and host innate immune response. Viruses. 2017;9(8):224.
pubmed: 28805674 pmcid: 5580481 doi: 10.3390/v9080224
Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020;20(9):537–51.
pubmed: 32203325 pmcid: 7094958 doi: 10.1038/s41577-020-0288-3
Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature. 2005;437(7062):1167–72.
pubmed: 16177806 doi: 10.1038/nature04193
Loo YM, Owen DM, Li K, Erickson AK, Johnson CL, Fish PM, et al. Viral and therapeutic control of IFN-β promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci USA. 2006;103(15):6001–6.
pubmed: 16585524 pmcid: 1458687 doi: 10.1073/pnas.0601523103
Baril M, Racine ME, Penin F, Lamarre D. MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease. J Virol. 2009;83(3):1299–311.
pubmed: 19036819 doi: 10.1128/JVI.01659-08
Li XD, Sun L, Seth RB, Pineda G, Chen ZJ. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci USA. 2005;102(49):17717–22.
pubmed: 16301520 pmcid: 1308909 doi: 10.1073/pnas.0508531102
Horner SM, Liu HM, Park HS, Briley J, Gale M. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci USA. 2011;108(35):14590–5.
pubmed: 21844353 pmcid: 3167523 doi: 10.1073/pnas.1110133108
Ferreira AR, Magalhães AC, Camões F, Gouveia A, Vieira M, Kagan JC, et al. Hepatitis C virus NS3-4A inhibits the peroxisomal MAVS-dependent antiviral signalling response. J Cell Mol Med. 2016;20(4):750–7.
pubmed: 26865163 pmcid: 5125814 doi: 10.1111/jcmm.12801
Lin R, Lacoste J, Nakhaei P, Sun Q, Yang L, Paz S, et al. Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKɛ molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J Virol. 2006;80(12):6072–83.
pubmed: 16731946 pmcid: 1472616 doi: 10.1128/JVI.02495-05
Bender S, Reuter A, Eberle F, Einhorn E, Binder M, Bartenschlager R. Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus. PLoS Pathog. 2015;11(11): e1005264.
pubmed: 26588843 pmcid: 4654527 doi: 10.1371/journal.ppat.1005264
Oshiumi H, Miyashita M, Matsumoto M, Seya T. A distinct role of riplet-mediated K63-linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog. 2013;9(8): e1003533.
pubmed: 23950712 pmcid: 3738492 doi: 10.1371/journal.ppat.1003533
Vazquez C, Tan CY, Horner SM. Hepatitis C virus infection is inhibited by a noncanonical antiviral signaling pathway targeted by NS3-NS4A. J Virol. 2019;93(23):e00725. https://doi.org/10.1128/jvi.00725-19 .
doi: 10.1128/jvi.00725-19 pubmed: 31534039 pmcid: 6854490
Ferreon JC, Ferreon ACM, Li K, Lemon SM. Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease. J Biol Chem. 2005;280(21):20483–92.
pubmed: 15767257 doi: 10.1074/jbc.M500422200
Li K, Foy E, Ferreon JC, Nakamura M, Ferreon ACM, Ikeda M, et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci. 2005;102(8):2992–7.
pubmed: 15710891 pmcid: 548795 doi: 10.1073/pnas.0408824102
Otsuka M, Kato N, Moriyama M, Taniguchi H, Wang Y, Dharel N, et al. Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses. Hepatology. 2005;41(5):1004–12.
pubmed: 15841462 doi: 10.1002/hep.20666
Foy E, Li K, Wang C, Sumpter R, Ikeda M, Lemon SM, et al. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science. 2003;300(5622):1145–8.
pubmed: 12702807 doi: 10.1126/science.1082604
Lin W, Choe WH, Hiasa Y, Kamegaya Y, Blackard JT, Schmidt EV, et al. Hepatitis C virus expression suppresses interferon signaling by degrading STAT1. Gastroenterology. 2005;128(4):1034–41.
