Functional prediction of response to therapy prior to therapeutic intervention is associated with improved survival in patients with high-grade glioma.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 08 2024
29 08 2024
Historique:
received:
09
11
2023
accepted:
29
07
2024
medline:
31
8
2024
pubmed:
31
8
2024
entrez:
28
8
2024
Statut:
epublish
Résumé
Patients with high-grade glioma (HGG) have an extremely poor prognosis compounded by a lack of advancement in clinical care over the past few decades. Regardless of classification, most newly diagnosed patients receive the same treatment, radiation and temozolomide (RT/TMZ). We developed a functional precision oncology test that prospectively identifies individual patient's response to this treatment regimen. Tumor tissues isolated from patients with newly diagnosed HGG enrolled in 3D PREDICT REGISTRY were evaluated for response to chemotherapeutic agents using the 3D Predict™ Glioma test. Patients receiving RT/TMZ were followed for 2 years. Clinical outcomes including imaging, assessments, and biomarker measurements were compared to patient matched test-predicted therapy response. Median survival between test-predicted temozolomide responders and test-predicted temozolomide non-responders revealed a statistically significant increase in progression-free survival when using the test to predict response across multiple subgroups including HGG (5.8 months), glioblastoma (4.7 months), and MGMT unmethylated glioblastoma (4.7 months). Overall survival was also positively separated across the subgroups at 7.6, 5.1, and 6.3 months respectively. The strong correlation of 3D Predict Glioma test results with clinical outcomes demonstrates that this functional test is prognostic in patients treated with RT/TMZ and supports aligning clinical treatment to test-predicted response across varying HGG subgroups.
Identifiants
pubmed: 39198514
doi: 10.1038/s41598-024-68801-0
pii: 10.1038/s41598-024-68801-0
doi:
Substances chimiques
Temozolomide
YF1K15M17Y
Antineoplastic Agents, Alkylating
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
19474Informations de copyright
© 2024. The Author(s).
Références
Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 24, v1–v95. https://doi.org/10.1093/neuonc/noac202 (2022).
doi: 10.1093/neuonc/noac202
pubmed: 36196752
pmcid: 9533228
Marenco-Hillembrand, L. et al. Trends in glioblastoma: outcomes over time and type of intervention: A systematic evidence based analysis. J. Neuro Oncol. 147, 297–307. https://doi.org/10.1007/s11060-020-03451-6 (2020).
doi: 10.1007/s11060-020-03451-6
Horbinski, C. et al. NCCN guidelines(R) insights: Central nervous system cancers, version 2.2022. J. Natl. Compr. Cancer Netw. 21, 12–20. https://doi.org/10.6004/jnccn.2023.0002 (2023).
doi: 10.6004/jnccn.2023.0002
National Comprehensive Cancer, N. Central Nervous System Cancers, NCCN Evidence Blocks. NCCN Guidelines 2.2022 (2022).
Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5 year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466. https://doi.org/10.1016/S1470-2045(09)70025-7 (2009).
doi: 10.1016/S1470-2045(09)70025-7
pubmed: 19269895
Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48. https://doi.org/10.3322/caac.21763 (2023).
doi: 10.3322/caac.21763
pubmed: 36633525
Chaichana, K. L. et al. Multiple resections for patients with glioblastoma: Prolonging survival. J. Neurosurg. 118, 812–820. https://doi.org/10.3171/2012.9.JNS1277 (2013).
doi: 10.3171/2012.9.JNS1277
pubmed: 23082884
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. https://doi.org/10.1056/NEJMoa043330 (2005).
doi: 10.1056/NEJMoa043330
pubmed: 15758009
Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003. https://doi.org/10.1056/NEJMoa043331 (2005).
doi: 10.1056/NEJMoa043331
pubmed: 15758010
Cohen, A. L., Holmen, S. L. & Colman, H. IDH1 and IDH2 mutations in gliomas. Curr. Neurol. Neurosci. Rep. 13, 345. https://doi.org/10.1007/s11910-013-0345-4 (2013).
doi: 10.1007/s11910-013-0345-4
pubmed: 23532369
pmcid: 4109985
SongTao, Q. et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 103, 269–273. https://doi.org/10.1111/j.1349-7006.2011.02134.x (2012).
doi: 10.1111/j.1349-7006.2011.02134.x
pubmed: 22034964
Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773. https://doi.org/10.1056/NEJMoa0808710 (2009).
doi: 10.1056/NEJMoa0808710
pubmed: 19228619
pmcid: 2820383
Brown, N. F. et al. Survival outcomes and prognostic factors in glioblastoma. Cancers (Basel) https://doi.org/10.3390/cancers14133161 (2022).
doi: 10.3390/cancers14133161
pubmed: 36612014
pmcid: 9299539
Mansouri, A. et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges. Neuro Oncol. 21, 167–178. https://doi.org/10.1093/neuonc/noy132 (2019).
