Raman and autofluorescence spectroscopy for in situ identification of neoplastic tissue during surgical treatment of brain tumors.

Autofluorescence Brain metastases Glial tumors Intraoperative Raman spectroscopy

Journal

Journal of neuro-oncology
ISSN: 1573-7373
Titre abrégé: J Neurooncol
Pays: United States
ID NLM: 8309335

Informations de publication

Date de publication:
28 Aug 2024
Historique:
received: 12 07 2024
accepted: 15 08 2024
medline: 28 8 2024
pubmed: 28 8 2024
entrez: 28 8 2024
Statut: aheadofprint

Résumé

Raman spectroscopy (RS) is a promising method for brain tumor detection. Near-infrared autofluorescence (AF) acquired during RS provides additional useful information for tumor identification and was investigated in comparison with RS for delineating brain tumors in situ. Raman spectra were acquired together with AF in situ within the solid tumor and at the tumor border during routine brain tumor surgeries (218 spectra; glioma WHO II-III, n = 6; GBM, n = 10; metastases, n = 10; meningioma, n = 3). Tissue classification for tumor identification in situ was trained on ex vivo data (375 spectra; glioma/GBM patients, n = 20; metastases, n = 11; meningioma, n = 13; and epileptic hippocampi, n = 4). Both in situ and ex vivo data showed that AF intensity in brain tumors was lower than that in border regions and normal brain tissue. Moreover, a positive correlation was observed between the AF intensity and the intensity of the Raman band corresponding to lipids at 1437 cm Spectroscopy was successfully integrated into existing neurosurgical workflows, and in situ spectroscopic data could be classified based on ex vivo data. RS confirmed its ability to detect brain tumors, while AF emerged as a competitive method for intraoperative tumor delineation.

Identifiants

pubmed: 39196481
doi: 10.1007/s11060-024-04809-w
pii: 10.1007/s11060-024-04809-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Wirtz CR, Albert FK, Schwaderer M et al (2000) The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res 22:354–360. https://doi.org/10.1080/01616412.2000.11740684
doi: 10.1080/01616412.2000.11740684 pubmed: 10874684
Orringer DA, Golby A, Jolesz F (2012) Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices 9:491–500. https://doi.org/10.1586/erd.12.42
doi: 10.1586/erd.12.42 pubmed: 23116076 pmcid: 3563325
Díez Valle R, Hadjipanayis CG, Stummer W (2019) Established and emerging uses of 5-ALA in the brain: an overview. J Neurooncol 141:487–494. https://doi.org/10.1007/s11060-018-03087-7
doi: 10.1007/s11060-018-03087-7 pubmed: 30607705
Stepp H, Stummer W (2018) 5-ALA in the management of malignant glioma. Lasers Surg Med 50:399–419. https://doi.org/10.1002/lsm.22933
doi: 10.1002/lsm.22933 pubmed: 29737540
Coburger J, Merkel A, Scherer M et al (2016) Low-grade glioma surgery in intraoperative magnetic resonance imaging: results of a Multicenter Retrospective Assessment of the German Study Group for Intraoperative Magnetic Resonance Imaging. Neurosurgery 78:775–786. https://doi.org/10.1227/NEU.0000000000001081
doi: 10.1227/NEU.0000000000001081 pubmed: 26516822
Hatiboglu MA, Weinberg JS, Suki D et al (2009) Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery 64:1073–1081. https://doi.org/10.1227/01.NEU.0000345647.58219.07
doi: 10.1227/01.NEU.0000345647.58219.07 pubmed: 19487886
Hollon T, Stummer W, Orringer D, Suero Molina E (2019) Surgical adjuncts to increase the extent of resection: Intraoperative MRI, fluorescence, and Raman Histology. Neurosurg Clin N Am 30:65–74. https://doi.org/10.1016/j.nec.2018.08.012
doi: 10.1016/j.nec.2018.08.012 pubmed: 30470406
Broadbent B, Tseng J, Kast R et al (2016) Shining light on neurosurgery diagnostics using Raman spectroscopy. J Neurooncol 130:1–9. https://doi.org/10.1007/s11060-016-2223-9
doi: 10.1007/s11060-016-2223-9 pubmed: 27522510 pmcid: 9308128
Kouri MA, Spyratou E, Karnachoriti M et al (2022) Raman Spectroscopy: a personalized decision-making Tool on clinicians’ hands for in situ Cancer diagnosis and surgery Guidance. Cancers 14:1144. https://doi.org/10.3390/cancers14051144
doi: 10.3390/cancers14051144 pubmed: 35267451 pmcid: 8909093
Galli R, Juratli TA, Uckermann O (2023) Clinical Raman spectroscopy of brain tumors from an interdisciplinary perspective. Clin Neuropathol 42:2–14. https://doi.org/10.5414/NP301522
doi: 10.5414/NP301522 pubmed: 36472392
Hollon T, Lewis S, Freudiger CW et al (2016) Improving the accuracy of brain tumor surgery via Raman-based technology. Neurosurg Focus 40:E9. https://doi.org/10.3171/2015.12.FOCUS15557
doi: 10.3171/2015.12.FOCUS15557 pubmed: 26926067 pmcid: 4992579
Hollon T, Orringer DA (2021) Label-free brain tumor imaging using Raman-based methods. J Neurooncol 151:393–402. https://doi.org/10.1007/s11060-019-03380-z
doi: 10.1007/s11060-019-03380-z pubmed: 33611706 pmcid: 9333091
Brusatori M, Auner G, Noh T et al (2017) Intraoperative Raman Spectroscopy. Neurosurg Clin N Am 28:633–652. https://doi.org/10.1016/j.nec.2017.05.014
doi: 10.1016/j.nec.2017.05.014 pubmed: 28917291
Jermyn M, Desroches J, Mercier J et al (2016) Raman spectroscopy detects distant invasive brain cancer cells centimeters beyond MRI capability in humans. Biomed Opt Express 7:5129–5137. https://doi.org/10.1364/BOE.7.005129
doi: 10.1364/BOE.7.005129 pubmed: 28018730 pmcid: 5175557
Jermyn M, Mok K, Mercier J et al (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7:274ra19. https://doi.org/10.1126/scitranslmed.aaa2384
doi: 10.1126/scitranslmed.aaa2384 pubmed: 25673764
Kast R, Auner G, Yurgelevic S et al (2015) Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging. J Neurooncol 125:287–295. https://doi.org/10.1007/s11060-015-1929-4
doi: 10.1007/s11060-015-1929-4 pubmed: 26359131
Morais CLM, Lilo T, Ashton KM et al (2019) Determination of meningioma brain tumour grades using Raman microspectroscopy imaging. Analyst 144:7024–7031. https://doi.org/10.1039/c9an01551e
doi: 10.1039/c9an01551e pubmed: 31650137
Quesnel A, Coles N, Angione C et al (2023) Glycosylation spectral signatures for glioma grade discrimination using Raman spectroscopy. BMC Cancer 23:174. https://doi.org/10.1186/s12885-023-10588-w
doi: 10.1186/s12885-023-10588-w pubmed: 36809974 pmcid: 9942363
Uckermann O, Yao W, Juratli TA et al (2018) IDH1 mutation in human glioma induces chemical alterations that are amenable to optical Raman spectroscopy. J Neurooncol 139:261–268. https://doi.org/10.1007/s11060-018-2883-8
doi: 10.1007/s11060-018-2883-8 pubmed: 29761368
Stewart HL, Birch DJS (2021) Fluorescence guided surgery. Methods Appl Fluoresc 9:042002. https://doi.org/10.1088/2050-6120/ac1dbb
doi: 10.1088/2050-6120/ac1dbb
Lieber CA, Mahadevan-Jansen A (2003) Automated method for subtraction of fluorescence from Biological Raman Spectra. Appl Spectrosc 57:1363–1367. https://doi.org/10.1366/000370203322554518
doi: 10.1366/000370203322554518 pubmed: 14658149
Wei D, Chen S, Liu Q (2015) Review of fluorescence suppression techniques in Raman Spectroscopy. Appl Spectrosc Rev 50:387–406. https://doi.org/10.1080/05704928.2014.999936
doi: 10.1080/05704928.2014.999936
Chang K-T, Lin Y-Y, Lin Y-Y et al (2019) In vivo real-time discrimination among glioma, Infiltration Zone, and normal brain tissue via Autofluorescence Technology. World Neurosurg 122:e773–e782. https://doi.org/10.1016/j.wneu.2018.10.144
doi: 10.1016/j.wneu.2018.10.144 pubmed: 30391621
Galli R, Meinhardt M, Koch E et al (2019) Rapid Label-Free Analysis of Brain Tumor Biopsies by Near Infrared Raman and fluorescence Spectroscopy—A study of 209 patients. Front Oncol 9. https://doi.org/10.3389/fonc.2019.01165
Huang Z, Lui H, McLean DI et al (2005) Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues. Photochem Photobiol 81:1219–1226. https://doi.org/10.1562/2005-02-24-RA-449
doi: 10.1562/2005-02-24-RA-449 pubmed: 15869327
Nazeer SS, Saraswathy A, Gupta AK, Jayasree RS (2013) Fluorescence spectroscopy as a highly potential single-entity tool to identify chromophores and fluorophores: study on neoplastic human brain lesions. J Biomed Opt 18:067002. https://doi.org/10.1117/1.JBO.18.6.067002
doi: 10.1117/1.JBO.18.6.067002 pubmed: 23733026
Talari ACS, Movasaghi Z, Rehman S, Rehman Iur (2015) Raman Spectroscopy of Biological Tissues. Appl Spectrosc Rev 50:46–111. https://doi.org/10.1080/05704928.2014.923902
doi: 10.1080/05704928.2014.923902
Jermyn M, Desroches J, Mercier J et al (2016) Neural networks improve brain cancer detection with Raman spectroscopy in the presence of operating room light artifacts. J Biomed Opt 21:94002. https://doi.org/10.1117/1.JBO.21.9.094002
doi: 10.1117/1.JBO.21.9.094002 pubmed: 27604560
Desroches J, Jermyn M, Mok K et al (2015) Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification. Biomed Opt Express 6:2380–2397. https://doi.org/10.1364/BOE.6.002380
doi: 10.1364/BOE.6.002380 pubmed: 26203368 pmcid: 4505696
Ember K, Dallaire F, Plante A et al (2024) In situ brain tumor detection using a Raman spectroscopy system-results of a multicenter study. Sci Rep 14:13309. https://doi.org/10.1038/s41598-024-62543-9
doi: 10.1038/s41598-024-62543-9 pubmed: 38858389 pmcid: 11164901
Cordero E, Latka I, Matthäus C et al (2018) In-vivo Raman spectroscopy: from basics to applications. J Biomed Opt 23:1–23. https://doi.org/10.1117/1.JBO.23.7.071210
doi: 10.1117/1.JBO.23.7.071210 pubmed: 29956506
Wahl J, Klint E, Hallbeck M et al (2022) Impact of preprocessing methods on the Raman spectra of brain tissue. Biomed Opt Express 13:6763–6777. https://doi.org/10.1364/BOE.476507
doi: 10.1364/BOE.476507 pubmed: 36589553 pmcid: 9774863
Croce AC, Bottiroli G (2014) Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur J Histochem EJH 58:2461. https://doi.org/10.4081/ejh.2014.2461
doi: 10.4081/ejh.2014.2461 pubmed: 25578980
Campbell JM, Habibalahi A, Handley S et al (2023) Emerging clinical applications in oncology for non-invasive multi- and hyperspectral imaging of cell and tissue autofluorescence. J Biophotonics 16:e202300105. https://doi.org/10.1002/jbio.202300105
doi: 10.1002/jbio.202300105 pubmed: 37272291
Croce AC, Ferrigno A, Bottiroli G, Vairetti M (2018) Autofluorescence-based optical biopsy: an effective diagnostic tool in hepatology. Liver Int off J Int Assoc Study Liver 38:1160–1174. https://doi.org/10.1111/liv.13753
doi: 10.1111/liv.13753
Corden C, Boitor R, Dusanjh PK et al (2023) Autofluorescence-Raman Spectroscopy for Ex vivo mapping colorectal liver metastases and liver tissue. J Surg Res 288:10–20. https://doi.org/10.1016/j.jss.2023.02.014
doi: 10.1016/j.jss.2023.02.014 pubmed: 36940563
Saraswathy A, Jayasree RS, Baiju KV et al (2009) Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy. Photomed Laser Surg 27:425–433. https://doi.org/10.1089/pho.2008.2316
doi: 10.1089/pho.2008.2316 pubmed: 19025404
Croce AC, Fiorani S, Locatelli D et al (2003) Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins. Photochem Photobiol 77:309–318. https://doi.org/10.1562/0031-8655(2003)077%3C0309:dpoafa%3E2.0.co;2
doi: 10.1562/0031-8655(2003)077<0309:dpoafa>2.0.co;2 pubmed: 12685660
Lifante J, Del Rosal B, Chaves-Coira I et al (2020) The near-infrared autofluorescence fingerprint of the brain. J Biophotonics 13:e202000154. https://doi.org/10.1002/jbio.202000154
doi: 10.1002/jbio.202000154 pubmed: 32696624

Auteurs

Ortrud Uckermann (O)

Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Jonathan Ziegler (J)

Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Matthias Meinhardt (M)

Department of Pathology (Neuropathology), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Sven Richter (S)

Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Else Kröner Fresenius Center for Digital Health, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Gabriele Schackert (G)

Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Ilker Y Eyüpoglu (IY)

Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Mido M Hijazi (MM)

Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Dietmar Krex (D)

Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Tareq A Juratli (TA)

Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Stephan B Sobottka (SB)

Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Roberta Galli (R)

Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany. Roberta.Galli@tu-dresden.de.

Classifications MeSH