Robot-assisted internal fixation of calcaneal fractures versus conventional open reduction internal fixation: a systematic review and meta-analysis.
Calcaneal fractures
Meta-analysis
Open reduction internal fixation
Robot assisted
Journal
Journal of robotic surgery
ISSN: 1863-2491
Titre abrégé: J Robot Surg
Pays: England
ID NLM: 101300401
Informations de publication
Date de publication:
28 Aug 2024
28 Aug 2024
Historique:
received:
31
07
2024
accepted:
15
08
2024
medline:
28
8
2024
pubmed:
28
8
2024
entrez:
28
8
2024
Statut:
epublish
Résumé
The aim of the study was to compare the efficacy and safety of robot-assisted (RA) percutaneous hollow screw fixation with traditional open reduction internal fixation (ORIF) for the treatment of calcaneal fractures through a systematic review and meta-analysis. An extensive search was conducted in the following databases-PubMed, CNKI, Embase, and the Cochrane Library-to gather research on patients with calcaneal fractures published up to July 2024. This search focuses on studies comparing the effectiveness of robot-assisted percutaneous cannulated screw fixation versus ORIF. We will include studies published in both English and Chinese. Our screening process adhered strictly to predefined inclusion and exclusion criteria, emphasizing randomized controlled trials (RCTs) and cohort studies. The ROBINS-I tool was utilized to evaluate the risk of bias in non-randomized studies. Meta-analysis was conducted using Review Manager 5.4.1. The final analysis incorporated six retrospective cohort studies comprising 247 patients-122 treated with robotic-assisted percutaneous cannulated screw fixation and 125 with conventional open reduction and internal fixation. The findings indicated that patients undergoing robotic-assisted percutaneous cannulated screw fixation experienced advantages over those receiving conventional treatment in terms of reduced hospital stay, lower estimated blood loss, and higher AOFAS scores at both 3 and 6 months. No statistically significant differences were observed between the two methods concerning operative time, fracture healing duration, or the frequency of intraoperative fluoroscopies. Robotic-assisted percutaneous cannulated screw fixation is a safe and viable treatment approach for patients with calcaneal fractures. When compared to ORIF methods, this robotic-assisted technique demonstrated significant benefits, including reduced hospital stay, lower estimated blood loss, and improved AOFAS scores at both 3 and 6 months.
Identifiants
pubmed: 39196425
doi: 10.1007/s11701-024-02086-3
pii: 10.1007/s11701-024-02086-3
doi:
Types de publication
Journal Article
Systematic Review
Meta-Analysis
Comparative Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
329Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
Références
Wagstrom EA, Downes JM (2018) Limited approaches to calcaneal fractures. Curr Rev Musculoskelet Med 11(3):485–494. https://doi.org/10.1007/s12178-018-9511-2
doi: 10.1007/s12178-018-9511-2
pubmed: 29995196
pmcid: 6105483
Kir MC, Ayanoglu S, Cabuk H et al (2018) Mini-plate fixation via sinus tarsi approach is superior to cannulated screw in intra-articular calcaneal fractures: A prospective randomized study. J Orthop Surg 26(3):2309499018792742. https://doi.org/10.1177/2309499018792742
doi: 10.1177/2309499018792742
Kamath KR, Mallya S, Hegde A (2021) A comparative study of operative and conservative treatment of intraarticular displaced calcaneal fractures. Sci Rep 11(1):3946. https://doi.org/10.1038/s41598-021-83636-9
doi: 10.1038/s41598-021-83636-9
pubmed: 33597673
pmcid: 7889880
Park CH, Yan H, Park J (2021) Randomized comparative study between extensile lateral and sinus tarsi approaches for the treatment of Sanders type 2 calcaneal fracture. Bone Joint J 103-B(2):286–293. https://doi.org/10.1302/0301-620X.103B.BJJ-2020-1313.R1
doi: 10.1302/0301-620X.103B.BJJ-2020-1313.R1
pubmed: 33390020
Pavone V, Sapienza M, Carnazza M et al (2024) Open reduction and internal fixation with plate and screw versus triplanar external fixation in the surgical treatment of calcaneal fractures: a retrospective cohort study. J Clin Med 13(13):3770. https://doi.org/10.3390/jcm13133770
doi: 10.3390/jcm13133770
pubmed: 38999336
pmcid: 11242109
Bibbo C, Siddiqui N, Fink J et al (2019) Wound coverage options for soft tissue defects following calcaneal fracture management (operative/surgical). Clin Podiatr Med Surg 36(2):323–337. https://doi.org/10.1016/j.cpm.2018.10.012
doi: 10.1016/j.cpm.2018.10.012
pubmed: 30784540
Bläsius FM, Link BC, Beeres FJP et al (2019) Impact of surgical procedures on soft tissue microcirculation in calcaneal fractures: a prospective longitudinal cohort study. Injury 50(12):2332–2338. https://doi.org/10.1016/j.injury.2019.10.004
doi: 10.1016/j.injury.2019.10.004
pubmed: 31630780
