Tuberculosis in otherwise healthy adults with inherited TNF deficiency.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
28 Aug 2024
28 Aug 2024
Historique:
received:
07
01
2024
accepted:
22
07
2024
medline:
31
8
2024
pubmed:
31
8
2024
entrez:
28
8
2024
Statut:
aheadofprint
Résumé
Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis
Identifiants
pubmed: 39198650
doi: 10.1038/s41586-024-07866-3
pii: 10.1038/s41586-024-07866-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Casanova, J.-L., MacMicking, J. D. & Nathan, C. F. Interferon-γ and infectious diseases: Lessons and prospects. Science 384, eadl2016 (2024).
pubmed: 38635718
doi: 10.1126/science.adl2016
Pahari, S. et al. Protocol to develop human alveolar macrophage-like cells from mononuclear cells or purified monocytes for use in respiratory biology research. STAR Protoc. 5, 103061 (2024).
pubmed: 38722740
pmcid: 11099312
doi: 10.1016/j.xpro.2024.103061
Nathan, C. & Cunningham-Bussel, A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 13, 349–361 (2013).
pubmed: 23618831
pmcid: 4250048
doi: 10.1038/nri3423
Casanova, J.-L. & Abel, L. From rare disorders of immunity to common determinants of infection: following the mechanistic thread. Cell 185, 3086–3103 (2022).
pubmed: 35985287
pmcid: 9386946
doi: 10.1016/j.cell.2022.07.004
Boisson-Dupuis, S. & Bustamante, J. Mycobacterial diseases in patients with inborn errors of immunity. Curr. Opin. Immunol. 72, 262–271 (2021).
pubmed: 34315005
pmcid: 9172628
doi: 10.1016/j.coi.2021.07.001
Le Voyer, T. et al. Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease. Proc. Natl Acad. Sci. USA 118, e2102804118 (2021).
pubmed: 33876776
pmcid: 8053974
doi: 10.1073/pnas.2102804118
Rosain, J. et al. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 186, 621–645 (2023).
pubmed: 36736301
pmcid: 9907019
doi: 10.1016/j.cell.2022.12.038
Philippot, Q. et al. Human IL-23 is essential for IFN-γ-dependent immunity to mycobacteria. Sci. Immunol. 8, eabq5204 (2023).
pubmed: 36763636
pmcid: 10069949
doi: 10.1126/sciimmunol.abq5204
Kerner, G. et al. Inherited human IFN-γ deficiency underlies mycobacterial disease. J. Clin. Invest. 130, 3158–3171 (2020).
pubmed: 32163377
pmcid: 7260033
doi: 10.1172/JCI135460
Yang, R. et al. Human T-bet governs innate and innate-like adaptive IFN-γ immunity against mycobacteria. Cell 183, 1826–1847 (2020).
pubmed: 33296702
pmcid: 7770098
doi: 10.1016/j.cell.2020.10.046
Martin-Fernandez, M. et al. A partial form of inherited human USP18 deficiency underlies infection and inflammation. J. Exp. Med. 219, e20211273 (2022).
pubmed: 35258551
pmcid: 8908790
doi: 10.1084/jem.20211273
Bohlen, J. et al. Human MCTS1-dependent translation of JAK2 is essential for IFN-γ immunity to mycobacteria. Cell 186, 5114–5134 (2023).
pubmed: 37875108
pmcid: 10841658
doi: 10.1016/j.cell.2023.09.024
Neehus, A.-L. et al. Human inherited CCR2 deficiency underlies progressive polycystic lung disease. Cell 187, 390–408 (2024).
pubmed: 38157855
doi: 10.1016/j.cell.2023.11.036
Rosain, J. et al. Recombinant IFN-γ1b treatment in a patient with inherited IFN-γ deficiency. J. Clin. Immunol. 44, 62 (2024).
pubmed: 38363432
pmcid: 10873451
doi: 10.1007/s10875-024-01661-5
Dupuis, S. et al. Human interferon-gamma-mediated immunity is a genetically controlled continuous trait that determines the outcome of mycobacterial invasion. Immunol. Rev. 178, 129–137 (2000).
pubmed: 11213797
doi: 10.1034/j.1600-065X.2000.17810.x
Dinauer, M. C., Orkin, S. H., Brown, R., Jesaitis, A. J. & Parkos, C. A. The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327, 717–720 (1987).
