Sea spray allows for the growth of subaerial microbialites at the driest desert on Earth.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
28 08 2024
Historique:
received: 18 04 2024
accepted: 16 08 2024
medline: 31 8 2024
pubmed: 31 8 2024
entrez: 28 8 2024
Statut: epublish

Résumé

Due to its extreme conditions, microbial life in the Atacama Desert is known to survive in well-protected micro-habitats (hypolithic, endolithic, etc.), but rarely directly exposed to the environment, that is, epilithic habitats. Here we report a unique site, La Portada, a cliff confronting the Pacific Ocean in the Coastal Range of this desert, in which the constant input of water provided by the sea spray allows for the growth of a black-colored epilithic subaerial microbial ecosystem. Formed by a complex community of halophilic microorganisms belonging to the three domains of life, this ecosystem displays the typical three-dimensional structure of benthic microbialites, coherent with the presence of a diversity of cyanobacteria (including species from the genera that are known to form them), a constant high water activity and an ample availability of carbonate ions. From these microbialites we isolated Hortae werneckii, a fungal species which by producing melanin, not only explains the dark color of these microbialites, but may also play the role of protecting the whole community from extreme UV radiation. A number of biosignatures not only confirmed sea spray as the main source of water, but also suggests that one place to consider for the search of evidences of life on Mars would be on the paleo-coastlines that surrounded vanished oceans such as that on Aeolis Dorsa.

Identifiants

pubmed: 39198637
doi: 10.1038/s41598-024-70447-x
pii: 10.1038/s41598-024-70447-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

19915

Subventions

Organisme : Human Frontiers Science Program
ID : RGY0066/2018
Organisme : Ministerio de Ciencia e Innovación
ID : PGC2021-124362NB-I00
Organisme : Spanish Ministry of Universities
ID : CA3/RSUE/2021-00405

Informations de copyright

© 2024. The Author(s).

Références

Encinas, A. et al. Tectonosedimentary evolution of the coastal Cordillera and central depression of South-Central Chile (36° 30′–42° S). Earth Sci. Rev. 213, 103465 (2021).
doi: 10.1016/j.earscirev.2020.103465
Cantalamessa, G. & Di Celma, C. Sedimentary features of tsunami backwash deposits in a shallow marine Miocene setting, Mejillones Peninsula, northern Chile. Sediment. Geol. 178, 259–273 (2005).
doi: 10.1016/j.sedgeo.2005.05.007
Hartley, A. J. et al. Palaeomagnetic evidence for rotation in the Precordillera of northern Chile: Structural constraints and implications for the evolution of the Andean forearc. Tectonophysics 205, 49–64 (1992).
doi: 10.1016/0040-1951(92)90417-5
Gérard, E. et al. Specific carbonate–microbe interactions in the modern microbialites of Lake Alchichica (Mexico). ISME J. 7, 1997–2009 (2013).
pubmed: 23804151 pmcid: 3965311 doi: 10.1038/ismej.2013.81
Burne, R. V. & Moore, L. S. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios 2, 241–254 (1987).
doi: 10.2307/3514674
Suarez-Gonzalez, P. et al. ‘Trapping and binding’: A review of the factors controlling the development of fossil agglutinated microbialites and their distribution in space and time. Earth Sci. Rev. 194, 182–215 (2019).
doi: 10.1016/j.earscirev.2019.05.007
Goguitchaichvili, A. T. et al. Paleomagnetism and rock-magnetism of the Jurassic La Negra Formation, Northern Chile: Implications for tectonics and volcanic stratigraphy. Int. Geol. Rev. 45, 563–573 (2003).
doi: 10.2747/0020-6814.45.6.563
Cordero, R. et al. Ultraviolet radiation in the Atacama Desert. Antonie van Leeuwenhoek 111, 1301–1313 (2018).
pubmed: 29605897 doi: 10.1007/s10482-018-1075-z
Williamson, A. et al. Complete genome sequence of Halomonas sp. R5–57. Stand Genom. Sci. 11, 62 (2016).
doi: 10.1186/s40793-016-0192-4
Zhang, H. et al. Salinimicrobium flavum sp. nov., isolated from coastal sediment. Int. J. Syst. Evol. Microbiol. 67, 4083–4088 (2017).
pubmed: 28901901 doi: 10.1099/ijsem.0.002257
Inoue, K. et al. Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. Int. J. Syst. Evol. Microbiol. 61, 942–946 (2011).
pubmed: 20495022 doi: 10.1099/ijs.0.020677-0
Cui, H. L. et al. Salinarchaeum laminariae gen. nov., sp. nov.: A new member of the family Halobacteriaceae isolated from salted brown alga Laminaria. Extremophiles 15, 625–631 (2011).
pubmed: 21901373 doi: 10.1007/s00792-011-0393-0
Takai, K. et al. Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int. J. Syst. Evol. Microbiol. 51, 1245–1256 (2001).
pubmed: 11491320 doi: 10.1099/00207713-51-4-1245
Yu, D. et al. Extremely halophilic denitrifying bacteria from hypersaline inland lakes, Halovibrio denitrificans sp. nov. and Halospina denitrificans gen. nov., sp. nov., and evidence that the genus name Halovibrio Fendrich 1989 with the type species Halovibrio variabilis should be associated with DSM 3050. Int. J. Syst. Evol. Microbiol. 56, 379–388 (2006).
doi: 10.1099/ijs.0.63964-0
Roh, S. W. et al. Haladaptatus cibarius sp. nov., an extremely halophilic archaeon from seafood, and emended description of the genus Haladaptatus. Int. J. Syst. Evol. Microbiol. 60, 1187–1190 (2010).
pubmed: 19667394 doi: 10.1099/ijs.0.013037-0
Denner, E. B. M. et al. Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int. J. Syst. Evol. Microbiol. 44, 774–780 (1994).
Zalar, P. et al. The extremely halotolerant black yeast Hortaea werneckii—A model for intraspecific hybridization in clonal fungi. IMA Fungus 10, 10 (2019).
pubmed: 32647617 pmcid: 7325687 doi: 10.1186/s43008-019-0007-5
Zajc, J. et al. Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl. Environ. Microb. 80, 247–256 (2014).
doi: 10.1128/AEM.02702-13
Ladas, N. P. & Papageorgiou, G. C. The salinity tolerance of freshwater cyanobacterium Synechococcus sp. PCC 7942 is determined by its ability for osmotic adjustment and presence of osmolyte sucrose. Photosynthetica 38, 343–348 (2000).
doi: 10.1023/A:1010957117237
Waditee-Sirisattha, R. et al. Global transcriptional and circadian regulation in a halotolerant cyanobacterium Halothece sp. PCC7418. Sci. Rep. 12, 13190 (2022).
pubmed: 35962002 pmcid: 9374696 doi: 10.1038/s41598-022-17406-6
Azua-Bustos, A. et al. Aeolian transport of viable microbial life on a Mars analog environment. Implications for Mars. Sci. Rep. 9, 1–11 (2019).
doi: 10.1038/s41598-019-47394-z
Zhu, T. & Dittrich, M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Front. Bioeng. Biotechnol. 20, 4 (2016).
Bosak, T. et al. Cyanobacterial diversity and activity in modern conical microbialites. Geobiology 10, 384–401 (2012).
pubmed: 22713108 doi: 10.1111/j.1472-4669.2012.00334.x
Schneider, D. et al. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the kiritimati atoll, central pacific. PLoS ONE 8, e66662 (2013).
pubmed: 23762495 pmcid: 3677903 doi: 10.1371/journal.pone.0066662
Nguyen, S. T. et al. Bacterial community structure and metabolic potential in microbialite-forming mats from South Australian saline lakes. Geobiology 20, 546–559 (2022).
pubmed: 35312212 pmcid: 9311741 doi: 10.1111/gbi.12489
Lamérand, C. et al. Carbon sequestration potential of Mg carbonate and silicate biomineralization in the presence of cyanobacterium Synechococcus. Chem. Geol. 599, 120854 (2022).
doi: 10.1016/j.chemgeo.2022.120854
Sorokovikova, E. et al. Limnofasciculus baicalensis gen. et sp. nov. (Coleofasciculaceae, Coleofasciculales): A new genus of cyanobacteria isolated from sponge fouling in Lake Baikal, Russia. Microorganisms 11, 1779 (2023).
