Noise exposure of the inner ear during robotic drilling.
Cochlear implantation
HEARO®-procedure
Hearing preservation
Image-guided surgery
Noise exposure
Robot-assisted cochlear implant surgery
Sensorineural hearing loss
Structure preservation
Journal
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
ISSN: 1434-4726
Titre abrégé: Eur Arch Otorhinolaryngol
Pays: Germany
ID NLM: 9002937
Informations de publication
Date de publication:
28 Aug 2024
28 Aug 2024
Historique:
received:
25
04
2024
accepted:
19
08
2024
medline:
31
8
2024
pubmed:
31
8
2024
entrez:
28
8
2024
Statut:
aheadofprint
Résumé
Preserving the cochlear structures and thus hearing preservation, has become a prominent topic of discussion in cochlear implant (CI) surgery. Various approaches and soft surgical techniques have been described when approaching the inner ear. Robot-assisted cochlear implant surgery (RACIS) reaches the round window in a minimally invasive manner by following a trajectory of minimal trauma. This involves the drilling of a keyhole trajectory to the round window, through the facial recess, with no need for a complete mastoidectomy. It involves less drilling, less drilling time and less structural damage. A lot of attention has been paid to the structural traumatic causes of hearing loss but acoustic trauma during the exposure of the inner ear appears to be neglected topic. The aim was to measure the noise exposure of the inner ear during the robotic drilling of the mastoid and bony overhang of the round window. The results were compared with the milling in conventional cochlear implantation surgery. RACIS on fresh frozen human cadavers. The equivalent frequency-weighted and time-averaged sound pressure level L The robotic drilling of 6 trajectories towards the inner ear were performed, including 4 trajectories through round window access and 2 trajectories through cochleostomy. The results were compared with the data of 7 cases of conventional CI surgery that have been described in literature. The induced equivalent sound pressure level L The maximum L RACIS provokes significantly less acoustic trauma than conventional mastoid surgery in our findings. There were no observable differences in noise exposure levels between a cochleostomy or a round window approach where the bony overhang needed to be drilled.
Identifiants
pubmed: 39198307
doi: 10.1007/s00405-024-08925-1
pii: 10.1007/s00405-024-08925-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : FWO Vlaanderen
ID : 18B3222N
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Gaylor JM, Raman G, Chung M, Lee J, Rao M, Lau J et al (2013) Cochlear implantation in adults: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg 139(3):265–272
doi: 10.1001/jamaoto.2013.1744
pubmed: 23429927
Büchner A, Illg A, Majdani O, Lenarz T (2017) Investigation of the effect of cochlear implant electrode length on speech comprehension in quiet and noise compared with the results with users of electro-acoustic-stimulation, a retrospective analysis. PLoS ONE 12(5):e0174900
doi: 10.1371/journal.pone.0174900
pubmed: 28505158
pmcid: 5432071
Weiss NM, Dhanasingh A, Schraven SP, Schulze M, Langner S, Mlynski R (2019) Surgical approach for complete cochlear coverage in EAS-patients after residual hearing loss. PLoS ONE 14(9):e0223121
doi: 10.1371/journal.pone.0223121
pubmed: 31557251
pmcid: 6762079
Brown RF, Hullar TE, Cadieux JH, Chole RA (2010) Residual hearing preservation after pediatric cochlear implantation. Otol Neurotol 31(8):1221–1226
doi: 10.1097/MAO.0b013e3181f0c649
pubmed: 20818293
pmcid: 2946455
Lu Y, Hu Y, Wang S, Pan S, An K, Wang T et al (2023) Hereditary hearing loss: a systematic review of potential treatments and interventions. Am J Audiol. 1–18
Clark GM, Pyman BC, Bailey QR (1979) The surgery for multiple-electrode cochlear implantations. J Laryngol Otol 93(3):215–223
doi: 10.1017/S0022215100086977
pubmed: 429901
Jansen C (1972) Posterior tympanotomy: experiences and surgical details. Otolaryngol Clin North Am 5(1):79–96
doi: 10.1016/S0030-6665(20)33020-6
pubmed: 4551418
Kiratzidis T (2000) Veria operation’: cochlear implantation without a mastoidectomy and a posterior tympanotomy. A new surgical technique. Adv Otorhinolaryngol 57:127–130
pubmed: 11892125
Kronenberg J, Migirov L, Dagan T (2001) Suprameatal approach: new surgical approach for cochlear implantation. J Laryngology Otology 115(4):283–285
doi: 10.1258/0022215011907451
Häusler R (2002) Cochlear implantation without Mastoidectomy: the Pericanal Electrode insertion technique. Acta Otolaryngol 122(7):715–719
doi: 10.1080/00016480260349773
pubmed: 12484647
Schart-Morén N, Agrawal SK, Ladak HM, Li H, Rask-Andersen H (2019) Effects of various trajectories on tissue preservation in Cochlear Implant surgery: a Micro-computed Tomography and Synchrotron Radiation phase-contrast imaging study. Ear Hear. 40(2)
Topsakal V, Matulic M, Assadi MZ, Mertens G, Rompaey VV, Van de Heyning P (2020) Comparison of the Surgical techniques and robotic techniques for Cochlear Implantation in terms of the trajectories toward the inner ear. J Int Adv Otol 16(1):3–7
doi: 10.5152/iao.2020.8113
pubmed: 32209514
pmcid: 7224420
Topsakal V, Heuninck E, Matulic M, Tekin AM, Mertens G, Van Rompaey V et al (2022) First Study in men evaluating a Surgical Robotic Tool Providing Autonomous inner ear Access for Cochlear Implantation. Front Neurol. 13
Abari J, Heuninck E, Al Saadi M, Topsakal V (2023) True keyhole cochlear implant surgery. Am J Otolaryngol 44(4):103926
doi: 10.1016/j.amjoto.2023.103926
pubmed: 37229977
Adunka OF, Pillsbury HC, Buchman CA (2010) Minimizing intracochlear trauma during cochlear implantation. Adv Otorhinolaryngol 67:96–107
pubmed: 19955726
Pau HW, Just T, Bornitz M, Lasurashvilli N, Zahnert T (2007) Noise exposure of the inner ear during drilling a cochleostomy for cochlear implantation. Laryngoscope 117(3):535–540
doi: 10.1097/MLG.0b013e31802f4169
pubmed: 17334318
Palva A, Sorri M (1979) Can an operation of deaf ear be dangerous for hearing? Acta Otolaryngol Suppl 360:155–157
pubmed: 287331
Doménech J, Carulla M, Traserra J (1989) Sensorineural high-frequency hearing loss after drill-generated acoustic trauma in tympanoplasty. Arch Otorhinolaryngol 246(5):280–282
doi: 10.1007/BF00463575
pubmed: 2590036
Michaelides EM, Kartush JM (2001) Implications of sound levels generated by Otologic Devices. Otolaryngology–Head Neck Surg 125(4):361–363
doi: 10.1067/mhn.2001.118956
Chan HS (1998) Occupational noise exposure; criteria for a recommended standard
Fleischer M, Darbinjan A, Bornitz M, Zahnert T (2012) Drilling induced noise reveals a potential risk for hearing impairment - an in vivo study. Technische Universität Dresden
Parkin JL, Wood GS, Wood RD, McCandless GA (1980) Drill- and suction-generated noise in mastoid surgery. Arch Otolaryngol 106(2):92–96
doi: 10.1001/archotol.1980.00790260024008
pubmed: 7352914
Feldmann A, Wandel J, Zysset P (2016) Reducing temperature elevation of robotic bone drilling. Med Eng Phys 38(12):1495–1504
doi: 10.1016/j.medengphy.2016.10.001
pubmed: 27789226
Weber S, Gavaghan K, Wimmer W, Williamson T, Gerber N, Anso J et al (2017) Instrument flight to the inner ear. Sci Rob 2(4):eaal4916
doi: 10.1126/scirobotics.aal4916
Caversaccio M, Gavaghan K, Wimmer W, Williamson T, Ansò J, Mantokoudis G et al (2017) Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Otolaryngol 137(4):447–454
doi: 10.1080/00016489.2017.1278573
pubmed: 28145157
Heuninck E, Van de Heyning P, Van Rompaey V, Mertens G, Topsakal V (2023) Audiological outcomes of robot-assisted cochlear implant surgery. Eur Arch Otorhinolaryngol 280(10):4433–4444
doi: 10.1007/s00405-023-07961-7
pubmed: 37043021
Topsakal V, Kachlik D, Bahşi I, Carlson M, Isaacson B, Broman J et al (2021) Relevant temporal bone anatomy for robotic cochlear implantation: an updated terminology combined with anatomical and clinical terms. Translational Res Anat 25:100138
doi: 10.1016/j.tria.2021.100138