Functional prediction of response to therapy prior to therapeutic intervention is associated with improved survival in patients with high-grade glioma.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 08 2024
Historique:
received: 09 11 2023
accepted: 29 07 2024
medline: 31 8 2024
pubmed: 31 8 2024
entrez: 28 8 2024
Statut: epublish

Résumé

Patients with high-grade glioma (HGG) have an extremely poor prognosis compounded by a lack of advancement in clinical care over the past few decades. Regardless of classification, most newly diagnosed patients receive the same treatment, radiation and temozolomide (RT/TMZ). We developed a functional precision oncology test that prospectively identifies individual patient's response to this treatment regimen. Tumor tissues isolated from patients with newly diagnosed HGG enrolled in 3D PREDICT REGISTRY were evaluated for response to chemotherapeutic agents using the 3D Predict™ Glioma test. Patients receiving RT/TMZ were followed for 2 years. Clinical outcomes including imaging, assessments, and biomarker measurements were compared to patient matched test-predicted therapy response. Median survival between test-predicted temozolomide responders and test-predicted temozolomide non-responders revealed a statistically significant increase in progression-free survival when using the test to predict response across multiple subgroups including HGG (5.8 months), glioblastoma (4.7 months), and MGMT unmethylated glioblastoma (4.7 months). Overall survival was also positively separated across the subgroups at 7.6, 5.1, and 6.3 months respectively. The strong correlation of 3D Predict Glioma test results with clinical outcomes demonstrates that this functional test is prognostic in patients treated with RT/TMZ and supports aligning clinical treatment to test-predicted response across varying HGG subgroups.

Identifiants

pubmed: 39198514
doi: 10.1038/s41598-024-68801-0
pii: 10.1038/s41598-024-68801-0
doi:

Substances chimiques

Temozolomide YF1K15M17Y
Antineoplastic Agents, Alkylating 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

19474

Informations de copyright

© 2024. The Author(s).