pubmed: 37512951 pmcid: 10385159 doi: 10.3390/microorganisms11071779
Verrecchia, E. P. et al. Spherulites in calcrete laminar crusts: Biogenic CaCO3, precipitation as a major contributor to crust formation. J. Sediment. Res. A65, 690–700 (1995).
Read, J. F. Calcretes and their distinction from stromatolites. Dev. Sedimentol. 20, 55–71 (1976).
doi: 10.1016/S0070-4571(08)71129-4
Wu, Y. et al. Cyanobacterial fossils from 252 Ma old microbialites and their environmental significance. Sci. Rep. 4, 3820 (2014).
pubmed: 24448025 pmcid: 3898040 doi: 10.1038/srep03820
Lagier, J. C. et al. Genome sequence of Oceanobacillus picturae strain S1, an halophilic bacterium first isolated in human gut. Stand. Genom. Sci. 10, 91 (2015).
doi: 10.1186/s40793-015-0081-2
Shin, N. R. et al. Ornithinibacillus scapharcae sp. nov., isolated from a dead ark clam. Antonie Van Leeuwenhoek 101, 147–154 (2012).
pubmed: 21952732 doi: 10.1007/s10482-011-9645-3
Dehvari, M. et al. Petroleum contaminated seawater detoxification in microcosm by halotolerant consortium isolated from Persian Gulf. Curr. Microbiol. 78, 95–106 (2021).
pubmed: 33159563 doi: 10.1007/s00284-020-02267-x
Hu, Y. J. et al. Research progress on salt tolerance and growth-promoting mechanism of Bacillus. Biotechnol. Bull. 36, 64 (2020).
Mtibaà, R. A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization. 3Biotech 7, 329 (2017).
Picazo, I. et al. Defining the transcriptional responses of Aspergillus nidulans to cation/alkaline pH stress and the role of the transcription factor SltA. Microb. Genom. 6, 000415 (2020).
Paul, S. I. et al. Identification of marine sponge-associated bacteria of the Saint Martin’s island of the Bay of Bengal emphasizing on the prevention of motile Aeromonas septicemia in Labeo rohita. Aquaculture 545, 737156 (2021).
doi: 10.1016/j.aquaculture.2021.737156
Sáez-Nieto, J. A. et al. Paenibacillus spp. isolated from human and environmental samples in Spain: Detection of 11 new species. New Microbes New Infect. 19, 19–27 (2017).
pubmed: 28702198 pmcid: 5484988 doi: 10.1016/j.nmni.2017.05.006
Kamat, S. et al. Endophytic fungus, Chaetomium globosum, associated with marine green alga, a new source of Chrysin. Sci. Rep. 10, 18726 (2020).
pubmed: 33127928 pmcid: 7603332 doi: 10.1038/s41598-020-72497-3
Xing, C. et al. Steroids and anthraquinones from the deep-sea-derived fungus Aspergillus nidulans MCCC 3-A. Biochem. Syst. Ecol. 83, 103–105 (2019).
doi: 10.1016/j.bse.2018.12.012
Azua-Bustos, A. et al. A novel subaerial Dunaliella sp. Growing on cave spiderwebs in the Atacama Desert. Extremophiles 14, 443–452 (2010).
pubmed: 20623153 doi: 10.1007/s00792-010-0322-7
Vondrak, J. & Kubásek, J. Algal stacks and fungal stacks as adaptations to high light in lichens. The Lichenologist 45, 115–124 (2013).
doi: 10.1017/S0024282912000722
Azua-Bustos, A. et al. Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits. Nat. Commun. 14, 808 (2023).
pubmed: 36810853 pmcid: 9944251 doi: 10.1038/s41467-023-36172-1
Finkel, P. L. et al. An overview of lipid biomarkers in terrestrial extreme environments with relevance for mars exploration. Astrobiology 23, 563–604 (2023).
pubmed: 36880883 pmcid: 10150655 doi: 10.1089/ast.2022.0083
Kaneda, T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55, 288–302 (1991).
pubmed: 1886522 pmcid: 372815 doi: 10.1128/mr.55.2.288-302.1991
van den Brink, D. M. et al. Phytanic acid: Production from phytol, its breakdown and role in human disease. Cell Mol. Life Sci. 63, 1752–1765 (1966).
doi: 10.1007/s00018-005-5463-y
Roca-Saavedra, P. et al. Phytanic acid consumption and human health, risks, benefits and future trends: A review. Food Chem. 15, 237–247 (2017).
doi: 10.1016/j.foodchem.2016.10.074
Didyk, B. M. et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272, 216–222 (1978).
doi: 10.1038/272216a0
Stalport, F. et al. Investigating the photostability of carboxylic acids exposed to mars surface ultraviolet radiation conditions. Astrobiology 9, 543–549 (2009).
pubmed: 19663761 doi: 10.1089/ast.2008.0300
Pacelli, C. Fungal biomarkers are detectable in Martian rock-analogues after space exposure: Implications for the search of life on Mars. Int. J. Astrobiol. 20, 1–14 (2021).
doi: 10.1017/S1473550421000240
Korablev, O. I. Infrared spectrometer for ExoMars: A mast-mounted instrument for the rover. Astrobiology 17, 542–564 (2017).
pubmed: 28731817 doi: 10.1089/ast.2016.1543
Cardenas, B. T. & Lamb, M. P. Paleogeographic reconstructions of an ocean margin on Mars based on deltaic sedimentology at Aeolis Dorsa. J. Geophys. Res. Planets 127, e2022JE007390 (2022).
doi: 10.1029/2022JE007390
Grimalt, J. O. et al. Sedimentary lipid biogeochemistry of an hypereutrophic alkaline lagoon. Geochim. Cosmochim. Acta 55, 2555–2577 (1991).
doi: 10.1016/0016-7037(91)90373-D
Sánchez-García, L. et al. Molecular biomarkers in the subsurface of the Salar Grande (Atacama, Chile) evaporitic deposits. Biogeochemistry 140, 31–52 (2018).
doi: 10.1007/s10533-018-0477-3
Schelbe, R. T. et al. Community structure comparison using FAME analysis of desert varnish and soil, Mojave Desert, California. Geomicrobiol. J. 22, 353–360 (2005).
doi: 10.1080/01490450500248754
Culka, A. et al. Raman microspectrometric study of pigments in melanized fungi from the hyperarid Atacama Desert gypsum crust. J. Raman Spectrosc. 48, 1487–1493 (2017).
doi: 10.1002/jrs.5137

Auteurs

Armando Azua-Bustos (A)

Centro de Astrobiología (CAB), CSIC-INTA, 28850, Madrid, Spain. aazua@cab.inta-csic.es.

Carlos González-Silva (C)

Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile.

Kevin Freedman (K)

University of California Riverside, Riverside, USA.

Daniel Carrizo (D)

Centro de Astrobiología (CAB), CSIC-INTA, 28850, Madrid, Spain.

Laura Sánchez-García (L)

Centro de Astrobiología (CAB), CSIC-INTA, 28850, Madrid, Spain.

Miguel Ángel Fernández-Martínez (MÁ)

Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid y Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Madrid, Spain.

María Balsera-Manzanero (M)

Consultora ProBiota. E.I.R.L., Iquique, Chile.

Victoria Muñoz-Iglesias (V)

Centro de Astrobiología (CAB), CSIC-INTA, 28850, Madrid, Spain.
Laboratoire de Planétologie et Géosciences, CNRS, LPG UMR 6112, Nantes Université, Univ Angers, Le Mans Université, 44000, Nantes, France.

Maite Fernández-Sampedro (M)

Centro de Astrobiología (CAB), CSIC-INTA, 28850, Madrid, Spain.

Thanh Quy Dang (TQ)

Consultora ProBiota. E.I.R.L., Iquique, Chile.

Cristian Vargas-Carrera (C)

Consultora ProBiota. E.I.R.L., Iquique, Chile.

Jacek Wierzchos (J)

Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH