Blood-based multivariate methylation risk score for cognitive impairment and dementia.
Alzheimer's disease
DNA methylation
Parkinson's disease
aging
dementia
epigenetics
machine learning
mild cognitive impairments
risk prediction
Journal
Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978
Informations de publication
Date de publication:
28 Aug 2024
28 Aug 2024
Historique:
revised:
03
05
2024
received:
06
12
2023
accepted:
06
05
2024
medline:
28
8
2024
pubmed:
28
8
2024
entrez:
28
8
2024
Statut:
aheadofprint
Résumé
The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection. In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts. We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (P = 2.0 × 10 Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk. We used whole blood DNA methylation as a surrogate for 14 dementia risk factors. Created a multivariate methylation risk score for predicting cognitive impairment. Emphasized the role of machine learning and omics data in predicting dementia. The score predicts cognitive impairment development at the population level.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : ZonMw Memorabel/Alzheimer Nederland
ID : 733050516
Organisme : Innovative Medicines Initiative Joint Undertaking
ID : 115372
Organisme : European Union's Seventh Framework Program
ID : FP7/2007-2013
Organisme : National Institute for Health and Care Research
Organisme : Biomedical research Centre
Organisme : Heisenberg grant of the German Research Foundation
ID : LI 2654/4-1
Organisme : EU Joint Programme - Neurodegenerative Disease Research 2021″
ID : JPND2021
Organisme : EU Joint Programme - Neurodegenerative Disease Research 2021″
ID : EPIC4ND
Organisme : Cure Alzheimer's Fund
ID : EPIC4AD
Organisme : European Union's Horizon Europe research and innovation programme
ID : 101053962
Organisme : Swedish State Support for Clinical Research
ID : #ALFGBG-71320
Organisme : Alzheimer Drug Discovery Foundation (ADDF), USA
ID : #201809-2016862
Organisme : AD Strategic Fund and the Alzheimer's Association
ID : #ADSF-21-831376-C
Organisme : AD Strategic Fund and the Alzheimer's Association
ID : #ADSF-21-831381-C
Organisme : AD Strategic Fund and the Alzheimer's Association
ID : #ADSF-21-831377-C
Organisme : Bluefield Project
Organisme : Olav Thon Foundation
Organisme : Familjen Erling-Perssons Stiftelse
Organisme : Stiftelsen för Gamla Tjänarinnor
Organisme : Marie Skłodowska-Curie
ID : 860197
Organisme : European Union Joint Programme - Neurodegenerative Disease Research
ID : JPND2021-00694
Organisme : National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
Organisme : UK Dementia Research Institute
Organisme : Swedish Alzheimer Foundation
ID : #AF-930351
Organisme : Swedish Alzheimer Foundation
ID : #AF-939721
Organisme : Swedish Alzheimer Foundation
ID : #AF-968270
Organisme : Hjärnfonden, Sweden
ID : #FO2022-0270
Organisme : Hjärnfonden, Sweden
ID : #FO2017-0243
Organisme : Hjärnfonden, Sweden
ID : #ALZ2022-0006
Organisme : ALF-agreement
ID : #ALFGBG-715986
Organisme : ALF-agreement
ID : #ALFGBG-965240
Organisme : European Union Joint Program for Neurodegenerative Disorders
ID : JPND2019-466-236
Organisme : Alzheimer's Association 2021 Zenith Award
ID : ZEN-21-848495
Organisme : Alzheimer's Association 2021 Zenith Award
ID : SG-23-1038904 QC
Organisme : Alzheimer's Society UK
ID : AS-PG-14-038
Organisme : Medical Research Council
Pays : United Kingdom
Organisme : National Institute of Aging (NIA)
Organisme : National Institutes of Health (NIH)
ID : R01AG067015
Organisme : NIA NIH HHS
ID : U01 AG024904
Pays : United States
Organisme : DOD ADNI (Department of Defense award
ID : W81XWH-12-2-0012
Organisme : NIA NIH HHS
Pays : United States
Organisme : NIBIB NIH HHS
Pays : United States
Organisme : Swedish Research Council
ID : #2022-01018
Organisme : Swedish Research Council
ID : #2019-02397
Organisme : Swedish Research Council
ID : #2017-00915
Organisme : Swedish Research Council
ID : #2022-00732
Informations de copyright
© 2024 The Author(s). Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Références
Bouwman FH, Frisoni GB, Johnson SC, et al. Clinical application of CSF biomarkers for Alzheimer's disease: from rationale to ratios. Alzheimers Dement (Amst). 2022;14:e12314.
Hansson O, Edelmayer RM, Boxer AL, et al. The Alzheimer's Association appropriate use recommendations for blood biomarkers in Alzheimer's disease. Alzheimers Dement. 2022;18:2669‐2686.
van den Hove DLA, Riemens RJM, Koulousakis P, Pishva E. Epigenome‐wide association studies in Alzheimer's disease; achievements and challenges. Brain Pathol. 2020;30:978‐983.
Dhar GA, Saha S, Mitra P. Nag Chaudhuri R. DNA methylation and regulation of gene expression: guardian of our health. Nucleus (Calcutta). 2021;64:259‐270.
Joehanes R, Just AC, Marioni RE, et al. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9:436‐447.
Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics. 2019;14:421‐444.
Gonzalez‐Jaramillo V, Portilla‐Fernandez E, Glisic M, et al. The role of DNA methylation and histone modifications in blood pressure: a systematic review. J Hum Hypertens. 2019;33:703‐715.
Min JL, Hemani G, Hannon E, et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet. 2021;53:1311‐1321.
Schäfer Hackenhaar F, Josefsson M, Nordin Adolfsson A, et al. Sixteen‐year longitudinal evaluation of blood‐based DNA methylation biomarkers for early prediction of Alzheimer's disease. J Alzheimers Dis. 2023;94:1443‐1464.
Schiepers OJ, Köhler S, Deckers K, et al. Lifestyle for Brain Health (LIBRA): a new model for dementia prevention. Int J Geriatr Psychiatry. 2018;33:167‐175.
Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto J. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population‐based study. Lancet Neurol. 2006;5:735‐741.
Kim JH, Chang IB, Kim YH, Min CY, Yoo DM, Choi HG. Association between various types or statuses of smoking and subjective cognitive decline based on a community health survey of Korean adults. Front Neurol. 2022;13:810830.
Schaefer SM, Kaiser A, Behrendt I, Eichner G, Fasshauer M. Association of alcohol types, coffee, and tea intake with risk of dementia: prospective cohort study of UK biobank participants. Brain Sci. 2022;12:360.
Malik R, Georgakis MK, Neitzel J, et al. Midlife vascular risk factors and risk of incident dementia: longitudinal cohort and Mendelian randomization analyses in the UK Biobank. Alzheimers Dement. 2021;17:1422‐1431.
Iso‐Markku P, Waller K, Vuoksimaa E, et al. Midlife physical activity and cognition later in life: a prospective twin study. J Alzheimers Dis. 2016;54:1303‐1317.
Xu W, Tan L, Wang HF, et al. Education and risk of dementia: dose‐response meta‐analysis of prospective cohort studies. Mol Neurobiol. 2016;53:3113‐3123.
Shannon OM, Ranson JM, Gregory S, et al. Mediterranean diet adherence is associated with lower dementia risk, independent of genetic predisposition: findings from the UK Biobank prospective cohort study. BMC Med. 2023;21:81.
Hattersley A, The Exeter 10,000 (EXTEND) project. In: Facility NECR, editor.2020.
Bos I, Vos S, Vandenberghe R, et al. The EMIF‐AD Multimodal Biomarker Discovery study: design, methods and cohort characteristics. Alzheimers Res Ther . 2018;10:1‐9.
Marek K, Chowdhury S, Siderowf A, et al. The Parkinson's progression markers initiative (PPMI)–establishing a PD biomarker cohort. Ann Clin Transl Neurol . 2018;5:1460‐1477.
Petersen RC, Aisen PS, Beckett LA, et al. Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization. Neurology. 2010;74:201‐209.
Bertram L, Böckenhoff A, Demuth I, et al. Cohort profile: the Berlin Aging Study II (BASE‐II). Int J Epidemiol. 2014;43:703‐712.
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183‐194.
Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256:240‐246.
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS‐ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34:939.
Edmonds EC, Delano‐Wood L, Jak AJ, et al. “Missed” mild cognitive impairment: high false‐negative error rate based on conventional diagnostic criteria. J Alzheimers Dis. 2016;52:685‐691.
Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: movement disorder society task force guidelines. Mov Disord. 2012;27:349‐356.
Harvey J, Reijnders RA, Cavill R, et al. Machine learning‐based prediction of cognitive outcomes in de novo Parkinson's disease. npj Parkinson's Disease. 2022;8:150.
Demuth I, Banszerus V, Drewelies J, et al. Cohort profile: follow‐up of a Berlin Aging Study II (BASE‐II) subsample as part of the GendAge study. BMJ Open. 2021;11:e045576.
Shaw LM, Vanderstichele H, Knapik‐Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol. 2009;65:403‐413.
Aryee MJ, Jaffe AE, Corrada‐Bravo H, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363‐1369.
Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data‐driven approach to preprocessing Illumina 450K methylation array data. Bmc Genom [Electronic Resource]. 2013;14:1‐10.
Liu J, Siegmund KD. An evaluation of processing methods for HumanMethylation450 BeadChip data. Bmc Genom [Electronic Resource]. 2016;17:1‐11.
McCartney DL, Walker RM, Morris SW, McIntosh AM, Porteous DJ, Evans KL. Identification of polymorphic and off‐target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip. Genom Data. 2016;9:22‐24.
Josse J, Husson F. missMDA: a package for handling missing values in multivariate data analysis. J Stat Softw. 2016;70:1‐31.
