Validation of the C-X-C chemokine receptor 3 (CXCR3) as a target for PET imaging of T cell activation.

CXCR3 Chemokine receptor Immunotherapy T cell activation imaging

Journal

EJNMMI research
ISSN: 2191-219X
Titre abrégé: EJNMMI Res
Pays: Germany
ID NLM: 101560946

Informations de publication

Date de publication:
28 Aug 2024
Historique:
received: 21 05 2024
accepted: 19 08 2024
medline: 28 8 2024
pubmed: 28 8 2024
entrez: 28 8 2024
Statut: epublish

Résumé

CXCR3 is expressed on activated T cells and plays a crucial role in T-cell recruitment to the tumor microenvironment (TME) during cell-based and immune checkpoint inhibitor (ICI) immunotherapy. This study utilized a CXCR3 Flow cytometry analysis at baseline confirmed the presence of CXCR3 + T-cells in MC38 tumors, which was significantly increased at day five after ICI (treated 33.8 ± 17.4 vs. control 8.8 ± 6.2 CD3 This study demonstrates the feasibility of in vivo imaging of CXCR3 upregulation under immunotherapy using antibodies. However, high molar activities and low antibody doses are essential for sensitive detection in lymph nodes and spleen. Detecting therapy-induced changes in CXCR3

Identifiants

pubmed: 39196448
doi: 10.1186/s13550-024-01142-1
pii: 10.1186/s13550-024-01142-1
doi:

Types de publication

Journal Article

Langues

eng

Pagination

77

Informations de copyright

© 2024. The Author(s).