pubmed: 3600768
doi: 10.1038/327717a0
Zerbe, C. S. & Holland, S. M. Functional neutrophil disorders: chronic granulomatous disease and beyond. Immunol. Rev. 322, 71–80 (2024).
pubmed: 38429865
doi: 10.1111/imr.13308
Conti, F. et al. Mycobacterial disease in patients with chronic granulomatous disease: a retrospective analysis of 71 cases. J. Allergy Clin. Immunol. 138, 241–248 (2016).
pubmed: 26936803
doi: 10.1016/j.jaci.2015.11.041
Yao, Q., Zhou, Q., Shen, Q., Wang, X. & Hu, X. Imaging characteristics of pulmonary BCG/TB infection in patients with chronic granulomatous disease. Sci. Rep. 12, 11765 (2022).
pubmed: 35817807
pmcid: 9273607
doi: 10.1038/s41598-022-16021-9
Bustamante, J. et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat. Immunol. 12, 213–221 (2011).
pubmed: 21278736
pmcid: 3097900
doi: 10.1038/ni.1992
Kallmann, F. J. & Reisner, D. Twin studies on the significance of genetic factors in tuberculosis. Am. Rev. Tuberc. 47, 549–574 (1943).
Comstock, G. W. Tuberculosis in twins: a re-analysis of the Prophit survey. Am. Rev. Respir. Dis. 117, 621–624 (1978).
pubmed: 565607
Boisson-Dupuis, S. et al. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol. Rev. 264, 103–120 (2015).
pubmed: 25703555
pmcid: 4405179
doi: 10.1111/imr.12272
Ogishi, M. et al. Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency. J. Exp. Med. 219, e20220094 (2022).
pubmed: 36094518
pmcid: 9472563
doi: 10.1084/jem.20220094
Boisson-Dupuis, S. et al. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci. Immunol. 3, eaau8714 (2018).
pubmed: 30578352
pmcid: 6341984
doi: 10.1126/sciimmunol.aau8714
Kerner, G. et al. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. Proc. Natl Acad. Sci. USA 116, 10430–10434 (2019).
pubmed: 31068474
pmcid: 6534977
doi: 10.1073/pnas.1903561116
Ogishi, M. et al. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat. Med. 27, 1646–1654 (2021).
pubmed: 34183838
pmcid: 8446316
doi: 10.1038/s41591-021-01388-5
Ogishi, M. et al. Inherited human ITK deficiency impairs IFN-γ immunity and underlies tuberculosis. J. Exp. Med. 220, e20220484 (2022).
pubmed: 36326697
pmcid: 9641312
doi: 10.1084/jem.20220484
Okada, S. et al. Human STAT1 gain-of-function heterozygous mutations: chronic mucocutaneous candidiasis and type I interferonopathy. J. Clin. Immunol. 40, 1065–1081 (2020).
pubmed: 32852681
pmcid: 8561788
doi: 10.1007/s10875-020-00847-x
Idriss, H. T. & Naismith, J. H. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc. Res. Tech. 50, 184–195 (2000).
pubmed: 10891884
doi: 10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H
Rapaport, F. et al. Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance. Proc. Natl Acad. Sci. USA 118, e2001248118 (2021).
pubmed: 33408250
pmcid: 7826345
doi: 10.1073/pnas.2001248118
Steed, P. M. et al. Inactivation of TNF signaling by rationally designed dominant-negative TNF variants. Science 301, 1895–1898 (2003).
pubmed: 14512626
doi: 10.1126/science.1081297
Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001).
pubmed: 11596589
doi: 10.1056/NEJMoa011110
Rajakulendran, S., Gadsby, K., Allen, D., O’Reilly, S. & Deighton, C. Neutropenia while receiving anti‐tumour necrosis factor treatment for rheumatoid arthritis. Ann. Rheum. Dis. 65, 1678–1679 (2006).
pubmed: 17105865
pmcid: 1798463
doi: 10.1136/ard.2006.056176
Collart, M. A., Belin, D., Vassalli, J. D., de Kossodo, S. & Vassalli, P. Gamma interferon enhances macrophage transcription of the tumor necrosis factor/cachectin, interleukin 1, and urokinase genes, which are controlled by short-lived repressors. J. Exp. Med. 164, 2113–2118 (1986).
pubmed: 3097240
doi: 10.1084/jem.164.6.2113
Yazdanpanah, B. et al. Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460, 1159–1163 (2009).
pubmed: 19641494
doi: 10.1038/nature08206
Cohen, S. B. et al. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24, 439–446 (2018).
pubmed: 30146391
pmcid: 6152889
doi: 10.1016/j.chom.2018.08.001
Guirado, E., Schlesinger, L. S. & Kaplan, G. Macrophages in tuberculosis: friend or foe. Semin. Immunopathol. 35, 563–583 (2013).
pubmed: 23864058
pmcid: 3763202
doi: 10.1007/s00281-013-0388-2
Mohan, V. P. et al. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect. Immun. 69, 1847–1855 (2001).
pubmed: 11179363
pmcid: 98092
doi: 10.1128/IAI.69.3.1847-1855.2001
Bean, A. G. et al. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J. Immunol. 162, 3504–3511 (1999).
pubmed: 10092807
doi: 10.4049/jimmunol.162.6.3504
Holland, S. M. Chronic granulomatous disease. Clin. Rev. Allergy Immunol. 38, 3–10 (2010).
pubmed: 19504359
doi: 10.1007/s12016-009-8136-z
Kerner, G. et al. Genetic adaptation to pathogens and increased risk of inflammatory disorders in post-Neolithic Europe. Cell Genom. 3, 100248 (2023).
pubmed: 36819665
pmcid: 9932995
doi: 10.1016/j.xgen.2022.100248
Bastard, P. et al. A loss-of-function IFNAR1 allele in Polynesia underlies severe viral diseases in homozygotes. J. Exp. Med. 219, e20220028 (2022).
pubmed: 35442418
pmcid: 9026234
doi: 10.1084/jem.20220028
Duncan, C. J. A. et al. Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic. J. Exp. Med. 219, e20212427 (2022).
pubmed: 35442417
pmcid: 9026249
doi: 10.1084/jem.20212427
Khsim, I. E. F. et al. Listeriosis in pregnancy: an umbrella review of maternal exposure, treatment and neonatal complications. BJOG 129, 1427–1433 (2022).
pubmed: 34954888
doi: 10.1111/1471-0528.17073
Rothe, J. et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364, 798–802 (1993).
pubmed: 8395024
doi: 10.1038/364798a0
Virna, S. et al. TNF is important for pathogen control and limits brain damage in murine cerebral listeriosis. J. Immunol. 177, 3972–3982 (2006).
pubmed: 16951360
doi: 10.4049/jimmunol.177.6.3972
Thomas, D. C. et al. EROS/CYBC1 mutations: decreased NADPH oxidase function and chronic granulomatous disease. J. Allergy Clin. Immunol. 143, 782–785 (2019).
pubmed: 30312704
doi: 10.1016/j.jaci.2018.09.019
Colombo, A. L., Tobón, A., Restrepo, A., Queiroz-Telles, F. & Nucci, M. Epidemiology of endemic systemic fungal infections in Latin America. Med. Mycol. 49, 785–798 (2011).
pubmed: 21539506
Rodríguez, E. C. et al. Laboratory surveillance of Salmonella enterica from human clinical cases in Colombia 2005-2011. Enferm. Infecc. Microbiol. Clin. 35, 417–425 (2017).
pubmed: 27038678
doi: 10.1016/j.eimc.2016.02.023
Avila-Granados, L. M., Garcia-Gonzalez, D. G., Zambrano-Varon, J. L. & Arenas-Gamboa, A. M. Brucellosis in Colombia: current status and challenges in the control of an endemic disease. Front. Vet. Sci. 6, 321 (2019).
pubmed: 31616678
pmcid: 6768962
doi: 10.3389/fvets.2019.00321
Rodríguez, J. A. I., Rodríguez, S. N. I. & Olivera, M. J. Leishmaniasis in the Colombian post-conflict era: a descriptive study from 2004 to 2019. Rev. Soc. Bras. Med. Trop. 54, e06122020 (2021).
pubmed: 34105635
doi: 10.1590/0037-8682-0612-2020
Arango, M. et al. Histoplasmosis: results of the Colombian national survey, 1992–2008. Biomedica 31, 344–356 (2011).
pubmed: 22674311
doi: 10.7705/biomedica.v31i3.348
Rigato, O., Ujvari, S., Castelo, A. & Salomão, R. Tumor necrosis factor alpha (TNF-alpha) and sepsis: evidence for a role in host defense. Infection 24, 314–318 (1996).
pubmed: 8875284
doi: 10.1007/BF01743367
Beutler, B. & Cerami, A. The biology of cachectin/TNF—a primary mediator of the host response. Annu. Rev. Immunol. 7, 625–655 (1989).
pubmed: 2540776
doi: 10.1146/annurev.iy.07.040189.003205
Roach, D. R. et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol. 168, 4620–4627 (2002).
pubmed: 11971010
doi: 10.4049/jimmunol.168.9.4620
Kindler, V., Sappino, A. P., Grau, G. E., Piguet, P. F. & Vassalli, P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56, 731–740 (1989).
pubmed: 2647299
doi: 10.1016/0092-8674(89)90676-4
Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).
pubmed: 8879212
doi: 10.1084/jem.184.4.1397
Marino, M. W. et al. Characterization of tumor necrosis factor-deficient mice. Proc. Natl Acad. Sci. USA 94, 8093–8098 (1997).
pubmed: 9223320
pmcid: 21562
doi: 10.1073/pnas.94.15.8093
Khan, T. et al. Human leukocyte antigen class II gene diversity tunes antibody repertoires to common pathogens. Front. Immunol. 13, 856497 (2022).
pubmed: 36003377
pmcid: 9393332
doi: 10.3389/fimmu.2022.856497
Fareed, M. & Afzal, M. Genetics of consanguinity and inbreeding in health and disease. Ann. Hum. Biol. 44, 99–107 (2017).
pubmed: 27892699
doi: 10.1080/03014460.2016.1265148
Plagnol, V. et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 28, 2747–2754 (2012).
pubmed: 22942019
pmcid: 3476336
doi: 10.1093/bioinformatics/bts526
Bigio, B. et al. Detection of homozygous and hemizygous complete or partial exon deletions by whole-exome sequencing. NAR Genom. Bioinform. 3, lqab037 (2021).
pubmed: 34046589
pmcid: 8140739
doi: 10.1093/nargab/lqab037
Hasan, M. R. et al. Virome-wide serological profiling reveals association of herpesviruses with obesity. Sci. Rep. 11, 2562 (2021).
pubmed: 33510449
pmcid: 7843976
doi: 10.1038/s41598-021-82213-4
Khan, T. et al. Distinct antibody repertoires against endemic human coronaviruses in children and adults. JCI Insight 6, e144499 (2021).
pubmed: 33497357
pmcid: 7934927
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819
pmcid: 6884693
doi: 10.1038/s41592-019-0619-0
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).
pubmed: 30643263
pmcid: 6340744
doi: 10.1038/s41590-018-0276-y
Monaco, G. et al. RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 26, 1627–1640 (2019).
pubmed: 30726743
pmcid: 6367568
doi: 10.1016/j.celrep.2019.01.041
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
pubmed: 33597522
pmcid: 7889871
doi: 10.1038/s41467-021-21246-9
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
Buenestado, A. et al. Roflumilast inhibits the release of chemokines and TNF-α from human lung macrophages stimulated with lipopolysaccharide. Br. J. Pharmacol. 165, 1877–1890 (2012).
pubmed: 21913898
pmcid: 3372837
doi: 10.1111/j.1476-5381.2011.01667.x
Abrial, C. et al. 15-Lipoxygenases regulate the production of chemokines in human lung macrophages. Br. J. Pharmacol. 172, 4319–4330 (2015).
pubmed: 26040494
pmcid: 4556470
doi: 10.1111/bph.13210
Pahari, S. et al. A new tractable method for generating human alveolar macrophage-like cells in vitro to study lung inflammatory processes and diseases. mBio 14, e0083423 (2023).
pubmed: 37288969
doi: 10.1128/mbio.00834-23
Lachmann, N. et al. Large-scale hematopoietic differentiation of human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies. Stem Cell Rep. 4, 282–296 (2015).
doi: 10.1016/j.stemcr.2015.01.005
Ackermann, M. et al. Continuous human iPSC-macrophage mass production by suspension culture in stirred tank bioreactors. Nat. Protoc. 17, 513–539 (2022).
pubmed: 35039668
pmcid: 7612500
doi: 10.1038/s41596-021-00654-7
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656