Dhillon MS, Bali K, Prabhakar S (2011) Controversies in calcaneus fracture management: a systematic review of the literature. Musculoskelet Surg 95(3):171–181. https://doi.org/10.1007/s12306-011-0114-y
doi: 10.1007/s12306-011-0114-y
pubmed: 21409502
Wang J, Han W, Su Y et al (2023) Comparison of robot-assisted percutaneous cannulated screws versus open reduction and internal fixation in calcaneal fractures. Orthop Surg 15(3):724–730. https://doi.org/10.1111/os.13650
doi: 10.1111/os.13650
pubmed: 36600634
pmcid: 9977583
Hong CC, Tan JH, Ramruttun AK et al (2022) Biomechanical comparison of a novel 3-screw fixation vs. conventional 2-screw fixation of calcaneal tuberosity avulsion fractures. Foot Ankle Int 43(12):1562–1568. https://doi.org/10.1177/10711007221130007
doi: 10.1177/10711007221130007
pubmed: 36321602
Chirvi S, Pahapill N, Yoganandan N et al (2022) Calcaneus fracture pattern and severity: role of local trabecular bone density. J Mech Behav Biomed Mater 134:105332. https://doi.org/10.1016/j.jmbbm.2022.105332
doi: 10.1016/j.jmbbm.2022.105332
pubmed: 35987107
Wan X, Wang W, Liu J et al (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135
doi: 10.1186/1471-2288-14-135
pubmed: 25524443
pmcid: 4383202
Sterne JA, Gavaghan D, Egger M (2000) Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 53(11):1119–1129. https://doi.org/10.1016/s0895-4356(00)00242-0
doi: 10.1016/s0895-4356(00)00242-0
pubmed: 11106885
Lau J, Ioannidis JPA, Terrin N et al (2006) The case of the misleading funnel plot. BMJ 333(7568):597–600. https://doi.org/10.1136/bmj.333.7568.597
doi: 10.1136/bmj.333.7568.597
pubmed: 16974018
pmcid: 1570006
Xu JH, Wang ZJ, Zhang Y et al (2024) Clinical comparative study of Tianji orthopedic robot assisted surgery and traditional open reduction and internal fixation in the treatment of calcaneal fracture. Chongqing Med 53(6):850–860
Yuan XW, Zhang B, Hu J et al (2021) A comparative study on internal fixation of calcaneal fractures assisted by robot and traditional open reduction internal fixation. Chin J Reparative Reconstr Surg 35(6):729–733
Zhang JF, Chen YM, Wang JQ et al (2023) Comparison of robot-assisted percutaneous cannulated screw fixation and open reduction internal fixation in the treatment of Sanders II/III calcaneal fractures: a retrospective cohort study. J Clin Orthop Res 8(6):356–362. https://doi.org/10.19548/j.2096-269x.2023.06.007
doi: 10.19548/j.2096-269x.2023.06.007
Yuan X, Tan K, Hu J et al (2023) Does robot-assisted percutaneous hollow screw placement combined with tarsal sinus incision reduction in the treatment of calcaneal fracture perform better at a minimum 2 year follow-up compared with traditional surgical reduction and fixation? Int Orthop 47(6):1575–1581. https://doi.org/10.1007/s00264-023-05752-7
doi: 10.1007/s00264-023-05752-7
pubmed: 36933037
Zou TY (2023) Randomized controlled study of extensile lateral approach and robot-assisted sinus tarsi approach for the treatment of in-articular displaced calcaneal fractures. Hubei University of Medicine, Shiyan City
Kitaoka HB, Alexander IJ, Adelaar RS et al (1994) Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int 15(7):349–353. https://doi.org/10.1177/107110079401500701
doi: 10.1177/107110079401500701
pubmed: 7951968
Su Y, Chen W, Zhang Q et al (2014) Bony destructive injuries of the calcaneus: long-term results of a minimally invasive procedure followed by early functional exercise: a retrospective study. BMC Surg 14:19. https://doi.org/10.1186/1471-2482-14-19
doi: 10.1186/1471-2482-14-19
pubmed: 24725606
pmcid: 4021046
Frane N, Megas A, Stapleton E et al (2020) Radiation exposure in orthopaedics. JBJS Rev 8(1):e0060. https://doi.org/10.2106/JBJS.RVW.19.00060
doi: 10.2106/JBJS.RVW.19.00060
pubmed: 31899700
Hu W, Huang C, Zhang Y et al (2022) A nomogram for predicting post-operative wound complications after open reduction and internal fixation for calcaneal fractures. Int Wound J 19(8):2163–2173. https://doi.org/10.1111/iwj.13822
doi: 10.1111/iwj.13822
pubmed: 35438244
pmcid: 9705175
Lasschuit JWJ, Center JR, Greenfield JR et al (2020) Comparison of calcaneal quantitative ultrasound and bone densitometry parameters as fracture risk predictors in type 2 diabetes mellitus. Diabet Med 37(11):1902–1909. https://doi.org/10.1111/dme.14183
doi: 10.1111/dme.14183
pubmed: 31724226
Du H, Li S, Tu S et al (2022) The comparison of clinical efficacy of minimally invasive tarsal sinus approach and L-type incision approach combined with 3D printing technology in calcaneal fracture. Comput Math Methods Med 2022:5706341. https://doi.org/10.1155/2022/5706341
doi: 10.1155/2022/5706341
pubmed: 35860186
pmcid: 9293505
Qin S, Zhu Y, Meng H et al (2022) Relationship between surgeon volume and the risk of deep surgical site infection (DSSI) following open reduction and internal fixation of displaced intra-articular calcaneal fracture. Int Wound J 19(5):1092–1101. https://doi.org/10.1111/iwj.13705
doi: 10.1111/iwj.13705
pubmed: 34651435