Références

Edwards J, Wilmott JS, Madore J, Gide TN, Quek C, Tasker A, et al. CD103 + tumor-resident CD8 + T cells are Associated with Improved Survival in Immunotherapy-Naïve Melanoma patients and Expand significantly during Anti–PD-1 treatment. Clin Cancer Res. 2018;24(13):3036–45.
doi: 10.1158/1078-0432.CCR-17-2257 pubmed: 29599411
Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8 + T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124(2):359–67.
doi: 10.1038/s41416-020-01048-4 pubmed: 32929195
Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 2020;30(6):507–19.
doi: 10.1038/s41422-020-0337-2 pubmed: 32467593 pmcid: 7264181
Kist de Ruijter L, van de Donk PP, Hooiveld-Noeken JS, Giesen D, Elias SG, Lub-de Hooge MN, et al. Whole-body CD8 + T cell visualization before and during cancer immunotherapy: a phase 1/2 trial. Nat Med. 2022;28(12):2601–10.
doi: 10.1038/s41591-022-02084-8 pubmed: 36471036 pmcid: 9800278
Sako MO, Larimer BM. Imaging of activated T cells. J Nucl Med. 2023;64(1):30–3.
doi: 10.2967/jnumed.122.264097 pubmed: 36460341 pmcid: 9841244
Alam IS, Simonetta F, Scheller L, Mayer AT, Murty S, Vermesh O, et al. Visualization of activated T cells by OX40-ImmunoPET as a strategy for diagnosis of Acute Graft-versus-host disease. Cancer Res. 2020;80(21):4780–90.
doi: 10.1158/0008-5472.CAN-20-1149 pubmed: 32900772 pmcid: 8224961
Nisnboym M, Vincze SR, Xiong Z, Sneiderman CT, Raphael RA, Li B, et al. Immuno-PET Imaging of CD69 visualizes T-Cell activation and predicts Survival following Immunotherapy in Murine Glioblastoma. Cancer Res Commun. 2023;3(7):1173–88.
doi: 10.1158/2767-9764.CRC-22-0434 pubmed: 37426447 pmcid: 10324623
Xiao Z, Mayer AT, Nobashi TW, Gambhir SS. ICOS is an Indicator of T-cell-mediated response to Cancer Immunotherapy. Cancer Res. 2020;80(14):3023–32.
doi: 10.1158/0008-5472.CAN-19-3265 pubmed: 32156777
Simonetta F, Alam IS, Lohmeyer JK, Sahaf B, Good Z, Chen W, et al. Molecular Imaging of Chimeric Antigen Receptor T Cells by ICOS-ImmunoPET. Clin Cancer Res. 2021;27(4):1058–68.
doi: 10.1158/1078-0432.CCR-20-2770 pubmed: 33087332
van de Donk PP, Wind TT, Hooiveld-Noeken JS, van der Veen EL, Glaudemans A, Diepstra A, et al. Interleukin-2 PET imaging in patients with metastatic melanoma before and during immune checkpoint inhibitor therapy. Eur J Nucl Med Mol Imaging. 2021;48(13):4369–76.
doi: 10.1007/s00259-021-05407-y pubmed: 34076745 pmcid: 8566634
Hartimath SV, Draghiciu O, van de Wall S, Manuelli V, Dierckx RA, Nijman HW, et al. Noninvasive monitoring of cancer therapy induced activated T cells using [(18)F]FB-IL-2 PET imaging. Oncoimmunology. 2017;6(1):e1248014.
doi: 10.1080/2162402X.2016.1248014 pubmed: 28197364
Gibson HM, McKnight BN, Malysa A, Dyson G, Wiesend WN, McCarthy CE, et al. IFNγ PET imaging as a Predictive Tool for Monitoring Response to Tumor Immunotherapy. Cancer Res. 2018;78(19):5706–17.
doi: 10.1158/0008-5472.CAN-18-0253 pubmed: 30115693 pmcid: 6443251
Larimer BM, Bloch E, Nesti S, Austin EE, Wehrenberg-Klee E, Boland G, et al. The effectiveness of checkpoint inhibitor combinations and administration timing can be measured by Granzyme B PET imaging. Clin Cancer Res. 2019;25(4):1196–205.
doi: 10.1158/1078-0432.CCR-18-2407 pubmed: 30327313
Levi J, Goth S, Huynh L, Lam T, Huynh TL, Schulte B, et al. (18)F-AraG PET for CD8 Profiling of tumors and Assessment of Immunomodulation by Chemotherapy. J Nucl Med. 2021;62(6):802–7.
doi: 10.2967/jnumed.120.249078 pubmed: 33158906 pmcid: 8729865
Chow MT, Ozga AJ, Servis RL, Frederick DT, Lo JA, Fisher DE, et al. Intratumoral Activity of the CXCR3 chemokine system is required for the efficacy of Anti-PD-1 therapy. Immunity. 2019;50(6):1498–e5125.
doi: 10.1016/j.immuni.2019.04.010 pubmed: 31097342 pmcid: 6527362
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 2014;66(1):1–79.
doi: 10.1124/pr.113.007724 pubmed: 24218476 pmcid: 3880466
Nakajima C, Mukai T, Yamaguchi N, Morimoto Y, Park W-R, Iwasaki M, et al. Induction of the chemokine receptor CXCR3 on TCR-stimulated T cells: dependence on the release from persistent TCR-triggering and requirement for IFN-γ stimulation. Eur J Immunol. 2002;32(6):1792–801.
doi: 10.1002/1521-4141(200206)32:6<1792::AID-IMMU1792>3.0.CO;2-0 pubmed: 12115663
Iwai T, Sugimoto M, Patil NS, Bower D, Suzuki M, Kato C, et al. Both T cell priming in lymph node and CXCR3-dependent migration are the key events for predicting the response of atezolizumab. Sci Rep. 2021;11(1):13912.
doi: 10.1038/s41598-021-93113-y pubmed: 34230534 pmcid: 8260627
Schmidt J, Chiffelle J, Perez MAS, Magnin M, Bobisse S, Arnaud M, et al. Neoantigen-specific CD8 T cells with high structural avidity preferentially reside in and eliminate tumors. Nat Commun. 2023;14(1):3188.
doi: 10.1038/s41467-023-38946-z pubmed: 37280206 pmcid: 10244384
Sun H, Yao W, Cheng D, Chen H, Du X, Hou G. Monitoring early-stage Acute rejection by Imaging CXCR3-Positive cell infiltration: evaluation of ¹²⁵Iodine-Labeled CXCL10. Exp Clin Transpl. 2020;18(3):368–74.
doi: 10.6002/ect.2019.0346
Alluri SR, Higashi Y, Berendzen A, Grisanti LA, Watkinson LD, Singh K et al. Synthesis and preclinical evaluation of a novel fluorine-18 labeled small-molecule PET radiotracer for imaging of CXCR3 receptor in mouse models of atherosclerosis. Res Sq. 2023.
Postupalenko V, Marx L, Pantin M, Viertl D, Gsponer N, Giudice G, et al. Site-selective template-directed synthesis of antibody fc conjugates with concomitant ligand release. Chem Sci. 2024;15(4):1324–37.
doi: 10.1039/D3SC04324J pubmed: 38274063
Selby MJ, Engelhardt JJ, Johnston RJ, Lu LS, Han M, Thudium K, et al. Preclinical Development of Ipilimumab and Nivolumab Combination Immunotherapy: mouse Tumor models, in Vitro Functional studies, and Cynomolgus Macaque Toxicology. PLoS ONE. 2016;11(9):e0161779.
doi: 10.1371/journal.pone.0161779 pubmed: 27610613 pmcid: 5017747
Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878.
doi: 10.1038/s41598-017-17204-5 pubmed: 29203879 pmcid: 5715110
Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D, Duttagupta PA, et al. Cooperation between constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid tumors. Cancer Cell. 2019;35(6):885–e90010.
doi: 10.1016/j.ccell.2019.05.004 pubmed: 31185212 pmcid: 6961655
Delage JA, Faivre-Chauvet A, Barbet J, Fierle JK, Schaefer N, Coukos G, et al. Impact of DOTA Conjugation on Pharmacokinetics and immunoreactivity of [177Lu]Lu-1C1m-Fc, an anti TEM-1 Fusion protein antibody in a TEM-1 positive Tumor Mouse Model. Pharmaceutics. 2021;13(1):96.
doi: 10.3390/pharmaceutics13010096 pubmed: 33451158 pmcid: 7828678
Taylor MA, Hughes AM, Walton J, Coenen-Stass AML, Magiera L, Mooney L, et al. Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery. J Immunother Cancer. 2019;7(1):328.
doi: 10.1186/s40425-019-0794-7 pubmed: 31779705 pmcid: 6883640
Alam IS, Mayer AT, Sagiv-Barfi I, Wang K, Vermesh O, Czerwinski DK, et al. Imaging activated T cells predicts response to cancer vaccines. J Clin Invest. 2018;128(6):2569–80.
doi: 10.1172/JCI98509 pubmed: 29596062 pmcid: 5983309
Hettich M, Braun F, Bartholomä MD, Schirmbeck R, Niedermann G. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint Tracers. Theranostics. 2016;6(10):1629–40.
doi: 10.7150/thno.15253 pubmed: 27446497 pmcid: 4955062
Krutzek F, Kopka K, Stadlbauer S. Development of Radiotracers for Imaging of the PD-1/PD-L1 Axis. Pharmaceuticals (Basel). 2022;15(6).
van der Veen EL, Giesen D, Pot-de Jong L, Jorritsma-Smit A, De Vries EGE. Lub-De Hooge MN. (89)Zr-pembrolizumab biodistribution is influenced by PD-1-mediated uptake in lymphoid organs. J Immunother Cancer. 2020;8(2).
Knight JC, Mosley MJ, Kersemans V, Dias GM, Allen PD, Smart S, et al. Dual-isotope imaging allows in vivo immunohistochemistry using radiolabelled antibodies in tumours. Nucl Med Biol. 2019;70:14–22.
doi: 10.1016/j.nucmedbio.2019.01.010 pubmed: 30825614 pmcid: 6599172
Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS, et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med. 2017;9:389.
doi: 10.1126/scitranslmed.aal3604
Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008;60(12):1421–34.
doi: 10.1016/j.addr.2008.04.012 pubmed: 18541331 pmcid: 2820307
Xing X, Zhao Q, Zhou J, Zhou R, Liu Y, Qin X, et al. Positron emission tomography molecular imaging to monitor anti-tumor systemic response for immune checkpoint inhibitor therapy. Eur J Nucl Med Mol Imaging. 2023;50(6):1671–88.
doi: 10.1007/s00259-022-06084-1 pubmed: 36622406 pmcid: 10119238
Dercle L, Seban RD, Lazarovici J, Schwartz LH, Houot R, Ammari S, et al. (18)F-FDG PET and CT scans detect new imaging patterns of response and progression in patients with Hodgkin Lymphoma Treated by Anti-programmed Death 1 Immune checkpoint inhibitor. J Nucl Med. 2018;59(1):15–24.
doi: 10.2967/jnumed.117.193011 pubmed: 28596157
Tsai KK, Pampaloni MH, Hope C, Algazi AP, Ljung BM, Pincus L, et al. Increased FDG avidity in lymphoid tissue associated with response to combined immune checkpoint blockade. J Immunother Cancer. 2016;4:58.
doi: 10.1186/s40425-016-0162-9 pubmed: 27660712 pmcid: 5028983
Edwards KJ, Chang B, Babazada H, Lohith K, Park DH, Farwell MD, et al. Using CD69 PET imaging to Monitor Immunotherapy-Induced Immune activation. Cancer Immunol Res. 2022;10(9):1084–94.
doi: 10.1158/2326-6066.CIR-21-0874 pubmed: 35862229 pmcid: 10026840
Markel JE, Noore J, Emery EJ, Bobnar HJ, Kleinerman ES, Lindsey BA. Using the spleen as an in vivo systemic Immune Barometer alongside Osteosarcoma Disease Progression and Immunotherapy with α-PD-L1. Sarcoma. 2018;2018:8694397.
doi: 10.1155/2018/8694397 pubmed: 30651716 pmcid: 6311869
Schottelius M, Herrmann K, Lapa C. Vivo targeting of CXCR4-New Horizons. Cancers (Basel). 2021;13:23.
doi: 10.3390/cancers13235920

Auteurs

Sebastian Martin (S)

Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland.
AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland.
SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland.

Lennard Wendlinger (L)

Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland.
AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland.
SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland.

Béatrice Zitti (B)

AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland.
Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.

Mehdi Hicham (M)

AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland.
Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.

Viktoriia Postupalenko (V)

Debiopharm Research & Manufacturing SA, Campus "après-demain", Rue du Levant 146, Martigny, 1920, Switzerland.

Léo Marx (L)

Debiopharm Research & Manufacturing SA, Campus "après-demain", Rue du Levant 146, Martigny, 1920, Switzerland.

Greta Giordano-Attianese (G)

Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, 1066, Switzerland.
Department of Oncology, University Hospital of Lausanne, Lausanne, 1011, Switzerland.

Elisabetta Cribioli (E)

Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, 1066, Switzerland.
Department of Oncology, University Hospital of Lausanne, Lausanne, 1011, Switzerland.

Melita Irving (M)

Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, 1066, Switzerland.
Department of Oncology, University Hospital of Lausanne, Lausanne, 1011, Switzerland.

Alexandra Litvinenko (A)

Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland.
AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland.
SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland.

Radmila Faizova (R)

Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland.
AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland.
SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland.

David Viertl (D)

Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland.
AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland.
SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland.

Margret Schottelius (M)

Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland. margret.schottelius@chuv.ch.
AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland. margret.schottelius@chuv.ch.
SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland. margret.schottelius@chuv.ch.

Classifications MeSH