doi: 10.1093/neuonc/noy132
pubmed: 30189035
Alnahhas, I. et al. Characterizing benefit from temozolomide in MGMT promoter unmethylated and methylated glioblastoma: A systematic review and meta-analysis. Neuro Oncol. Adv. 2, vdaa 082. https://doi.org/10.1093/noajnl/vdaa082 (2020).
doi: 10.1093/noajnl/vdaa082
Li, H., Li, J., Cheng, G., Zhang, J. & Li, X. IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin. Neurol. Neurosurg. 151, 31–36. https://doi.org/10.1016/j.clineuro.2016.10.004 (2016).
doi: 10.1016/j.clineuro.2016.10.004
pubmed: 27764705
Binabaj, M. M. et al. The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials. J. Cell. Physiol. 233, 378–386. https://doi.org/10.1002/jcp.25896 (2018).
doi: 10.1002/jcp.25896
pubmed: 28266716
Hegi, M. E. & Stupp, R. Withholding temozolomide in glioblastoma patients with unmethylated MGMT promoter–still a dilemma?. Neuro Oncol. 17, 1425–1427. https://doi.org/10.1093/neuonc/nov198 (2015).
doi: 10.1093/neuonc/nov198
pubmed: 26374690
pmcid: 4648310
Wick, W. et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: The NOA-08 randomised, phase 3 trial. Lancet Oncol. 13, 707–715. https://doi.org/10.1016/S1470-2045(12)70164-X (2012).
doi: 10.1016/S1470-2045(12)70164-X
pubmed: 22578793
Malmstrom, A. et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: The Nordic randomised, phase 3 trial. Lancet Oncol. 13, 916–926. https://doi.org/10.1016/S1470-2045(12)70265-6 (2012).
doi: 10.1016/S1470-2045(12)70265-6
pubmed: 22877848
Flaherty, K. T. et al. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: National cancer institute molecular analysis for therapy choice (NCI-MATCH). J. Clin. Oncol. 38, 3883–3894. https://doi.org/10.1200/JCO.19.03010 (2020).
doi: 10.1200/JCO.19.03010
pubmed: 33048619
pmcid: 7676882
Flaherty, K. T. et al. The molecular analysis for therapy choice (NCI-MATCH) trial: Lessons for genomic trial design. J. Natl. Cancer Inst. 112, 1021–1029. https://doi.org/10.1093/jnci/djz245 (2020).
doi: 10.1093/jnci/djz245
pubmed: 31922567
pmcid: 7566320
Park, A. K., Kim, P., Ballester, L. Y., Esquenazi, Y. & Zhao, Z. Subtype-specific signaling pathways and genomic aberrations associated with prognosis of glioblastoma. Neuro Oncol. 21, 59–70. https://doi.org/10.1093/neuonc/noy120 (2019).
doi: 10.1093/neuonc/noy120
pubmed: 30053126
Coffey, D. G. et al. High-throughput drug screening and multi-omic analysis to guide individualized treatment for multiple myeloma. JCO Precis. Oncol. https://doi.org/10.1200/PO.20.00442 (2021).
doi: 10.1200/PO.20.00442
pubmed: 34250400
pmcid: 8232547
Letai, A. Functional precision medicine: putting drugs on patient cancer cells and seeing what happens. Cancer Discov. 12, 290–292. https://doi.org/10.1158/2159-8290.CD-21-1498 (2022).
doi: 10.1158/2159-8290.CD-21-1498
pubmed: 35140175
pmcid: 8852353
Kornauth, C. et al. Functional precision medicine provides clinical benefit in advanced aggressive hematologic cancers and identifies exceptional responders. Cancer Discov. 12, 372–387. https://doi.org/10.1158/2159-8290.CD-21-0538 (2022).
doi: 10.1158/2159-8290.CD-21-0538
pubmed: 34635570
Shuford, S. et al. Prospective prediction of clinical drug response in high-grade gliomas using an ex vivo 3D cell culture assay. Neuro Oncol. Adv. 3, vdab065. https://doi.org/10.1093/noajnl/vdab065 (2021).
doi: 10.1093/noajnl/vdab065
Shuford, S. et al. prospective validation of an ex vivo, patient-derived 3D spheroid model for response predictions in newly diagnosed ovarian cancer. Sci. Rep. 9, 11153. https://doi.org/10.1038/s41598-019-47578-7 (2019).
doi: 10.1038/s41598-019-47578-7
pubmed: 31371750
pmcid: 6671958
Ranjan, T. et al. Cancer stem cell assay-guided chemotherapy improves survival of patients with recurrent glioblastoma in a randomized trial. Cell Rep. Med. https://doi.org/10.1016/j.xcrm.2023.101025 (2023).
doi: 10.1016/j.xcrm.2023.101025
pubmed: 37137304
pmcid: 10213810
Carrano, A., Juarez, J. J., Incontri, D., Ibarra, A. & Guerrero Cazares, H. Sex-specific differences in glioblastoma. Cells https://doi.org/10.3390/cells10071783 (2021).
doi: 10.3390/cells10071783
pubmed: 34359952
pmcid: 8303471
Sun, T., Plutynski, A., Ward, S. & Rubin, J. B. An integrative view on sex differences in brain tumors. Cell. Mol. Life Sci. 72, 3323–3342. https://doi.org/10.1007/s00018-015-1930-2 (2015).
doi: 10.1007/s00018-015-1930-2
pubmed: 25985759
pmcid: 4531141
Calvert, A. E. et al. Cancer-associated IDH1 promotes growth and resistance to targeted therapies in the absence of mutation. Cell Rep. 19, 1858–1873. https://doi.org/10.1016/j.celrep.2017.05.014 (2017).
doi: 10.1016/j.celrep.2017.05.014
pubmed: 28564604
pmcid: 5564207
Davis, F. G., Freels, S., Grutsch, J., Barlas, S. & Brem, S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: An analysis based on surveillance, epidemiology, and end results (SEER) data, 1973–1991. J. Neurosurg. 88, 1–10. https://doi.org/10.3171/jns.1998.88.1.0001 (1998).
doi: 10.3171/jns.1998.88.1.0001
pubmed: 9420066
Hegi, M. E. et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res. 10, 1871–1874 (2004).
doi: 10.1158/1078-0432.CCR-03-0384
pubmed: 15041700
Ida, C. M. et al. Real-time methylation-specific polymerase chain reaction for mgmt promoter methylation clinical testing in glioblastoma: An alternative detection method for a heterogeneous process. Am. J. Clin. Pathol. 148, 296–307. https://doi.org/10.1093/ajcp/aqx073 (2017).
doi: 10.1093/ajcp/aqx073
pubmed: 28967952
Lattanzio, L. et al. MGMT promoter methylation and glioblastoma: A comparison of analytical methods and of tumor specimens. Int. J. Biol. Mark. 30, e208-216. https://doi.org/10.5301/jbm.5000126 (2015).
doi: 10.5301/jbm.5000126
Filipits, M. et al. Evaluation of an assay for MGMT gene promoter methylation in glioblastoma samples. Anticancer Res. 40, 6229–6236. https://doi.org/10.21873/anticanres.14643 (2020).
doi: 10.21873/anticanres.14643
pubmed: 33109560
Ranjan, T. et al. Treatment of unmethylated MGMT-promoter recurrent glioblastoma with cancer stem cell assay-guided chemotherapy and the impact on patients healthcare costs. Neurooncol. Adv. 5, vdad055. https://doi.org/10.1093/noajnl/vdad055 (2023).
doi: 10.1093/noajnl/vdad055
pubmed: 37287692
pmcid: 10243985
Ranjan, T. et al. Cancer stem cell chemotherapeutics assay for prospective treatment of recurrent glioblastoma and progressive anaplastic glioma: A single-institution case series. Transl. Oncol. 13, 100755. https://doi.org/10.1016/j.tranon.2020.100755 (2020).
doi: 10.1016/j.tranon.2020.100755
pubmed: 32197147
pmcid: 7078520
Rajan, R. G. et al. In vitro and in vivo drug-response profiling using patient-derived high-grade Glioma. Cancers (Basel) https://doi.org/10.3390/cancers15133289 (2023).
doi: 10.3390/cancers15133289
pubmed: 37894293
Ntafoulis, I. et al. Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers. Br. J. Cancer 129, 1327–1338. https://doi.org/10.1038/s41416-023-02402-y (2023).
doi: 10.1038/s41416-023-02402-y
pubmed: 37620410
pmcid: 10575865
Stepanenko, A. A. & Chekhonin, V. P. On the critical issues in temozolomide research in glioblastoma: Clinically relevant concentrations and MGMT-independent resistance. Biomedicines https://doi.org/10.3390/biomedicines7040092 (2019).
doi: 10.3390/biomedicines7040092
pubmed: 31783653
pmcid: 6966644
Stepanenko, A. A. & Chekhonin, V. P. Recent advances in oncolytic virotherapy and immunotherapy for glioblastoma: A glimmer of hope in the search for an effective therapy?. Cancers (Basel) https://doi.org/10.3390/cancers10120492 (2018).
doi: 10.3390/cancers10120492
pubmed: 30563098
Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 23, 1231–1251. https://doi.org/10.1093/neuonc/noab106 (2021).
doi: 10.1093/neuonc/noab106
pubmed: 34185076
pmcid: 8328013