pubmed: 15825084 doi: 10.1053/j.gastro.2005.02.006
Tornesello ML, Cerasuolo A, Starita N, Tornesello AL, Bonelli P, Tuccillo FM, et al. The molecular interplay between human oncoviruses and telomerase in cancer development. Cancers. 2022;14(21):5257.
pubmed: 36358677 pmcid: 9659228 doi: 10.3390/cancers14215257
Zhu Z, Tran H, Mathahs MM, Moninger TO, Schmidt WN. HCV induces telomerase reverse transcriptase, increases its catalytic activity, and promotes caspase degradation in infected human hepatocytes. PLoS ONE. 2017;12(1): e0166853.
pubmed: 28056029 pmcid: 5215869 doi: 10.1371/journal.pone.0166853
Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol. 2018;16(3):125–42.
pubmed: 29430005 pmcid: 7097628 doi: 10.1038/nrmicro.2017.170
Nazarenko AS, Vorovitch MF, Biryukova YK, Pestov NB, Orlova EA, Barlev NA, et al. Flaviviruses in antitumor therapy. Viruses. 2023;15(10):1973.
pubmed: 37896752 pmcid: 10611215 doi: 10.3390/v15101973
Latanova A, Starodubova E, Karpov V. Flaviviridae nonstructural proteins: the role in molecular mechanisms of triggering inflammation. Viruses. 2022;14(8):1808.
pubmed: 36016430 pmcid: 9414172 doi: 10.3390/v14081808
Chen S, Wu Z, Wang M, Cheng A. Innate immune evasion mediated by flaviviridae non-structural proteins. Viruses. 2017;9(10):291.
pubmed: 28991176 pmcid: 5691642 doi: 10.3390/v9100291
Liu WJ, Wang XJ, Mokhonov VV, Shi PY, Randall R, Khromykh AA. Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of west Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J Virol. 2005;79(3):1934–42.
pubmed: 15650219 pmcid: 544092 doi: 10.1128/JVI.79.3.1934-1942.2005
Rodriguez-Madoz JR, Belicha-Villanueva A, Bernal-Rubio D, Ashour J, Ayllon J, Fernandez-Sesma A. Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J Virol. 2010;84(19):9760–74.
pubmed: 20660196 pmcid: 2937777 doi: 10.1128/JVI.01051-10
Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog. 2012;8(10): e1002934.
pubmed: 23055924 pmcid: 3464218 doi: 10.1371/journal.ppat.1002934
Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, Liao CL, et al. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog. 2012;8(6): e1002780.
pubmed: 22761576 pmcid: 3386177 doi: 10.1371/journal.ppat.1002780
Chan YK, Gack MU. A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat Immunol. 2016;17(5):523–30.
pubmed: 26998762 pmcid: 4837045 doi: 10.1038/ni.3393
Riedl W, Acharya D, Lee JH, Liu G, Serman T, Chiang C, et al. Zika virus NS3 mimics a cellular 14-3-3-binding motif to antagonize RIG-I- and MDA5-mediated innate immunity. Cell Host Microbe. 2019;26(4):493-503.e6.
pubmed: 31600501 pmcid: 6922055 doi: 10.1016/j.chom.2019.09.012
Li W, Li N, Dai S, Hou G, Guo K, Chen X, et al. Zika virus circumvents host innate immunity by targeting the adaptor proteins MAVS and MITA. FASEB J. 2019;33(9):9929–44.
pubmed: 31180720 doi: 10.1096/fj.201900260R
Gim E, Shim DW, Hwang I, Shin OS, Yu JW. Zika virus impairs host NLRP3-mediated inflammasome activation in an NS3-dependent manner. Immune Netw. 2019;19(6): e40.
pubmed: 31921470 pmcid: 6943171 doi: 10.4110/in.2019.19.e40
Shafee N, AbuBakar S. Dengue virus type 2 NS3 protease and NS2B-NS3 protease precursor induce apoptosis. J Gen Virol. 2003;84(8):2191–5.
pubmed: 12867651 doi: 10.1099/vir.0.19022-0
Lin JC, Lin SC, Chen WY, Yen YT, Lai CW, Tao MH, et al. Dengue viral protease interaction with NF-κB inhibitor α/β results in endothelial cell apoptosis and hemorrhage development. J Immunol. 2014;193(3):1258–67.
pubmed: 24973451 doi: 10.4049/jimmunol.1302675
Ramanathan MP, Chambers JA, Pankhong P, Chattergoon M, Attatippaholkun W, Dang K, et al. Host cell killing by the West Nile virus NS2B–NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway. Virology. 2006;345(1):56–72.
pubmed: 16243374 doi: 10.1016/j.virol.2005.08.043
Yiang GT, Chen YH, Chou PL, Chang WJ, Wei CW, Yu YL. The NS3 protease and helicase domains of Japanese encephalitis virus trigger cell death via caspase-dependent and -independent pathways. Mol Med Rep. 2013;7(3):826–30.
pubmed: 23291778 doi: 10.3892/mmr.2013.1261
Yang TC, Shiu SL, Chuang PH, Lin YJ, Wan L, Lan YC, et al. Japanese encephalitis virus NS2B-NS3 protease induces caspase 3 activation and mitochondria-mediated apoptosis in human medulloblastoma cells. Virus Res. 2009;143(1):77–85.
pubmed: 19463724 doi: 10.1016/j.virusres.2009.03.007
Prikhod’ko GG, Prikhod’ko EA, Pletnev AG, Cohen JI. Langat flavivirus protease NS3 binds caspase-8 and induces apoptosis. J Virol. 2002;76(11):5701–10.
pubmed: 11991998 pmcid: 137024 doi: 10.1128/JVI.76.11.5701-5710.2002
Hartlage AS, Cullen JM, Kapoor A. The strange, expanding world of animal hepaciviruses. Annu Rev Virol. 2016;3(1):53–75.
pubmed: 27741408 pmcid: 5523456 doi: 10.1146/annurev-virology-100114-055104
Stapleton JT. Human Pegivirus type 1: A common human virus that is beneficial in immune-mediated disease? Front Immunol. 2022;13: 887760.
pubmed: 35707535 pmcid: 9190258 doi: 10.3389/fimmu.2022.887760
Fama A, Xiang J, Link BK, Allmer C, Klinzman D, Feldman AL, et al. Human Pegivirus infection and lymphoma risk and prognosis: a North American study. Br J Haematol. 2018;182(5):644–53.
pubmed: 29808922 pmcid: 6108902 doi: 10.1111/bjh.15416
Chowdhury AY, Tavis JE, George SL. Human pegivirus (GB virus C) NS3 protease activity inhibits induction of the type I interferon response and is not inhibited by HCV NS3 protease inhibitors. Virology. 2014;456–457:300–9.
pubmed: 24889249 doi: 10.1016/j.virol.2014.03.018
Chen Z, Benureau Y, Rijnbrand R, Yi J, Wang T, Warter L, et al. GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS. J Virol. 2007;81(2):964–76.
pubmed: 17093192 doi: 10.1128/JVI.02076-06
López-Ocejo O, Viloria-Petit A, Bequet-Romero M, Mukhopadhyay D, Rak J, Kerbel RS. Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene. 2000;19(40):4611–20.
pubmed: 11030150 doi: 10.1038/sj.onc.1203817
Ripoli M, D’Aprile A, Quarato G, Sarasin-Filipowicz M, Gouttenoire J, Scrima R, et al. Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1α-mediated glycolytic adaptation. J Virol. 2010;84(1):647–60.
pubmed: 19846525 doi: 10.1128/JVI.00769-09
Noch E, Khalili K. Oncogenic viruses and tumor glucose metabolism: like kids in a candy store. Mol Cancer Ther. 2012;11(1):14–23.
pubmed: 22234809 pmcid: 3257817 doi: 10.1158/1535-7163.MCT-11-0517
Francies FZ, Dlamini Z. Aberrant splicing events and epigenetics in viral oncogenomics: current therapeutic strategies. Cells. 2021;10(2):239.
pubmed: 33530521 pmcid: 7910916 doi: 10.3390/cells10020239
Armero VES, Tremblay MP, Allaire A, Boudreault S, Martenon-Brodeur C, Duval C, et al. Transcriptome-wide analysis of alternative RNA splicing events in Epstein–Barr virus-associated gastric carcinomas. PLoS ONE. 2017;12(5): e0176880.
pubmed: 28493890 pmcid: 5426614 doi: 10.1371/journal.pone.0176880
Tremblay MP, Armero VES, Allaire A, Boudreault S, Martenon-Brodeur C, Durand M, et al. Global profiling of alternative RNA splicing events provides insights into molecular differences between various types of hepatocellular carcinoma. BMC Genomics. 2016;17:683.
pubmed: 27565572 pmcid: 5002109 doi: 10.1186/s12864-016-3029-z
Lebedeva S, Jens M, Theil K, Schwanhäusser B, Selbach M, Landthaler M, et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell. 2011;43(3):340–52.
pubmed: 21723171 doi: 10.1016/j.molcel.2011.06.008
Barnhart MD, Moon SL, Emch AW, Wilusz CJ, Wilusz J. Changes in cellular mRNA stability, splicing, and polyadenylation through HuR protein sequestration by a cytoplasmic RNA virus. Cell Rep. 2013;5(4):909–17.
pubmed: 24210824 doi: 10.1016/j.celrep.2013.10.012
Boudreault S, Roy P, Lemay G, Bisaillon M. Viral modulation of cellular RNA alternative splicing: A new key player in virus–host interactions? WIREs RNA. 2019;10(5): e1543.
pubmed: 31034770 doi: 10.1002/wrna.1543
Bonnal SC, López-Oreja I, Valcárcel J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat Rev Clin Oncol. 2020;17(8):457–74.
pubmed: 32303702 doi: 10.1038/s41571-020-0350-x
Ladomery M. Aberrant alternative splicing is another hallmark of cancer. Int J Cell Biol. 2013;2013: 463786.
pubmed: 24101931 pmcid: 3786539 doi: 10.1155/2013/463786
McKay LGA, Thomas J, Albalawi W, Fattaccioli A, Dieu M, Ruggiero A, et al. The HCV envelope glycoprotein down-modulates NF-κB signalling and associates with stimulation of the host endoplasmic reticulum stress pathway. Front Immunol. 2022;13: 831695.
pubmed: 35371105 pmcid: 8964954 doi: 10.3389/fimmu.2022.831695
Joo M, Hahn YS, Kwon M, Sadikot RT, Blackwell TS, Christman JW. Hepatitis C virus core protein suppresses NF-κB activation and cyclooxygenase-2 expression by direct interaction with IκB kinase β. J Virol. 2005;79(12):7648–57.
pubmed: 15919917 pmcid: 1143634 doi: 10.1128/JVI.79.12.7648-7657.2005
Warkad SD, Song KS, Pal D, Nimse SB. Developments in the HCV screening technologies based on the detection of antigens and antibodies. Sensors. 2019;19(19):4257.
pubmed: 31575036 pmcid: 6806196 doi: 10.3390/s19194257
Hepatitis C. Guidance 2018 update: AASLD-IDSA recommendations for testing, managing, and treating hepatitis C virus infection. Clin Infect Dis. 2018;67(10):1477–92.
doi: 10.1093/cid/ciy585
Bell CR, Pelly VS, Moeini A, Chiang SC, Flanagan E, Bromley CP, et al. Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations. Nat Commun. 2022;13(1):2063.
pubmed: 35440553 pmcid: 9018752 doi: 10.1038/s41467-022-29606-9
Cervello M, Montalto G. Cyclooxygenases in hepatocellular carcinoma. World J Gastroenterol. 2006;12(32):5113–21.
pubmed: 16937518 pmcid: 4088007 doi: 10.3748/wjg.v12.i32.5113

Auteurs

Carole-Anne Martineau (CA)

Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.

Nathalie Rivard (N)

Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.

Martin Bisaillon (M)

Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada. Martin.Bisaillon@USherbrooke.ca.

Classifications MeSH