Lena PD, Sala C, Prodi A, Nardini C. Methylation data imputation performances under different representations and missingness patterns. BMC Bioinf. 2020;21:1‐22.
Sommerer Y, Dobricic V, Schilling M, et al. Epigenome‐wide association study in peripheral tissues highlights DNA methylation profiles associated with episodic memory performance in humans. Biomedicines. 2022;10:2798.
Hong S, Prokopenko D, Dobricic V, et al. Genome‐wide association study of Alzheimer's disease CSF biomarkers in the EMIF‐AD multimodal biomarker discovery dataset. Transl Psychiatry. 2020;10:403.
McCarthy. HRC or 1000G imputation preparation and checking. 2018.
Das S, Forer L, Schönherr S, et al. Next‐generation genotype imputation service and methods. Nat Genet. 2016;48:1284‐1287.
Zhang Q, Privé F, Vilhjálmsson B, Speed D. Improved genetic prediction of complex traits from individual‐level data or summary statistics. Nat Commun. 2021;12:4192.
Hillary RF, Marioni RE. MethylDetectR: a software for methylation‐based health profiling. Wellcome Open Res. 2020;5:283.
Zhang Q, Vallerga CL, Walker RM, et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 2019;11:1‐11.
Kennard RW, Stone LA. Computer aided design of experiments. Technometrics. 1969;11:137‐148.
Therneau TM, Lumley T. Package ‘survival’. R Top Doc. 2015;128:28‐33.
Biecek P. DALEX: explainers for complex predictive models in R. J Mach Learn Res . 2018;19:3245‐3249.
Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina's HumanMethylation450 platform. Bioinformatics. 2015;32:286‐288.
O'Connell MJ, Lock EF. R. JIVE for exploration of multi‐source molecular data. Bioinformatics. 2016;32:2877‐2879.
Rasooly D, Peloso GM, Giambartolomei C. Bayesian genetic colocalization test of two traits using coloc. Curr Protoc. 2022;2:e627.
Bellenguez C, Kucukali F, Jansen IE, et al. New insights into the genetic etiology of Alzheimer's disease and related dementias. Nat Genet. 2022;54:412‐436.
Marioni RE, Harris SE, Zhang Q, et al. GWAS on family history of Alzheimer's disease. Transl Psychiatry. 2018;8:99.
Dong C, Zhou C, Fu C, et al. Sex differences in the association between cardiovascular diseases and dementia subtypes: a prospective analysis of 464,616 UK Biobank participants. Biol Sex Differ. 2022;13:21.
Babaei P. NMDA and AMPA receptors dysregulation in Alzheimer's disease. Eur J Pharmacol. 2021;908:174310.
Wei X, Zhang L, Zeng Y. DNA methylation in Alzheimer's disease: in brain and peripheral blood. Mech Ageing Dev. 2020;191:111319.
Martens YA, Zhao N, Liu CC, et al. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer's disease and related dementias. Neuron. 2022;110:1304‐1317.
Taskesen E, Mishra A, van der Sluis S, et al. Susceptible genes and disease mechanisms identified in frontotemporal dementia and frontotemporal dementia with Amyotrophic Lateral Sclerosis by DNA‐methylation and GWAS. Sci Rep. 2017;7:8899.
Arias‐Aragón F, Tristán‐Clavijo E, Martínez‐Gallego I, et al. A Neuroligin‐1 mutation associated with Alzheimer's disease produces memory and age‐dependent impairments in hippocampal plasticity. iScience. 2023;26:106868.
Landry O, François A, Oye Mintsa Mi‐Mba MF, et al. Postsynaptic protein shank3a deficiency synergizes with Alzheimer's disease neuropathology to impair cognitive performance in the 3xTg‐AD murine model. J Neurosci. 2023;43:4941‐4954.
Ramos J, Caywood LJ, Prough MB, et al. Genetic variants in the SHISA6 gene are associated with delayed cognitive impairment in two family datasets. Alzheimers Dement. 2023;19:611‐620.
Sabaie H, Talebi M, Gharesouarn J, et al. Identification and analysis of BCAS4/hsa‐miR‐185‐5p/SHISA7 competing endogenous RNA axis in late‐onset alzheimer's disease using bioinformatic and experimental approaches. Front Aging Neurosci. 2022;14:812169.
Cazzaro S, Woo JA, Wang X, et al. Slingshot homolog‐1‐mediated Nrf2 sequestration tips the balance from neuroprotection to neurodegeneration in Alzheimer's disease. Proc Natl Acad Sci USA. 2023;120:e2217128120.
Deckers K, Barbera M, Köhler S, et al. Long‐term dementia risk prediction by the LIBRA score: a 30‐year follow‐up of the CAIDE study. Int J Geriatr Psychiatry. 2020;35:195‐203.
Jongsiriyanyong S, Limpawattana P. Mild cognitive impairment in clinical practice: a review article. Am J Alzheimers Dis Other Demen. 2018;33:500‐507.