Références

Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 24, v1–v95. https://doi.org/10.1093/neuonc/noac202 (2022).
doi: 10.1093/neuonc/noac202 pubmed: 36196752 pmcid: 9533228
Marenco-Hillembrand, L. et al. Trends in glioblastoma: outcomes over time and type of intervention: A systematic evidence based analysis. J. Neuro Oncol. 147, 297–307. https://doi.org/10.1007/s11060-020-03451-6 (2020).
doi: 10.1007/s11060-020-03451-6
Horbinski, C. et al. NCCN guidelines(R) insights: Central nervous system cancers, version 2.2022. J. Natl. Compr. Cancer Netw. 21, 12–20. https://doi.org/10.6004/jnccn.2023.0002 (2023).
doi: 10.6004/jnccn.2023.0002
National Comprehensive Cancer, N. Central Nervous System Cancers, NCCN Evidence Blocks. NCCN Guidelines 2.2022 (2022).
Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5 year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466. https://doi.org/10.1016/S1470-2045(09)70025-7 (2009).
doi: 10.1016/S1470-2045(09)70025-7 pubmed: 19269895
Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48. https://doi.org/10.3322/caac.21763 (2023).
doi: 10.3322/caac.21763 pubmed: 36633525
Chaichana, K. L. et al. Multiple resections for patients with glioblastoma: Prolonging survival. J. Neurosurg. 118, 812–820. https://doi.org/10.3171/2012.9.JNS1277 (2013).
doi: 10.3171/2012.9.JNS1277 pubmed: 23082884
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. https://doi.org/10.1056/NEJMoa043330 (2005).
doi: 10.1056/NEJMoa043330 pubmed: 15758009
Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003. https://doi.org/10.1056/NEJMoa043331 (2005).
doi: 10.1056/NEJMoa043331 pubmed: 15758010
Cohen, A. L., Holmen, S. L. & Colman, H. IDH1 and IDH2 mutations in gliomas. Curr. Neurol. Neurosci. Rep. 13, 345. https://doi.org/10.1007/s11910-013-0345-4 (2013).
doi: 10.1007/s11910-013-0345-4 pubmed: 23532369 pmcid: 4109985
SongTao, Q. et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 103, 269–273. https://doi.org/10.1111/j.1349-7006.2011.02134.x (2012).
doi: 10.1111/j.1349-7006.2011.02134.x pubmed: 22034964
Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773. https://doi.org/10.1056/NEJMoa0808710 (2009).
doi: 10.1056/NEJMoa0808710 pubmed: 19228619 pmcid: 2820383
Brown, N. F. et al. Survival outcomes and prognostic factors in glioblastoma. Cancers (Basel) https://doi.org/10.3390/cancers14133161 (2022).
doi: 10.3390/cancers14133161 pubmed: 36612014 pmcid: 9299539
Mansouri, A. et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges. Neuro Oncol. 21, 167–178. https://doi.org/10.1093/neuonc/noy132 (2019).
doi: 10.1093/neuonc/noy132 pubmed: 30189035
Alnahhas, I. et al. Characterizing benefit from temozolomide in MGMT promoter unmethylated and methylated glioblastoma: A systematic review and meta-analysis. Neuro Oncol. Adv. 2, vdaa 082. https://doi.org/10.1093/noajnl/vdaa082 (2020).
doi: 10.1093/noajnl/vdaa082
Li, H., Li, J., Cheng, G., Zhang, J. & Li, X. IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin. Neurol. Neurosurg. 151, 31–36. https://doi.org/10.1016/j.clineuro.2016.10.004 (2016).
doi: 10.1016/j.clineuro.2016.10.004 pubmed: 27764705
Binabaj, M. M. et al. The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials. J. Cell. Physiol. 233, 378–386. https://doi.org/10.1002/jcp.25896 (2018).
doi: 10.1002/jcp.25896 pubmed: 28266716
Hegi, M. E. & Stupp, R. Withholding temozolomide in glioblastoma patients with unmethylated MGMT promoter–still a dilemma?. Neuro Oncol. 17, 1425–1427. https://doi.org/10.1093/neuonc/nov198 (2015).
doi: 10.1093/neuonc/nov198 pubmed: 26374690 pmcid: 4648310
Wick, W. et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: The NOA-08 randomised, phase 3 trial. Lancet Oncol. 13, 707–715. https://doi.org/10.1016/S1470-2045(12)70164-X (2012).
doi: 10.1016/S1470-2045(12)70164-X pubmed: 22578793
Malmstrom, A. et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: The Nordic randomised, phase 3 trial. Lancet Oncol. 13, 916–926. https://doi.org/10.1016/S1470-2045(12)70265-6 (2012).
doi: 10.1016/S1470-2045(12)70265-6 pubmed: 22877848
Flaherty, K. T. et al. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: National cancer institute molecular analysis for therapy choice (NCI-MATCH). J. Clin. Oncol. 38, 3883–3894. https://doi.org/10.1200/JCO.19.03010 (2020).
doi: 10.1200/JCO.19.03010 pubmed: 33048619 pmcid: 7676882
Flaherty, K. T. et al. The molecular analysis for therapy choice (NCI-MATCH) trial: Lessons for genomic trial design. J. Natl. Cancer Inst. 112, 1021–1029. https://doi.org/10.1093/jnci/djz245 (2020).
doi: 10.1093/jnci/djz245 pubmed: 31922567 pmcid: 7566320
Park, A. K., Kim, P., Ballester, L. Y., Esquenazi, Y. & Zhao, Z. Subtype-specific signaling pathways and genomic aberrations associated with prognosis of glioblastoma. Neuro Oncol. 21, 59–70. https://doi.org/10.1093/neuonc/noy120 (2019).
doi: 10.1093/neuonc/noy120 pubmed: 30053126
Coffey, D. G. et al. High-throughput drug screening and multi-omic analysis to guide individualized treatment for multiple myeloma. JCO Precis. Oncol. https://doi.org/10.1200/PO.20.00442 (2021).
doi: 10.1200/PO.20.00442 pubmed: 34250400 pmcid: 8232547
Letai, A. Functional precision medicine: putting drugs on patient cancer cells and seeing what happens. Cancer Discov. 12, 290–292. https://doi.org/10.1158/2159-8290.CD-21-1498 (2022).
doi: 10.1158/2159-8290.CD-21-1498 pubmed: 35140175 pmcid: 8852353
Kornauth, C. et al. Functional precision medicine provides clinical benefit in advanced aggressive hematologic cancers and identifies exceptional responders. Cancer Discov. 12, 372–387. https://doi.org/10.1158/2159-8290.CD-21-0538 (2022).
doi: 10.1158/2159-8290.CD-21-0538 pubmed: 34635570
Shuford, S. et al. Prospective prediction of clinical drug response in high-grade gliomas using an ex vivo 3D cell culture assay. Neuro Oncol. Adv. 3, vdab065. https://doi.org/10.1093/noajnl/vdab065 (2021).
doi: 10.1093/noajnl/vdab065
Shuford, S. et al. prospective validation of an ex vivo, patient-derived 3D spheroid model for response predictions in newly diagnosed ovarian cancer. Sci. Rep. 9, 11153. https://doi.org/10.1038/s41598-019-47578-7 (2019).
doi: 10.1038/s41598-019-47578-7 pubmed: 31371750 pmcid: 6671958
Ranjan, T. et al. Cancer stem cell assay-guided chemotherapy improves survival of patients with recurrent glioblastoma in a randomized trial. Cell Rep. Med. https://doi.org/10.1016/j.xcrm.2023.101025 (2023).
doi: 10.1016/j.xcrm.2023.101025 pubmed: 37137304 pmcid: 10213810
Carrano, A., Juarez, J. J., Incontri, D., Ibarra, A. & Guerrero Cazares, H. Sex-specific differences in glioblastoma. Cells https://doi.org/10.3390/cells10071783 (2021).
doi: 10.3390/cells10071783 pubmed: 34359952 pmcid: 8303471
Sun, T., Plutynski, A., Ward, S. & Rubin, J. B. An integrative view on sex differences in brain tumors. Cell. Mol. Life Sci. 72, 3323–3342. https://doi.org/10.1007/s00018-015-1930-2 (2015).
doi: 10.1007/s00018-015-1930-2 pubmed: 25985759 pmcid: 4531141
Calvert, A. E. et al. Cancer-associated IDH1 promotes growth and resistance to targeted therapies in the absence of mutation. Cell Rep. 19, 1858–1873. https://doi.org/10.1016/j.celrep.2017.05.014 (2017).
doi: 10.1016/j.celrep.2017.05.014 pubmed: 28564604 pmcid: 5564207
Davis, F. G., Freels, S., Grutsch, J., Barlas, S. & Brem, S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: An analysis based on surveillance, epidemiology, and end results (SEER) data, 1973–1991. J. Neurosurg. 88, 1–10. https://doi.org/10.3171/jns.1998.88.1.0001 (1998).
doi: 10.3171/jns.1998.88.1.0001 pubmed: 9420066
Hegi, M. E. et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res. 10, 1871–1874 (2004).
doi: 10.1158/1078-0432.CCR-03-0384 pubmed: 15041700
Ida, C. M. et al. Real-time methylation-specific polymerase chain reaction for mgmt promoter methylation clinical testing in glioblastoma: An alternative detection method for a heterogeneous process. Am. J. Clin. Pathol. 148, 296–307. https://doi.org/10.1093/ajcp/aqx073 (2017).
doi: 10.1093/ajcp/aqx073 pubmed: 28967952
Lattanzio, L. et al. MGMT promoter methylation and glioblastoma: A comparison of analytical methods and of tumor specimens. Int. J. Biol. Mark. 30, e208-216. https://doi.org/10.5301/jbm.5000126 (2015).
doi: 10.5301/jbm.5000126
Filipits, M. et al. Evaluation of an assay for MGMT gene promoter methylation in glioblastoma samples. Anticancer Res. 40, 6229–6236. https://doi.org/10.21873/anticanres.14643 (2020).
doi: 10.21873/anticanres.14643 pubmed: 33109560
Ranjan, T. et al. Treatment of unmethylated MGMT-promoter recurrent glioblastoma with cancer stem cell assay-guided chemotherapy and the impact on patients healthcare costs. Neurooncol. Adv. 5, vdad055. https://doi.org/10.1093/noajnl/vdad055 (2023).
doi: 10.1093/noajnl/vdad055 pubmed: 37287692 pmcid: 10243985
Ranjan, T. et al. Cancer stem cell chemotherapeutics assay for prospective treatment of recurrent glioblastoma and progressive anaplastic glioma: A single-institution case series. Transl. Oncol. 13, 100755. https://doi.org/10.1016/j.tranon.2020.100755 (2020).
doi: 10.1016/j.tranon.2020.100755 pubmed: 32197147 pmcid: 7078520
Rajan, R. G. et al. In vitro and in vivo drug-response profiling using patient-derived high-grade Glioma. Cancers (Basel) https://doi.org/10.3390/cancers15133289 (2023).
doi: 10.3390/cancers15133289 pubmed: 37894293
Ntafoulis, I. et al. Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers. Br. J. Cancer 129, 1327–1338. https://doi.org/10.1038/s41416-023-02402-y (2023).
doi: 10.1038/s41416-023-02402-y pubmed: 37620410 pmcid: 10575865
Stepanenko, A. A. & Chekhonin, V. P. On the critical issues in temozolomide research in glioblastoma: Clinically relevant concentrations and MGMT-independent resistance. Biomedicines https://doi.org/10.3390/biomedicines7040092 (2019).
doi: 10.3390/biomedicines7040092 pubmed: 31783653 pmcid: 6966644
Stepanenko, A. A. & Chekhonin, V. P. Recent advances in oncolytic virotherapy and immunotherapy for glioblastoma: A glimmer of hope in the search for an effective therapy?. Cancers (Basel) https://doi.org/10.3390/cancers10120492 (2018).
doi: 10.3390/cancers10120492 pubmed: 30563098
Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 23, 1231–1251. https://doi.org/10.1093/neuonc/noab106 (2021).
doi: 10.1093/neuonc/noab106 pubmed: 34185076 pmcid: 8328013

Auteurs

Aubrey Ledford (A)

Kiyatec, Inc, 2 N. Main St, Greenville, SC, 29601, USA.

Analiz Rodriguez (A)

Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.

Lindsay Lipinski (L)

Department of Neurosurgery, Department of Neuro-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.

Ajay Abad (A)

Department of Neurosurgery, Department of Neuro-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.

Robert Fenstermaker (R)

Department of Neurosurgery, Department of Neuro-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.

Jeffrey Edenfield (J)

Institute for Translational Oncology Research, Prisma Health Cancer Institute, Greenville, SC, 29605, USA.

Charles Kanos (C)

Department of Neurosurgery, Prisma Health Southeastern Neurosurgical and Spine Institute, Greenville, SC, 29605, USA.

Navid Redjal (N)

Department of Neurosurgical Oncology, Capital Health Institute for Neurosciences, Pennington, NJ, 08534, USA.

Alireza Mansouri (A)

Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, 17033, USA.

Brad Zacharia (B)

Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, 17033, USA.

Nicholas Butowski (N)

Department of Neuro-Oncology, University of California, San Francisco, CA, 94143, USA.

Jesse Liu (J)

Department of Neurologic Surgery, Oregon Health and Science University, Portland, OR, 97239, USA.

Seunggu J Han (SJ)

Department of Neurologic Surgery, Oregon Health and Science University, Portland, OR, 97239, USA.
Department of Neurological Surgery, Stanford Medicine, Palo Alto, CA, USA.

Mateo Ziu (M)

Department of Neurosurgery, Inova Healthcare System, Falls Church, VA, 22042, USA.

Adam L Cohen (AL)

Department of Medical Oncology, Inova Schar Cancer Institute, Fairfax, VA, 22031, USA.

Andrew J Fabiano (AJ)

Department of Neurosurgery, Department of Neuro-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.

Katherine Miles (K)

Kiyatec, Inc, 2 N. Main St, Greenville, SC, 29601, USA.

Melissa Rayner (M)

Kiyatec, Inc, 2 N. Main St, Greenville, SC, 29601, USA.

Jayla Thompson (J)

Kiyatec, Inc, 2 N. Main St, Greenville, SC, 29601, USA.
IQVIA, Durham, NC, 27703, USA.

Kelley Tollison (K)

Kiyatec, Inc, 2 N. Main St, Greenville, SC, 29601, USA.

Pedram Azimzadeh (P)

Kiyatec, Inc, 2 N. Main St, Greenville, SC, 29601, USA.

Lillia Holmes (L)

Kiyatec, Inc, 2 N. Main St, Greenville, SC, 29601, USA.

Matthew Gevaert (M)

Kiyatec, Inc, 2 N. Main St, Greenville, SC, 29601, USA.

Teresa M DesRochers (TM)

Kiyatec, Inc, 2 N. Main St, Greenville, SC, 29601, USA. tessa.desrochers@kiyatec.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH