Synapse Regulation.

Brain-derived neurotrophic factor Complement Fractalkine Function Maturation Microglia Neuronal circuit remodeling Phagocytosis Physiology Plasticity Purinergic signalling Synapses

Journal

Advances in neurobiology
ISSN: 2190-5215
Titre abrégé: Adv Neurobiol
Pays: United States
ID NLM: 101571545

Informations de publication

Date de publication:
2024
Historique:
medline: 31 8 2024
pubmed: 31 8 2024
entrez: 29 8 2024
Statut: ppublish

Résumé

Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.

Identifiants

pubmed: 39207693
doi: 10.1007/978-3-031-55529-9_11
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

179-208

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Adayev T, Estephan R, Meserole S, Mazza B, Yurkow EJ, Banerjee P (1998) Externalization of phosphatidylserine may not be an early signal of apoptosis in neuronal cells, but only the phosphatidylserine-displaying apoptotic cells are phagocytosed by microglia. J Neurochem 71:1854–1864. https://doi.org/10.1046/j.1471-4159.1998.71051854.x
doi: 10.1046/j.1471-4159.1998.71051854.x pubmed: 9798909
Ahlers KE, Karaçay B, Fuller L, Bonthius DJ, Dailey ME (2015) Transient activation of microglia following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-dependent neurodegeneration. Glia 63:1694–1713. https://doi.org/10.1002/glia.22835
doi: 10.1002/glia.22835 pubmed: 25856413 pmcid: 4534325
Akiyoshi R, Wake H, Kato D, Horiuchi H, Ono R, Ikegami A, Haruwaka K, Omori T, Tachibana Y, Moorhouse AJ, Nabekura J (2018) Microglia enhance synapse activity to promote local network synchronization. eNeuro 5:ENEURO.0088-18.2018. https://doi.org/10.1523/ENEURO.0088-18.2018
Akther S, Hirase H (2022) Assessment of astrocytes as a mediator of memory and learning in rodents. Glia 70:1484–1505. https://doi.org/10.1002/glia.24099
doi: 10.1002/glia.24099 pubmed: 34582594
Alexander JJ, Anderson AJ, Barnum SR, Stevens B, Tenner AJ (2008) The complement cascade: Yin-Yang in neuroinflammation--neuro-protection and -degeneration. J Neurochem 107:1169–1187. https://doi.org/10.1111/j.1471-4159.2008.05668.x
doi: 10.1111/j.1471-4159.2008.05668.x pubmed: 18786171 pmcid: 4038542
Andoh M, Koyama R (2021a) Comparative review of microglia and monocytes in CNS phagocytosis. Cells 10:2555. https://doi.org/10.3390/cells10102555
doi: 10.3390/cells10102555 pubmed: 34685535 pmcid: 8534258
Andoh M, Koyama R (2021b) Microglia regulate synaptic development and plasticity. Dev Neurobiol 81:568–590. https://doi.org/10.1002/dneu.22814
doi: 10.1002/dneu.22814 pubmed: 33583110 pmcid: 8451802
Arnò B, Grassivaro F, Rossi C, Bergamaschi A, Castiglioni V, Furlan R, Greter M, Favaro R, Comi G, Becher B, Martino G, Muzio L (2014) Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat Commun 5:5611. https://doi.org/10.1038/ncomms6611
doi: 10.1038/ncomms6611 pubmed: 25425146
Arnold SE (1999) Neurodevelopmental abnormalities in schizophrenia: insights from neuropathology. Dev Psychopathol 11:439–456. https://doi.org/10.1017/s095457949900214x
doi: 10.1017/s095457949900214x pubmed: 10532618
Arnoux I, Hoshiko M, Mandavy L, Avignone E, Yamamoto N, Audinat E (2013) Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory “Barrel” cortex. Glia 61:1582–1594. https://doi.org/10.1002/glia.22503
doi: 10.1002/glia.22503 pubmed: 23893820
Augusto-Oliveira M, Arrifano GP, Delage CI, Tremblay M-È, Crespo-Lopez ME, Verkhratsky A (2022) Plasticity of microglia. Biol Rev Camb Philos Soc 97:217–250. https://doi.org/10.1111/brv.12797
doi: 10.1111/brv.12797 pubmed: 34549510
Bahrini I, Song J, Diez D, Hanayama R (2015) Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia. Sci Rep 5:7989. https://doi.org/10.1038/srep07989
doi: 10.1038/srep07989 pubmed: 25612542 pmcid: 4303875
Basilico B, Ferrucci L, Ratano P, Golia MT, Grimaldi A, Rosito M, Ferretti V, Reverte I, Sanchini C, Marrone MC, Giubettini M, De Turris V, Salerno D, Garofalo S, St-Pierre M-K, Carrier M, Renzi M, Pagani F, Modi B, Raspa M, Scavizzi F, Gross CT, Marinelli S, Tremblay M-È, Caprioli D, Maggi L, Limatola C, Di Angelantonio S, Ragozzino D (2022) Microglia control glutamatergic synapses in the adult mouse hippocampus. Glia 70:173–195. https://doi.org/10.1002/glia.24101
doi: 10.1002/glia.24101 pubmed: 34661306
Batchelor PE, Liberatore GT, Wong JYF, Porritt MJ, Frerichs F, Donnan GA, Howells DW (1999) Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19:1708–1716. https://doi.org/10.1523/JNEUROSCI.19-05-01708.1999
doi: 10.1523/JNEUROSCI.19-05-01708.1999 pubmed: 10024357 pmcid: 6782182
Béchade C, Cantaut-Belarif Y, Bessis A (2013) Microglial control of neuronal activity. Front Cell Neurosci 7:32. https://doi.org/10.3389/fncel.2013.00032
doi: 10.3389/fncel.2013.00032 pubmed: 23543873 pmcid: 3610058
Beggs S, Trang T, Salter MW (2012) P2X4R+ microglia drive neuropathic pain. Nat Neurosci 15:1068–1073. https://doi.org/10.1038/nn.3155
doi: 10.1038/nn.3155 pubmed: 22837036 pmcid: 5023423
Benitez DP, Jiang S, Wood J, Wang R, Hall CM, Peerboom C, Wong N, Stringer KM, Vitanova KS, Smith VC, Joshi D, Saito T, Saido TC, Hardy J, Hanrieder J, De Strooper B, Salih DA, Tripathi T, Edwards FA, Cummings DM (2021) Knock-in models related to Alzheimer’s disease: synaptic transmission, plaques and the role of microglia. Mol Neurodegener 16:47. https://doi.org/10.1186/s13024-021-00457-0
doi: 10.1186/s13024-021-00457-0 pubmed: 34266459 pmcid: 8281661
Berens SC, Bird CM, Harrison NA (2020) Minocycline differentially modulates human spatial memory systems. Neuropsychopharmacology 45:2162–2169. https://doi.org/10.1038/s41386-020-00811-8
doi: 10.1038/s41386-020-00811-8 pubmed: 32839527 pmcid: 7784680
Bessis A, Béchade C, Bernard D, Roumier A (2007) Microglial control of neuronal death and synaptic properties. Glia 55:233–238. https://doi.org/10.1002/glia.20459
doi: 10.1002/glia.20459 pubmed: 17106878
Biber K, Neumann H, Inoue K, Boddeke HWGM (2007) Neuronal “On” and “Off” signals control microglia. Trends Neurosci 30:596–602. https://doi.org/10.1016/j.tins.2007.08.007
doi: 10.1016/j.tins.2007.08.007 pubmed: 17950926
Bie B, Wu J, Yang H, Xu JJ, Brown DL, Naguib M (2014) Epigenetic suppression of neuroligin 1 underlies amyloid-induced memory deficiency. Nat Neurosci 17:223–231. https://doi.org/10.1038/nn.3618
doi: 10.1038/nn.3618 pubmed: 24441681
Bisht K, Sharma KP, Lecours C, Sánchez MG, El Hajj H, Milior G, Olmos-Alonso A, Gómez-Nicola D, Luheshi G, Vallières L, Branchi I, Maggi L, Limatola C, Butovsky O, Tremblay M-È (2016) Dark microglia: a new phenotype predominantly associated with pathological states. Glia 64:826–839. https://doi.org/10.1002/glia.22966
doi: 10.1002/glia.22966 pubmed: 26847266 pmcid: 4949554
Bjartmar L, Huberman AD, Ullian EM, Rentería RC, Liu X, Xu W, Prezioso J, Susman MW, Stellwagen D, Stokes CC, Cho R, Worley P, Malenka RC, Ball S, Peachey NS, Copenhagen D, Chapman B, Nakamoto M, Barres BA, Perin MS (2006) Neuronal pentraxins mediate synaptic refinement in the developing visual system. J Neurosci 26:6269–6281. https://doi.org/10.1523/JNEUROSCI.4212-05.2006
doi: 10.1523/JNEUROSCI.4212-05.2006 pubmed: 16763034 pmcid: 2579897
Bohlen CJ, Friedman BA, Dejanovic B, Sheng M (2019) Microglia in brain development, homeostasis, and neurodegeneration. Annu Rev Genet 53:263–288. https://doi.org/10.1146/annurev-genet-112618-043515
doi: 10.1146/annurev-genet-112618-043515 pubmed: 31518519
Borst K, Dumas AA, Prinz M (2021) Microglia: Immune and non-immune functions. Immunity 54:2194–2208. https://doi.org/10.1016/j.immuni.2021.09.014
doi: 10.1016/j.immuni.2021.09.014 pubmed: 34644556
Brelstaff J, Tolkovsky AM, Ghetti B, Goedert M, Spillantini MG (2018) Living neurons with Tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell Rep 24:1939–1948.e4. https://doi.org/10.1016/j.celrep.2018.07.072
doi: 10.1016/j.celrep.2018.07.072 pubmed: 30134156 pmcid: 6161320
Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. https://doi.org/10.1038/nn.3599
doi: 10.1038/nn.3599 pubmed: 24316888
Camacho-Hernández NP, Lorea-Hernández JJ, Peña-Ortega F (2019) Microglial modulators reduce respiratory rhythm long-term facilitation in vitro. Respir Physiol Neurobiol 265:9–18. https://doi.org/10.1016/j.resp.2018.07.012
doi: 10.1016/j.resp.2018.07.012 pubmed: 30075288
Campos RMP, Barbosa-Silva MC, Ribeiro-Resende VT (2021) Comparison of effect of crush or transection peripheral nerve lesion on lumbar spinal cord synaptic plasticity and microglial dynamics. IBRO Neurosci Rep 10:225–235. https://doi.org/10.1016/j.ibneur.2021.05.002
doi: 10.1016/j.ibneur.2021.05.002 pubmed: 34179871 pmcid: 8211924
Cangalaya C, Stoyanov S, Fischer K-D, Dityatev A (2020) Light-induced engagement of microglia to focally remodel synapses in the adult brain. elife 9:e58435. https://doi.org/10.7554/eLife.58435
doi: 10.7554/eLife.58435 pubmed: 32808923 pmcid: 7470825
Cao P, Chen C, Liu A, Shan Q, Zhu X, Jia C, Peng X, Zhang M, Farzinpour Z, Zhou W, Wang H, Zhou J-N, Song X, Wang L, Tao W, Zheng C, Zhang Y, Ding Y-Q, Jin Y, Xu L, Zhang Z (2021) Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron 109:2573–2589.e9. https://doi.org/10.1016/j.neuron.2021.06.012
doi: 10.1016/j.neuron.2021.06.012 pubmed: 34233151
Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee J-C, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924. https://doi.org/10.1038/nn1715
doi: 10.1038/nn1715 pubmed: 16732273
Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay M-È (2022) The implication of a diversity of non-neuronal cells in disorders affecting brain networks. Front Cell Neurosci 16:1015556. https://doi.org/10.3389/fncel.2022.1015556
doi: 10.3389/fncel.2022.1015556 pubmed: 36439206 pmcid: 9693782
Chakravarthy S, Saiepour MH, Bence M, Perry S, Hartman R, Couey JJ, Mansvelder HD, Levelt CN (2006) Postsynaptic TrkB signaling has distinct roles in spine maintenance in adult visual cortex and hippocampus. Proc Natl Acad Sci USA 103:1071–1076. https://doi.org/10.1073/pnas.0506305103
doi: 10.1073/pnas.0506305103 pubmed: 16418274 pmcid: 1347973
Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309. https://doi.org/10.1038/nrn1078
doi: 10.1038/nrn1078 pubmed: 12671646
Chen C, Regehr WG (2000) Developmental remodeling of the retinogeniculate synapse. Neuron 28:955–966. https://doi.org/10.1016/s0896-6273(00)00166-5
doi: 10.1016/s0896-6273(00)00166-5 pubmed: 11163279
Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76. https://doi.org/10.1146/annurev.neuro.29.051605.112834
doi: 10.1146/annurev.neuro.29.051605.112834 pubmed: 16776579
Ciesielski-Treska J, Ulrich G, Chasserot-Golaz S, Zwiller J, Revel MO, Aunis D, Bader MF (2001) Mechanisms underlying neuronal death induced by chromogranin A-activated microglia. J Biol Chem 276:13113–13120. https://doi.org/10.1074/jbc.M009711200
doi: 10.1074/jbc.M009711200 pubmed: 11124958
Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41. https://doi.org/10.1038/sj.npp.1301559
doi: 10.1038/sj.npp.1301559 pubmed: 17728696
Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, Gerhold KJ, Malcangio M, Sandkühler J (2015) Selective activation of microglia facilitates synaptic strength. J Neurosci 35:4552–4570. https://doi.org/10.1523/JNEUROSCI.2061-14.2015
doi: 10.1523/JNEUROSCI.2061-14.2015 pubmed: 25788673 pmcid: 4363384
Combadiere C, Salzwedel K, Smith ED, Tiffany HL, Berger EA, Murphy PM (1998) Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. J Biol Chem 273:23799–23804. https://doi.org/10.1074/jbc.273.37.23799
doi: 10.1074/jbc.273.37.23799 pubmed: 9726990
Comer AL, Jinadasa T, Sriram B, Phadke RA, Kretsge LN, Nguyen TPH, Antognetti G, Gilbert JP, Lee J, Newmark ER, Hausmann FS, Rosenthal S, Liu Kot K, Liu Y, Yen WW, Dejanovic B, Cruz-Martín A (2020) Increased expression of schizophrenia-associated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction. PLoS Biol 18:e3000604. https://doi.org/10.1371/journal.pbio.3000604
doi: 10.1371/journal.pbio.3000604 pubmed: 31935214 pmcid: 6959572
Cordella F, Sanchini C, Rosito M, Ferrucci L, Pediconi N, Cortese B, Guerrieri F, Pascucci GR, Antonangeli F, Peruzzi G, Giubettini M, Basilico B, Pagani F, Grimaldi A, D’Alessandro G, Limatola C, Ragozzino D, Di Angelantonio S (2021) Antibiotics treatment modulates microglia-synapses interaction. Cells 10:2648. https://doi.org/10.3390/cells10102648
Corsi G, Picard K, di Castro MA, Garofalo S, Tucci F, Chece G, Del Percio C, Golia MT, Raspa M, Scavizzi F, Decoeur F, Lauro C, Rigamonti M, Iannello F, Ragozzino DA, Russo E, Bernardini G, Nadjar A, Tremblay ME, Babiloni C, Maggi L, Limatola C (2022) Microglia modulate hippocampal synaptic transmission and sleep duration along the light/dark cycle. Glia 70:89–105. https://doi.org/10.1002/glia.24090
doi: 10.1002/glia.24090 pubmed: 34487590
Costello DA, Lynch MA (2013) Toll-like receptor 3 activation modulates hippocampal network excitability, via glial production of interferon-β. Hippocampus 23:696–707. https://doi.org/10.1002/hipo.22129
doi: 10.1002/hipo.22129 pubmed: 23554175
Costello DA, Lyons A, Denieffe S, Browne TC, Cox FF, Lynch MA (2011) Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for toll-like receptor activation *. J Biol Chem 286:34722–34732. https://doi.org/10.1074/jbc.M111.280826
doi: 10.1074/jbc.M111.280826 pubmed: 21835925 pmcid: 3186410
Coull JAM, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021. https://doi.org/10.1038/nature04223
doi: 10.1038/nature04223 pubmed: 16355225
Cox FF, Carney D, Miller A-M, Lynch MA (2012) CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav Immun 26:789–796. https://doi.org/10.1016/j.bbi.2011.10.004
doi: 10.1016/j.bbi.2011.10.004 pubmed: 22041297
Cramer T, Gill R, Thirouin ZS, Vaas M, Sampath S, Martineau F, Noya SB, Panzanelli P, Sudharshan TJJ, Colameo D, Chang PK-Y, Wu PY, Shi R, Barker PA, Brown SA, Paolicelli RC, Klohs J, McKinney RA, Tyagarajan SK (2022) Cross-talk between GABAergic postsynapse and microglia regulate synapse loss after brain ischemia. Sci Adv 8:eabj0112. https://doi.org/10.1126/sciadv.abj0112
doi: 10.1126/sciadv.abj0112 pubmed: 35245123 pmcid: 8896802
Criscuolo C, Fontebasso V, Middei S, Stazi M, Ammassari-Teule M, Yan SS, Origlia N (2017) Entorhinal Cortex dysfunction can be rescued by inhibition of microglial RAGE in an Alzheimer’s disease mouse model. Sci Rep 7:42370. https://doi.org/10.1038/srep42370
doi: 10.1038/srep42370 pubmed: 28205565 pmcid: 5304222
D’Alessandro G, Marrocco F, Limatola C (2022) Microglial cells: sensors for neuronal activity and microbiota-derived molecules. Front Immunol 13:1011129. https://doi.org/10.3389/fimmu.2022.1011129
doi: 10.3389/fimmu.2022.1011129 pubmed: 36426369 pmcid: 9679421
Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan W-B (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. https://doi.org/10.1038/nn1472
doi: 10.1038/nn1472 pubmed: 15895084
De Pittà M, Brunel N, Volterra A (2016) Astrocytes: orchestrating synaptic plasticity? Neuroscience 323:43–61. https://doi.org/10.1016/j.neuroscience.2015.04.001
doi: 10.1016/j.neuroscience.2015.04.001 pubmed: 25862587
De Schepper S, Ge JZ, Crowley G, Ferreira LSS, Garceau D, Toomey CE, Sokolova D, Rueda-Carrasco J, Shin S-H, Kim J-S, Childs T, Lashley T, Burden JJ, Sasner M, Sala Frigerio C, Jung S, Hong S (2023) Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease. Nat Neurosci 26:406–415. https://doi.org/10.1038/s41593-023-01257-z
doi: 10.1038/s41593-023-01257-z pubmed: 36747024 pmcid: 9991912
Dejanovic B, Huntley MA, De Mazière A, Meilandt WJ, Wu T, Srinivasan K, Jiang Z, Gandham V, Friedman BA, Ngu H, Foreman O, Carano RAD, Chih B, Klumperman J, Bakalarski C, Hanson JE, Sheng M (2018) Changes in the synaptic proteome in tauopathy and rescue of Tau-induced synapse loss by C1q antibodies. Neuron 100:1322–1336.e7. https://doi.org/10.1016/j.neuron.2018.10.014
doi: 10.1016/j.neuron.2018.10.014 pubmed: 30392797
Del Rio T, Feller MB (2006) Early retinal activity and visual circuit development. Neuron 52:221–222. https://doi.org/10.1016/j.neuron.2006.10.001
doi: 10.1016/j.neuron.2006.10.001 pubmed: 17046683
Di Filippo M, de Iure A, Giampà C, Chiasserini D, Tozzi A, Orvietani PL, Ghiglieri V, Tantucci M, Durante V, Quiroga-Varela A, Mancini A, Costa C, Sarchielli P, Fusco FR, Calabresi P (2016) Persistent activation of microglia and NADPH oxidase [corrected] drive hippocampal dysfunction in experimental multiple sclerosis. Sci Rep 6:20926. https://doi.org/10.1038/srep20926
doi: 10.1038/srep20926 pubmed: 26887636 pmcid: 4757867
Ding X, Liang Y-J, Su L, Liao F-F, Fang D, Tai J, Xing G-G (2018) BDNF contributes to the neonatal incision-induced facilitation of spinal long-term potentiation and the exacerbation of incisional pain in adult rats. Neuropharmacology 137:114–132. https://doi.org/10.1016/j.neuropharm.2018.04.032
doi: 10.1016/j.neuropharm.2018.04.032 pubmed: 29729892
Ding X, Wang J, Huang M, Chen Z, Liu J, Zhang Q, Zhang C, Xiang Y, Zen K, Li L (2021) Loss of microglial SIRPα promotes synaptic pruning in preclinical models of neurodegeneration. Nat Commun 12:2030. https://doi.org/10.1038/s41467-021-22301-1
doi: 10.1038/s41467-021-22301-1 pubmed: 33795678 pmcid: 8016980
Dissing-Olesen L, LeDue JM, Rungta RL, Hefendehl JK, Choi HB, MacVicar BA (2014) Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J Neurosci 34:10511–10527. https://doi.org/10.1523/JNEUROSCI.0405-14.2014
doi: 10.1523/JNEUROSCI.0405-14.2014 pubmed: 25100586 pmcid: 6802598
Du X, Gao F, Chen S, Botchway BOA, Amin N, Hu Z, Fang M (2020) Combinational pretreatment of colony-stimulating factor 1 receptor inhibitor and triptolide upregulates BDNF-AKT and autophagic pathways to improve cerebral ischemia. Mediat Inflamm 2020:8796103. https://doi.org/10.1155/2020/8796103
doi: 10.1155/2020/8796103
Efthymiou AG, Goate AM (2017) Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol Neurodegener 12:43. https://doi.org/10.1186/s13024-017-0184-x
doi: 10.1186/s13024-017-0184-x pubmed: 28549481 pmcid: 5446752
Eyo U, Molofsky AV (2023) Defining microglial-synapse interactions. Science 381:1155–1156. https://doi.org/10.1126/science.adh7906
doi: 10.1126/science.adh7906 pubmed: 37708287
Eyo UB, Peng J, Swiatkowski P, Mukherjee A, Bispo A, Wu L-J (2014) Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J Neurosci 34:10528–10540. https://doi.org/10.1523/JNEUROSCI.0416-14.2014
doi: 10.1523/JNEUROSCI.0416-14.2014 pubmed: 25100587 pmcid: 4200107
Fekete R, Cserép C, Lénárt N, Tóth K, Orsolits B, Martinecz B, Méhes E, Szabó B, Németh V, Gönci B, Sperlágh B, Boldogkői Z, Kittel Á, Baranyi M, Ferenczi S, Kovács K, Szalay G, Rózsa B, Webb C, Kovacs GG, Hortobágyi T, West BL, Környei Z, Dénes Á (2018) Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathol 136:461–482. https://doi.org/10.1007/s00401-018-1885-0
doi: 10.1007/s00401-018-1885-0 pubmed: 30027450 pmcid: 6096730
Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, Erreni M, Markicevic M, Starvaggi-Cucuzza C, Otero K, Piccio L, Cignarella F, Perrucci F, Tamborini M, Genua M, Rajendran L, Menna E, Vetrano S, Fahnestock M, Paolicelli RC, Matteoli M (2018) The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 48:979–991.e8. https://doi.org/10.1016/j.immuni.2018.04.016
doi: 10.1016/j.immuni.2018.04.016 pubmed: 29752066
Freria CM, Hall JCE, Wei P, Guan Z, McTigue DM, Popovich PG (2017) Deletion of the Fractalkine receptor, CX3CR1, improves endogenous repair, axon sprouting, and synaptogenesis after spinal cord injury in mice. J Neurosci 37:3568–3587. https://doi.org/10.1523/JNEUROSCI.2841-16.2017
doi: 10.1523/JNEUROSCI.2841-16.2017 pubmed: 28264978 pmcid: 5373135
Frisén J, Verge VM, Fried K, Risling M, Persson H, Trotter J, Hökfelt T, Lindholm D (1993) Characterization of glial trkB receptors: differential response to injury in the central and peripheral nervous systems. Proc Natl Acad Sci 90:4971–4975. https://doi.org/10.1073/pnas.90.11.4971
doi: 10.1073/pnas.90.11.4971 pubmed: 8389459 pmcid: 46635
Garaschuk O, Verkhratsky A (2019) Physiology of microglia. Methods Mol Biol 2034:27–40. https://doi.org/10.1007/978-1-4939-9658-2_3
doi: 10.1007/978-1-4939-9658-2_3 pubmed: 31392675
Garton KJ, Gough PJ, Blobel CP, Murphy G, Greaves DR, Dempsey PJ, Raines EW (2001) Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276:37993–38001. https://doi.org/10.1074/jbc.M106434200
doi: 10.1074/jbc.M106434200 pubmed: 11495925
George J, Cunha RA, Mulle C, Amédée T (2016) Microglia-derived purines modulate mossy fibre synaptic transmission and plasticity through P2X4 and A1 receptors. Eur J Neurosci 43:1366–1378. https://doi.org/10.1111/ejn.13191
doi: 10.1111/ejn.13191 pubmed: 27199162 pmcid: 5069607
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637
doi: 10.1126/science.1194637 pubmed: 20966214 pmcid: 3719181
Goldmann T, Wieghofer P, Jordão MJC, Prutek F, Hagemeyer N, Frenzel K, Amann L, Staszewski O, Kierdorf K, Krueger M, Locatelli G, Hochgerner H, Zeiser R, Epelman S, Geissmann F, Priller J, Rossi FMV, Bechmann I, Kerschensteiner M, Linnarsson S, Jung S, Prinz M (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17:797–805. https://doi.org/10.1038/ni.3423
doi: 10.1038/ni.3423 pubmed: 27135602 pmcid: 4968048
Gomes C, Ferreira R, George J, Sanches R, Rodrigues DI, Gonçalves N, Cunha RA (2013) Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J Neuroinflammation 10:780. https://doi.org/10.1186/1742-2094-10-16
doi: 10.1186/1742-2094-10-16
Gomez Perdiguero E, Schulz C, Geissmann F (2013) Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia 61:112–120. https://doi.org/10.1002/glia.22393
doi: 10.1002/glia.22393 pubmed: 22847963
Götzl JK, Brendel M, Werner G, Parhizkar S, Sebastian Monasor L, Kleinberger G, Colombo A-V, Deussing M, Wagner M, Winkelmann J, Diehl-Schmid J, Levin J, Fellerer K, Reifschneider A, Bultmann S, Bartenstein P, Rominger A, Tahirovic S, Smith ST, Madore C, Butovsky O, Capell A, Haass C (2019) Opposite microglial activation stages upon loss of PGRN or TREM2 result in reduced cerebral glucose metabolism. EMBO Mol Med 11. https://doi.org/10.15252/emmm.201809711
Gratuze M, Leyns CE, Sauerbeck AD, St-Pierre M-K, Xiong M, Kim N, Serrano JR, Tremblay M-È, Kummer TT, Colonna M, Ulrich JD, Holtzman DM (2020) Impact of TREM2R47H variant on tau pathology-induced gliosis and neurodegeneration. J Clin Invest 130:4954–4968. https://doi.org/10.1172/JCI138179
doi: 10.1172/JCI138179 pubmed: 32544086 pmcid: 7456230
Gunner G, Cheadle L, Johnson KM, Ayata P, Badimon A, Mondo E, Nagy MA, Liu L, Bemiller SM, Kim K-W, Lira SA, Lamb BT, Tapper AR, Ransohoff RM, Greenberg ME, Schaefer A, Schafer DP (2019) Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat Neurosci 22:1075–1088. https://doi.org/10.1038/s41593-019-0419-y
doi: 10.1038/s41593-019-0419-y pubmed: 31209379 pmcid: 6596419
Gupta N, Jadhav S, Tan K-L, Saw G, Mallilankaraman KB, Dheen ST (2020) miR-142-3p regulates BDNF expression in activated rodent microglia through its target CAMK2A. Front Cell Neurosci 14:132. https://doi.org/10.3389/fncel.2020.00132
doi: 10.3389/fncel.2020.00132 pubmed: 32508597 pmcid: 7253665
Györffy BA, Kun J, Török G, Bulyáki É, Borhegyi Z, Gulyássy P, Kis V, Szocsics P, Micsonai A, Matkó J, Drahos L, Juhász G, Kékesi KA, Kardos J (2018) Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning. Proc Natl Acad Sci USA 115:6303–6308. https://doi.org/10.1073/pnas.1722613115
doi: 10.1073/pnas.1722613115 pubmed: 29844190 pmcid: 6004452
Hall MB, Habash NM, Haas NA, Schwarz JM (2022) A method for the selective depletion of microglia in the dorsal hippocampus in the juvenile rat brain. J Neurosci Methods 374:109567. https://doi.org/10.1016/j.jneumeth.2022.109567
doi: 10.1016/j.jneumeth.2022.109567 pubmed: 35306037 pmcid: 9070732
Hammond TR, Marsh SE, Stevens B (2019) Immune signaling in neurodegeneration. Immunity 50:955–974. https://doi.org/10.1016/j.immuni.2019.03.016
doi: 10.1016/j.immuni.2019.03.016 pubmed: 30995509 pmcid: 6822103
Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217:459–472. https://doi.org/10.1083/jcb.201709069
doi: 10.1083/jcb.201709069 pubmed: 29196460 pmcid: 5800817
Hao T, Du X, Yang S, Zhang Y, Liang F (2020) Astrocytes-induced neuronal inhibition contributes to depressive-like behaviors during chronic stress. Life Sci 258:118099. https://doi.org/10.1016/j.lfs.2020.118099
doi: 10.1016/j.lfs.2020.118099 pubmed: 32682917
Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan W-B, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519. https://doi.org/10.1038/nn1805
doi: 10.1038/nn1805 pubmed: 17115040
Hellwig S, Brioschi S, Dieni S, Frings L, Masuch A, Blank T, Biber K (2016) Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain Behav Immun 55:126–137. https://doi.org/10.1016/j.bbi.2015.11.008
doi: 10.1016/j.bbi.2015.11.008 pubmed: 26576722
Hirt UA, Gantner F, Leist M (2000) Phagocytosis of nonapoptotic cells dying by caspase-independent mechanisms. J Immunol 164:6520–6529. https://doi.org/10.4049/jimmunol.164.12.6520
doi: 10.4049/jimmunol.164.12.6520 pubmed: 10843710
Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658. https://doi.org/10.1038/nrn2699
doi: 10.1038/nrn2699 pubmed: 19693029
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716. https://doi.org/10.1126/science.aad8373
doi: 10.1126/science.aad8373 pubmed: 27033548 pmcid: 5094372
Hooks BM, Chen C (2006) Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse. Neuron 52:281–291. https://doi.org/10.1016/j.neuron.2006.07.007
doi: 10.1016/j.neuron.2006.07.007 pubmed: 17046691
Hoshiko M, Arnoux I, Avignone E, Yamamoto N, Audinat E (2012) Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J Neurosci 32:15106–15111. https://doi.org/10.1523/JNEUROSCI.1167-12.2012
doi: 10.1523/JNEUROSCI.1167-12.2012 pubmed: 23100431 pmcid: 6704837
Huang Y, Xu Z, Xiong S, Sun F, Qin G, Hu G, Wang J, Zhao L, Liang Y-X, Wu T, Lu Z, Humayun MS, So K-F, Pan Y, Li N, Yuan T-F, Rao Y, Peng B (2018) Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci 21:530–540. https://doi.org/10.1038/s41593-018-0090-8
doi: 10.1038/s41593-018-0090-8 pubmed: 29472620
Huang S-N, Wei J, Huang L-T, Ju P-J, Chen J, Wang Y-X (2020) Bulleyaconitine A inhibits visceral nociception and spinal synaptic plasticity through stimulation of microglial release of Dynorphin A. Neural Plast 2020:1484087. https://doi.org/10.1155/2020/1484087
doi: 10.1155/2020/1484087 pubmed: 32565774 pmcid: 7262664
Huang L, Jin J, Chen K, You S, Zhang H, Sideris A, Norcini M, Recio-Pinto E, Wang J, Gan W-B, Yang G (2021) BDNF produced by cerebral microglia promotes cortical plasticity and pain hypersensitivity after peripheral nerve injury. PLoS Biol 19:e3001337. https://doi.org/10.1371/journal.pbio.3001337
doi: 10.1371/journal.pbio.3001337 pubmed: 34292944 pmcid: 8346290
Hunter M, Spiller KJ, Dominique MA, Xu H, Hunter FW, Fang TC, Canter RG, Roberts CJ, Ransohoff RM, Trojanowski JQ, Lee VM-Y (2021) Microglial transcriptome analysis in the rNLS8 mouse model of TDP-43 proteinopathy reveals discrete expression profiles associated with neurodegenerative progression and recovery. Acta Neuropathol Commun 9:1–19. https://doi.org/10.1186/s40478-021-01239-x
doi: 10.1186/s40478-021-01239-x
Ikegami A, Haruwaka K, Wake H (2019) Microglia: lifelong modulator of neural circuits. Neuropathology 39:173–180. https://doi.org/10.1111/neup.12560
doi: 10.1111/neup.12560 pubmed: 31131941
Ikezu S, Yeh H, Delpech J-C, Woodbury ME, Van Enoo AA, Ruan Z, Sivakumaran S, You Y, Holland C, Guillamon-Vivancos T, Yoshii-Kitahara A, Botros MB, Madore C, Chao P-H, Desani A, Manimaran S, Kalavai SV, Johnson WE, Butovsky O, Medalla M, Luebke JI, Ikezu T (2021) Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Mol Psychiatry 26:1808–1831. https://doi.org/10.1038/s41380-020-0671-2
doi: 10.1038/s41380-020-0671-2 pubmed: 32071385
Inoue K (2002) Microglial activation by purines and pyrimidines. Glia 40:156–163. https://doi.org/10.1002/glia.10150
doi: 10.1002/glia.10150 pubmed: 12379903
Jadhav VS, Lin PBC, Pennington T, Di Prisco GV, Jannu AJ, Xu G, Moutinho M, Zhang J, Atwood BK, Puntambekar SS, Bissel SJ, Oblak AL, Landreth GE, Lamb BT (2020) Trem2 Y38C mutation and loss of Trem2 impairs neuronal synapses in adult mice. Mol Neurodegener 15:62. https://doi.org/10.1186/s13024-020-00409-0
doi: 10.1186/s13024-020-00409-0 pubmed: 33115519 pmcid: 7594478
Jay TR, von Saucken VE, Muñoz B, Codocedo JF, Atwood BK, Lamb BT, Landreth GE (2019) TREM2 is required for microglial instruction of astrocytic synaptic engulfment in neurodevelopment. Glia 67:1873–1892. https://doi.org/10.1002/glia.23664
doi: 10.1002/glia.23664 pubmed: 31265185
Jiang T, Yu J-T, Zhu X-C, Tan M-S, Gu L-Z, Zhang Y-D, Tan L (2014) Triggering receptor expressed on myeloid cells 2 knockdown exacerbates aging-related neuroinflammation and cognitive deficiency in senescence-accelerated mouse prone 8 mice. Neurobiol Aging 35:1243–1251. https://doi.org/10.1016/j.neurobiolaging.2013.11.026
doi: 10.1016/j.neurobiolaging.2013.11.026 pubmed: 24368090
Jiang Y, Liu Y, Zhu C, Ma X, Ma L, Zhou L, Huang Q, Cen L, Pi R, Chen X (2015) Minocycline enhances hippocampal memory, neuroplasticity and synapse-associated proteins in aged C57 BL/6 mice. Neurobiol Learn Mem 121:20–29. https://doi.org/10.1016/j.nlm.2015.03.003
doi: 10.1016/j.nlm.2015.03.003 pubmed: 25838119
Kaiser N, Pätz C, Brachtendorf S, Eilers J, Bechmann I (2020) Undisturbed climbing fiber pruning in the cerebellar cortex of CX3 CR1-deficient mice. Glia 68:2316–2329. https://doi.org/10.1002/glia.23842
doi: 10.1002/glia.23842 pubmed: 32488990
Kano M, Hashimoto K (2009) Synapse elimination in the central nervous system. Curr Opin Neurobiol Develop 19:154–161. https://doi.org/10.1016/j.conb.2009.05.002
doi: 10.1016/j.conb.2009.05.002
Keck T, Mrsic-Flogel TD, Vaz Afonso M, Eysel UT, Bonhoeffer T, Hübener M (2008) Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat Neurosci 11:1162–1167. https://doi.org/10.1038/nn.2181
doi: 10.1038/nn.2181 pubmed: 18758460
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290.e17. https://doi.org/10.1016/j.cell.2017.05.018
doi: 10.1016/j.cell.2017.05.018 pubmed: 28602351
Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18. https://doi.org/10.1016/j.neuron.2012.12.023
doi: 10.1016/j.neuron.2012.12.023 pubmed: 23312512
Kim H-J, Cho M-H, Shim WH, Kim JK, Jeon E-Y, Kim D-H, Yoon S-Y (2017) Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry 22:1576–1584. https://doi.org/10.1038/mp.2016.103
doi: 10.1038/mp.2016.103 pubmed: 27400854
Kim JD, Yoon NA, Jin S, Diano S (2019) Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding. Cell Metab 30:952–962.e5. https://doi.org/10.1016/j.cmet.2019.08.010
doi: 10.1016/j.cmet.2019.08.010 pubmed: 31495690 pmcid: 7251564
Kim A, García-García E, Straccia M, Comella-Bolla A, Miguez A, Masana M, Alberch J, Canals JM, Rodríguez MJ (2020) Reduced Fractalkine levels lead to striatal synaptic plasticity deficits in Huntington’s disease. Front Cell Neurosci 14:163. https://doi.org/10.3389/fncel.2020.00163
doi: 10.3389/fncel.2020.00163 pubmed: 32625064 pmcid: 7314984
Koch SM, Ullian EM (2010) Neuronal pentraxins mediate silent synapse conversion in the developing visual system. J Neurosci 30:5404–5414. https://doi.org/10.1523/JNEUROSCI.4893-09.2010
doi: 10.1523/JNEUROSCI.4893-09.2010 pubmed: 20392962 pmcid: 2885289
Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, Beckers L, O’Loughlin E, Xu Y, Fanek Z, Greco DJ, Smith ST, Tweet G, Humulock Z, Zrzavy T, Conde-Sanroman P, Gacias M, Weng Z, Chen H, Tjon E, Mazaheri F, Hartmann K, Madi A, Ulrich JD, Glatzel M, Worthmann A, Heeren J, Budnik B, Lemere C, Ikezu T, Heppner FL, Litvak V, Holtzman DM, Lassmann H, Weiner HL, Ochando J, Haass C, Butovsky O (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566–581.e9. https://doi.org/10.1016/j.immuni.2017.08.008
doi: 10.1016/j.immuni.2017.08.008 pubmed: 28930663 pmcid: 5719893
Kurematsu C, Sawada M, Ohmuraya M, Tanaka M, Kuboyama K, Ogino T, Matsumoto M, Oishi H, Inada H, Ishido Y, Sakakibara Y, Nguyen HB, Thai TQ, Kohsaka S, Ohno N, Yamada MK, Asai M, Sokabe M, Nabekura J, Asano K, Tanaka M, Sawamoto K (2022) Synaptic pruning of murine adult-born neurons by microglia depends on phosphatidylserine. J Exp Med 219:e20202304. https://doi.org/10.1084/jem.20202304
doi: 10.1084/jem.20202304 pubmed: 35297954 pmcid: 9195048
Kyrargyri V, Vega-Flores G, Gruart A, Delgado-García JM, Probert L (2015) Differential contributions of microglial and neuronal IKKβ to synaptic plasticity and associative learning in alert behaving mice. Glia 63:549–566. https://doi.org/10.1002/glia.22756
doi: 10.1002/glia.22756 pubmed: 25297800
Lan L, Wang H, Zhang X, Shen Q, Li X, He L, Rong X, Peng J, Mo J, Peng Y (2022) Chronic exposure of alcohol triggers microglia-mediated synaptic elimination inducing cognitive impairment. Exp Neurol 353:114061. https://doi.org/10.1016/j.expneurol.2022.114061
doi: 10.1016/j.expneurol.2022.114061 pubmed: 35367455
Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6:112–126. https://doi.org/10.1038/nrm1571
doi: 10.1038/nrm1571 pubmed: 15687999
Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST, Frouin A, Walker AJ, Heller MD, Umemori H, Chen C, Stevens B (2018) CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 100:120–134.e6. https://doi.org/10.1016/j.neuron.2018.09.017
doi: 10.1016/j.neuron.2018.09.017 pubmed: 30308165 pmcid: 6314207
Lemke G (2019) How macrophages deal with death. Nat Rev Immunol 19:539–549. https://doi.org/10.1038/s41577-019-0167-y
doi: 10.1038/s41577-019-0167-y pubmed: 31019284 pmcid: 6733267
Lenz KM, Nugent BM, Haliyur R, McCarthy MM (2013) Microglia are essential to masculinization of brain and behavior. J Neurosci 33:2761–2772. https://doi.org/10.1523/JNEUROSCI.1268-12.2013
doi: 10.1523/JNEUROSCI.1268-12.2013 pubmed: 23407936 pmcid: 3727162
Lewen A, Ta T-T, Cesetti T, Hollnagel J-O, Papageorgiou IE, Chausse B, Kann O (2020) Neuronal gamma oscillations and activity-dependent potassium transients remain regular after depletion of microglia in postnatal cortex tissue. J Neurosci Res 98:1953–1967. https://doi.org/10.1002/jnr.24689
doi: 10.1002/jnr.24689 pubmed: 32638411
Li Y, Du X-F, Liu C-S, Wen Z-L, Du J-L (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 23:1189–1202. https://doi.org/10.1016/j.devcel.2012.10.027
doi: 10.1016/j.devcel.2012.10.027 pubmed: 23201120
Li J, Serafin E, Baccei ML (2018) Prostaglandin signaling governs spike timing-dependent plasticity at sensory synapses onto mouse spinal projection neurons. J Neurosci 38:6628–6639. https://doi.org/10.1523/JNEUROSCI.2152-17.2018
doi: 10.1523/JNEUROSCI.2152-17.2018 pubmed: 29934349 pmcid: 6067080
Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, Gulati G, Bennett ML, Sun LO, Clarke LE, Marschallinger J, Yu G, Quake SR, Wyss-Coray T, Barres BA (2019) Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101:207–223.e10. https://doi.org/10.1016/j.neuron.2018.12.006
doi: 10.1016/j.neuron.2018.12.006 pubmed: 30606613
Li D, Chen M, Meng T, Fei J (2020a) Hippocampal microglial activation triggers a neurotoxic-specific astrocyte response and mediates etomidate-induced long-term synaptic inhibition. J Neuroinflammation 17:109. https://doi.org/10.1186/s12974-020-01799-0
doi: 10.1186/s12974-020-01799-0 pubmed: 32264970 pmcid: 7140340
Li T, Chiou B, Gilman CK, Luo R, Koshi T, Yu D, Oak HC, Giera S, Johnson-Venkatesh E, Muthukumar AK, Stevens B, Umemori H, Piao X (2020b) A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J 39:e104136. https://doi.org/10.15252/embj.2019104136
doi: 10.15252/embj.2019104136 pubmed: 32452062 pmcid: 7429740
Li T, Yu D, Oak HC, Zhu B, Wang L, Jiang X, Molday RS, Kriegstein A, Piao X (2021) Phospholipid-flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure. EMBO J 40:e107915. https://doi.org/10.15252/embj.2021107915
doi: 10.15252/embj.2021107915 pubmed: 34585770 pmcid: 8561630
Lim TK, Ruthazer ES (2021) Microglial trogocytosis and the complement system regulate axonal pruning in vivo. elife 10:e62167. https://doi.org/10.7554/eLife.62167
doi: 10.7554/eLife.62167 pubmed: 33724186 pmcid: 7963485
Linnartz B, Kopatz J, Tenner AJ, Neumann H (2012) Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia. J Neurosci 32:946–952. https://doi.org/10.1523/JNEUROSCI.3830-11.2012
doi: 10.1523/JNEUROSCI.3830-11.2012 pubmed: 22262892 pmcid: 4037907
Litvin DG, Dick TE, Smith CB, Jacono FJ (2018) Lung-injury depresses glutamatergic synaptic transmission in the nucleus tractus solitarii via discrete age-dependent mechanisms in neonatal rats. Brain Behav Immun 70:398–422. https://doi.org/10.1016/j.bbi.2018.03.031
doi: 10.1016/j.bbi.2018.03.031 pubmed: 29601943 pmcid: 6075724
Liu Y, Zhou L-J, Wang J, Li D, Ren W-J, Peng J, Wei X, Xu T, Xin W-J, Pang R-P, Li Y-Y, Qin Z-H, Murugan M, Mattson MP, Wu L-J, Liu X-G (2017) TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci 37:871–881. https://doi.org/10.1523/JNEUROSCI.2235-16.2016
doi: 10.1523/JNEUROSCI.2235-16.2016 pubmed: 28123022 pmcid: 5296781
Liu Y, Zhang T, Meng D, Sun L, Yang G, He Y, Zhang C (2020) Involvement of CX3CL1/CX3CR1 in depression and cognitive impairment induced by chronic unpredictable stress and relevant underlying mechanism. Behav Brain Res 381:112371. https://doi.org/10.1016/j.bbr.2019.112371
doi: 10.1016/j.bbr.2019.112371 pubmed: 31765724
Liu Y-J, Spangenberg EE, Tang B, Holmes TC, Green KN, Xu X (2021) Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex. J Neurosci 41:1274–1287. https://doi.org/10.1523/JNEUROSCI.2140-20.2020
doi: 10.1523/JNEUROSCI.2140-20.2020 pubmed: 33380470 pmcid: 7888230
Lobsiger CS, Boillée S, Pozniak C, Khan AM, McAlonis-Downes M, Lewcock JW, Cleveland DW (2013) C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice. Proc Natl Acad Sci USA 110:E4385–E4392. https://doi.org/10.1073/pnas.1318309110
doi: 10.1073/pnas.1318309110 pubmed: 24170856 pmcid: 3831990
Loving BA, Bruce KD (2020) Lipid and lipoprotein metabolism in microglia. Front Physiol 11:393. https://doi.org/10.3389/fphys.2020.00393
doi: 10.3389/fphys.2020.00393 pubmed: 32411016 pmcid: 7198855
Lowery RL, Tremblay M-E, Hopkins BE, Majewska AK (2017) The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system. Glia 65:1744–1761. https://doi.org/10.1002/glia.23192
doi: 10.1002/glia.23192 pubmed: 28836393 pmcid: 5657542
Lyons A, Downer EJ, Costello DA, Murphy N, Lynch MA (2012) Dok2 mediates the CD200Fc attenuation of Aβ-induced changes in glia. J Neuroinflammation 9:107. https://doi.org/10.1186/1742-2094-9-107
doi: 10.1186/1742-2094-9-107 pubmed: 22642833 pmcid: 3514341
Ma X, Chen K, Cui Y, Huang G, Nehme A, Zhang L, Li H, Wei J, Liong K, Liu Q, Shi L, Wu J, Qiu S (2020) Depletion of microglia in developing cortical circuits reveals its critical role in glutamatergic synapse development, functional connectivity, and critical period plasticity. J Neurosci Res 98:1968–1986. https://doi.org/10.1002/jnr.24641
doi: 10.1002/jnr.24641 pubmed: 32594561
Ma L, Peng S, Wei J, Zhao M, Ahmad KA, Chen J, Wang Y-X (2021) Spinal microglial β-endorphin signaling mediates IL-10 and exenatide-induced inhibition of synaptic plasticity in neuropathic pain. CNS Neurosci Ther 27:1157–1172. https://doi.org/10.1111/cns.13694
doi: 10.1111/cns.13694 pubmed: 34111331 pmcid: 8446220
Magdalon J, Mansur F, Teles e Silva AL, de Goes VA, Reiner O, Sertié AL (2020) Complement system in brain architecture and neurodevelopmental disorders. Front Neurosci 14
Magee JC, Grienberger C (2020) Synaptic plasticity forms and functions. Annu Rev Neurosci 43:95–117. https://doi.org/10.1146/annurev-neuro-090919-022842
doi: 10.1146/annurev-neuro-090919-022842 pubmed: 32075520
Maggi L, Scianni M, Branchi I, D’Andrea I, Lauro C, Limatola C (2011) CX(3)CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment. Front Cell Neurosci 5:22. https://doi.org/10.3389/fncel.2011.00022
doi: 10.3389/fncel.2011.00022 pubmed: 22025910 pmcid: 3198035
Majewska AK, Sur M (2006) Plasticity and specificity of cortical processing networks. Trends Neurosci 29:323–329. https://doi.org/10.1016/j.tins.2006.04.002
doi: 10.1016/j.tins.2006.04.002 pubmed: 16697057
Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, Werner G, Krasemann S, Capell A, Trümbach D, Wurst W, Brunner B, Bultmann S, Tahirovic S, Kerschensteiner M, Misgeld T, Butovsky O, Haass C (2017) TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep 18:1186–1198. https://doi.org/10.15252/embr.201743922
doi: 10.15252/embr.201743922 pubmed: 28483841 pmcid: 5494532
Melo HM, Seixas da Silva GS, San’Atna MR, Teixeira CVL, Clarke JR, Miya Coreixas VS, de Melo BC, Fortuna JTS, Forny-Germano L, Ledo JH, Oliveira MS, Figueiredo CP, Pardossi-Piquard R, Checler F, Delgado-García JM, Gruart A, Velloso LA, Balthazar MLF, Cintra DE, Ferreira ST, De Felice FG (2020) Palmitate is increased in the cerebrospinal fluid of humans with obesity and induces memory impairment in mice via pro-inflammatory TNF-α. Cell Rep 30:2180–2194.e8. https://doi.org/10.1016/j.celrep.2020.01.072
doi: 10.1016/j.celrep.2020.01.072 pubmed: 32075735
Merlo S, Spampinato SF, Beneventano M, Sortino MA (2018) The contribution of microglia to early synaptic compensatory responses that precede β-amyloid-induced neuronal death. Sci Rep 8:7297. https://doi.org/10.1038/s41598-018-25453-1
doi: 10.1038/s41598-018-25453-1 pubmed: 29740062 pmcid: 5940848
Milinkeviciute G, Chokr SM, Castro EM, Cramer KS (2021) CX3CR1 mutation alters synaptic and astrocytic protein expression, topographic gradients, and response latencies in the auditory brainstem. J Comp Neurol 529:3076–3097. https://doi.org/10.1002/cne.25150
doi: 10.1002/cne.25150 pubmed: 33797066 pmcid: 8174095
Milior G, Lecours C, Samson L, Bisht K, Poggini S, Pagani F, Deflorio C, Lauro C, Alboni S, Limatola C, Branchi I, Tremblay M-E, Maggi L (2016) Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain Behav Immun 55:114–125. https://doi.org/10.1016/j.bbi.2015.07.024
doi: 10.1016/j.bbi.2015.07.024 pubmed: 26231972
Minhas PS, Latif-Hernandez A, McReynolds MR, Durairaj AS, Wang Q, Rubin A, Joshi AU, He JQ, Gauba E, Liu L, Wang C, Linde M, Sugiura Y, Moon PK, Majeti R, Suematsu M, Mochly-Rosen D, Weissman IL, Longo FM, Rabinowitz JD, Andreasson KI (2021) Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590:122–128. https://doi.org/10.1038/s41586-020-03160-0
doi: 10.1038/s41586-020-03160-0 pubmed: 33473210 pmcid: 8274816
Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, Murakoshi H, Koizumi S, Moorhouse AJ, Yoshimura Y, Nabekura J (2016) Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun 7:12540. https://doi.org/10.1038/ncomms12540
doi: 10.1038/ncomms12540 pubmed: 27558646 pmcid: 5007295
Miyamoto K, Kume K, Ohsawa M (2017) Role of microglia in mechanical allodynia in the anterior cingulate cortex. J Pharmacol Sci 134:158–165. https://doi.org/10.1016/j.jphs.2017.05.010
doi: 10.1016/j.jphs.2017.05.010 pubmed: 28669596
Mo M, Eyo UB, Xie M, Peng J, Bosco DB, Umpierre AD, Zhu X, Tian D-S, Xu P, Wu L-J (2019) Microglial P2Y12 receptor regulates seizure-induced neurogenesis and immature neuronal projections. J Neurosci 39:9453–9464. https://doi.org/10.1523/JNEUROSCI.0487-19.2019
doi: 10.1523/JNEUROSCI.0487-19.2019 pubmed: 31597724 pmcid: 6867812
Morrison VE, Bix GJ (2023) The meal Maketh the Microglia: Why studying microglial phagocytosis is critical to stroke research. Neurochem Int 164:105488. https://doi.org/10.1016/j.neuint.2023.105488
doi: 10.1016/j.neuint.2023.105488 pubmed: 36707032
Moy JK, Szabo-Pardi T, Tillu DV, Megat S, Pradhan G, Kume M, Asiedu MN, Burton MD, Dussor G, Price TJ (2019) Temporal and sex differences in the role of BDNF/TrkB signaling in hyperalgesic priming in mice and rats. Neurobiol Pain 5:100024. https://doi.org/10.1016/j.ynpai.2018.10.001
doi: 10.1016/j.ynpai.2018.10.001 pubmed: 31194015
Nagata S, Hanayama R, Kawane K (2010) Autoimmunity and the clearance of dead cells. Cell 140:619–630. https://doi.org/10.1016/j.cell.2010.02.014
doi: 10.1016/j.cell.2010.02.014 pubmed: 20211132
Nakanishi H, Ni J, Nonaka S, Hayashi Y (2021) Microglial circadian clock regulation of microglial structural complexity, dendritic spine density and inflammatory response. Neurochem Int 142:104905. https://doi.org/10.1016/j.neuint.2020.104905
doi: 10.1016/j.neuint.2020.104905 pubmed: 33217515
Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771. https://doi.org/10.1126/science.8134839
doi: 10.1126/science.8134839 pubmed: 8134839
Neher JJ, Neniskyte U, Zhao J-W, Bal-Price A, Tolkovsky AM, Brown GC (2011) Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 186:4973–4983. https://doi.org/10.4049/jimmunol.1003600
doi: 10.4049/jimmunol.1003600 pubmed: 21402900
Neniskyte U, Neher JJ, Brown GC (2011) Neuronal death induced by nanomolar amyloid β is mediated by primary phagocytosis of neurons by microglia. J Biol Chem 286:39904–39913. https://doi.org/10.1074/jbc.M111.267583
doi: 10.1074/jbc.M111.267583 pubmed: 21903584 pmcid: 3220594
Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318. https://doi.org/10.1126/science.1110647
doi: 10.1126/science.1110647 pubmed: 15831717
Onodera J, Nagata H, Nakashima A, Ikegaya Y, Koyama R (2021) Neuronal brain-derived neurotrophic factor manipulates microglial dynamics. Glia 69:890–904. https://doi.org/10.1002/glia.23934
doi: 10.1002/glia.23934 pubmed: 33119934
Paloneva J, Kestilä M, Wu J, Salminen A, Böhling T, Ruotsalainen V, Hakola P, Bakker AB, Phillips JH, Pekkarinen P, Lanier LL, Timonen T, Peltonen L (2000) Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet 25:357–361. https://doi.org/10.1038/77153
doi: 10.1038/77153 pubmed: 10888890
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458. https://doi.org/10.1126/science.1202529
doi: 10.1126/science.1202529 pubmed: 21778362
Paolicelli RC, Bisht K, Tremblay M-È (2014) Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front Cell Neurosci 8:129. https://doi.org/10.3389/fncel.2014.00129
doi: 10.3389/fncel.2014.00129 pubmed: 24860431 pmcid: 4026677
Paolicelli RC, Sierra A, Stevens B, Tremblay M-E, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I, Bennett M, Bennett F, Bessis A, Biber K, Bilbo S, Blurton-Jones M, Boddeke E, Brites D, Brône B, Brown GC, Butovsky O, Carson MJ, Castellano B, Colonna M, Cowley SA, Cunningham C, Davalos D, De Jager PL, de Strooper B, Denes A, Eggen BJL, Eyo U, Galea E, Garel S, Ginhoux F, Glass CK, Gokce O, Gomez-Nicola D, González B, Gordon S, Graeber MB, Greenhalgh AD, Gressens P, Greter M, Gutmann DH, Haass C, Heneka MT, Heppner FL, Hong S, Hume DA, Jung S, Kettenmann H, Kipnis J, Koyama R, Lemke G, Lynch M, Majewska A, Malcangio M, Malm T, Mancuso R, Masuda T, Matteoli M, McColl BW, Miron VE, Molofsky AV, Monje M, Mracsko E, Nadjar A, Neher JJ, Neniskyte U, Neumann H, Noda M, Peng B, Peri F, Perry VH, Popovich PG, Pridans C, Priller J, Prinz M, Ragozzino D, Ransohoff RM, Salter MW, Schaefer A, Schafer DP, Schwartz M, Simons M, Smith CJ, Streit WJ, Tay TL, Tsai L-H, Verkhratsky A, von Bernhardi R, Wake H, Wittamer V, Wolf SA, Wu L-J, Wyss-Coray T (2022) Microglia states and nomenclature: a field at its crossroads. Neuron 110:3458–3483. https://doi.org/10.1016/j.neuron.2022.10.020
doi: 10.1016/j.neuron.2022.10.020 pubmed: 36327895 pmcid: 9999291
Park J, Choi Y, Jung E, Lee S-H, Sohn J-W, Chung W-S (2021) Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses. EMBO J 40:e107121. https://doi.org/10.15252/embj.2020107121
doi: 10.15252/embj.2020107121 pubmed: 34013588 pmcid: 8327958
Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, Hempstead BL, Littman DR, Gan W-B (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609. https://doi.org/10.1016/j.cell.2013.11.030
doi: 10.1016/j.cell.2013.11.030 pubmed: 24360280 pmcid: 4033691
Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747. https://doi.org/10.1038/369744a0
doi: 10.1038/369744a0 pubmed: 7911978
Perez-Alcazar M, Daborg J, Stokowska A, Wasling P, Björefeldt A, Kalm M, Zetterberg H, Carlström KE, Blomgren K, Ekdahl CT, Hanse E, Pekna M (2014) Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3. Exp Neurol 253:154–164. https://doi.org/10.1016/j.expneurol.2013.12.013
doi: 10.1016/j.expneurol.2013.12.013 pubmed: 24378428
Picard K, Bisht K, Poggini S, Garofalo S, Golia MT, Basilico B, Abdallah F, Ciano Albanese N, Amrein I, Vernoux N, Sharma K, Hui CW, C Savage J, Limatola C, Ragozzino D, Maggi L, Branchi I, Tremblay M-È (2021) Microglial-glucocorticoid receptor depletion alters the response of hippocampal microglia and neurons in a chronic unpredictable mild stress paradigm in female mice. Brain Behav Immun 97:423–439. https://doi.org/10.1016/j.bbi.2021.07.022
doi: 10.1016/j.bbi.2021.07.022 pubmed: 34343616
Planche V, Panatier A, Hiba B, Ducourneau E-G, Raffard G, Dubourdieu N, Maitre M, Lesté-Lasserre T, Brochet B, Dousset V, Desmedt A, Oliet SH, Tourdias T (2017) Selective dentate gyrus disruption causes memory impairment at the early stage of experimental multiple sclerosis. Brain Behav Immun 60:240–254. https://doi.org/10.1016/j.bbi.2016.11.010
doi: 10.1016/j.bbi.2016.11.010 pubmed: 27847283
Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535. https://doi.org/10.1016/j.tins.2007.07.007
doi: 10.1016/j.tins.2007.07.007 pubmed: 17904651
Prada I, Gabrielli M, Turola E, Iorio A, D’Arrigo G, Parolisi R, De Luca M, Pacifici M, Bastoni M, Lombardi M, Legname G, Cojoc D, Buffo A, Furlan R, Peruzzi F, Verderio C (2018) Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol 135:529–550. https://doi.org/10.1007/s00401-017-1803-x
doi: 10.1007/s00401-017-1803-x pubmed: 29302779 pmcid: 5978931
Prowse N, Hayley S (2021) Microglia and BDNF at the crossroads of stressor related disorders: towards a unique trophic phenotype. Neurosci Biobehav Rev 131:135–163. https://doi.org/10.1016/j.neubiorev.2021.09.018
doi: 10.1016/j.neubiorev.2021.09.018 pubmed: 34537262
Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia, A-S, McNamara JO, Williams SM (2001) Excitatory and inhibitory postsynaptic potentials. Neuroscience (2nd edn)
Qu W, Li L (2020) Loss of TREM2 Confers Resilience to Synaptic and Cognitive Impairment in Aged Mice. J Neurosci 40:9552–9563. https://doi.org/10.1523/JNEUROSCI.2193-20.2020
doi: 10.1523/JNEUROSCI.2193-20.2020 pubmed: 33139402 pmcid: 7726534
Raghuraman R, Karthikeyan A, Wei WL, Dheen ST, Sajikumar S (2019) Activation of microglia in acute hippocampal slices affects activity-dependent long-term potentiation and synaptic tagging and capture in area CA1. Neurobiol Learn Mem 163:107039. https://doi.org/10.1016/j.nlm.2019.107039
doi: 10.1016/j.nlm.2019.107039 pubmed: 31278985
Ransohoff RM (2009) Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity 31:711–721. https://doi.org/10.1016/j.immuni.2009.09.010
doi: 10.1016/j.immuni.2009.09.010 pubmed: 19836265 pmcid: 2787682
Ren S, Breuillaud L, Yao W, Yin T, Norris KA, Zehntner SP, D’Adamio L (2021) TNF-α-mediated reduction in inhibitory neurotransmission precedes sporadic Alzheimer’s disease pathology in young Trem2R47H rats. J Biol Chem 296:100089. https://doi.org/10.1074/jbc.RA120.016395
doi: 10.1074/jbc.RA120.016395 pubmed: 33434745
Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ (2008) Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci USA 105:17151–17156. https://doi.org/10.1073/pnas.0806682105
doi: 10.1073/pnas.0806682105 pubmed: 18955701 pmcid: 2579393
Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, Weeber EJ, Bickford PC, Gemma C (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31:16241–16250. https://doi.org/10.1523/JNEUROSCI.3667-11.2011
doi: 10.1523/JNEUROSCI.3667-11.2011 pubmed: 22072675 pmcid: 3236509
Roumier A, Béchade C, Poncer J-C, Smalla K-H, Tomasello E, Vivier E, Gundelfinger ED, Triller A, Bessis A (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24:11421–11428. https://doi.org/10.1523/JNEUROSCI.2251-04.2004
doi: 10.1523/JNEUROSCI.2251-04.2004 pubmed: 15601948 pmcid: 6730361
Roumier A, Pascual O, Béchade C, Wakselman S, Poncer J-C, Réal E, Triller A, Bessis A (2008) Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS One 3:e2595. https://doi.org/10.1371/journal.pone.0002595
doi: 10.1371/journal.pone.0002595 pubmed: 18612411 pmcid: 2440505
Ruganzu JB, Peng X, He Y, Wu X, Zheng Q, Ding B, Lin C, Guo H, Yang Z, Zhang X, Yang W (2022) Downregulation of TREM2 expression exacerbates neuroinflammatory responses through TLR4-mediated MAPK signaling pathway in a transgenic mouse model of Alzheimer’s disease. Mol Immunol 142:22–36. https://doi.org/10.1016/j.molimm.2021.12.018
doi: 10.1016/j.molimm.2021.12.018 pubmed: 34959070
Sa de Almeida J, Vargas M, Fonseca-Gomes J, Tanqueiro SR, Belo RF, Miranda-Lourenço C, Sebastião AM, Diógenes MJ, Pais TF (2020) Microglial Sirtuin 2 shapes long-term potentiation in hippocampal slices. Front Neurosci 14:614. https://doi.org/10.3389/fnins.2020.00614
doi: 10.3389/fnins.2020.00614 pubmed: 32625056 pmcid: 7315392
Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442. https://doi.org/10.1146/annurev.neuro.22.1.389
doi: 10.1146/annurev.neuro.22.1.389 pubmed: 10202544
Saw G, Krishna K, Gupta N, Soong TW, Mallilankaraman K, Sajikumar S, Dheen ST (2020) Epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway involved in long-term potentiation and synaptic plasticity in rats. Glia 68:656–669. https://doi.org/10.1002/glia.23748
doi: 10.1002/glia.23748 pubmed: 31702864
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705. https://doi.org/10.1016/j.neuron.2012.03.026
doi: 10.1016/j.neuron.2012.03.026 pubmed: 22632727 pmcid: 3528177
Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61:24–36. https://doi.org/10.1002/glia.22389
doi: 10.1002/glia.22389 pubmed: 22829357
Schecter RW, Maher EE, Welsh CA, Stevens B, Erisir A, Bear MF (2017) Experience-dependent synaptic plasticity in V1 occurs without microglial CX3CR1. J Neurosci 37:10541–10553. https://doi.org/10.1523/JNEUROSCI.2679-16.2017
doi: 10.1523/JNEUROSCI.2679-16.2017 pubmed: 28951447 pmcid: 5666579
Scott-Hewitt N, Perrucci F, Morini R, Erreni M, Mahoney M, Witkowska A, Carey A, Faggiani E, Schuetz LT, Mason S, Tamborini M, Bizzotto M, Passoni L, Filipello F, Jahn R, Stevens B, Matteoli M (2020) Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J 39:e105380. https://doi.org/10.15252/embj.2020105380
doi: 10.15252/embj.2020105380 pubmed: 32657463 pmcid: 7429741
Scott-Hewitt N, Huang Y, Stevens B (2023) Convergent mechanisms of microglia-mediated synaptic dysfunction contribute to diverse neuropathological conditions. Ann N Y Acad Sci 1525:5–27. https://doi.org/10.1111/nyas.15010
doi: 10.1111/nyas.15010 pubmed: 37272510
Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J, Baum M, Van Doren V, Genovese G, Rose SA, Handsaker RE, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Daly MJ, Carroll MC, Stevens B, McCarroll SA (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530:177–183. https://doi.org/10.1038/nature16549
doi: 10.1038/nature16549 pubmed: 26814963 pmcid: 4752392
Shatz CJ (1990) Competitive interactions between retinal ganglion cells during prenatal development. J Neurobiol 21:197–211. https://doi.org/10.1002/neu.480210113
doi: 10.1002/neu.480210113 pubmed: 2181063
Sheng L, Chen M, Cai K, Song Y, Yu D, Zhang H, Xu G (2019) Microglial Trem2 induces synaptic impairment at early stage and prevents amyloidosis at late stage in APP/PS1 mice. FASEB J 33:10425–10442. https://doi.org/10.1096/fj.201900527R
doi: 10.1096/fj.201900527R pubmed: 31219699
Shi Q, Colodner KJ, Matousek SB, Merry K, Hong S, Kenison JE, Frost JL, Le KX, Li S, Dodart J-C, Caldarone BJ, Stevens B, Lemere CA (2015) Complement C3-deficient mice fail to display age-related hippocampal decline. J Neurosci 35:13029–13042. https://doi.org/10.1523/JNEUROSCI.1698-15.2015
doi: 10.1523/JNEUROSCI.1698-15.2015 pubmed: 26400934 pmcid: 6605437
Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, Stevens B, Lemere CA (2017) Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med 9:eaaf6295. https://doi.org/10.1126/scitranslmed.aaf6295
doi: 10.1126/scitranslmed.aaf6295 pubmed: 28566429 pmcid: 6936623
Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 34:2231–2243. https://doi.org/10.1523/JNEUROSCI.1619-13.2014
doi: 10.1523/JNEUROSCI.1619-13.2014 pubmed: 24501362 pmcid: 3913870
Shim HG, Lee Y-S, Kim SJ (2018) The emerging concept of intrinsic plasticity: activity-dependent modulation of intrinsic excitability in cerebellar purkinje cells and motor learning. Exp Neurobiol 27:139–154. https://doi.org/10.5607/en.2018.27.3.139
doi: 10.5607/en.2018.27.3.139 pubmed: 30022866 pmcid: 6050419
Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495. https://doi.org/10.1016/j.stem.2010.08.014
doi: 10.1016/j.stem.2010.08.014 pubmed: 20887954 pmcid: 4008496
Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6. https://doi.org/10.3389/fncel.2013.00006
doi: 10.3389/fncel.2013.00006 pubmed: 23386811 pmcid: 3558702
Šimončičová E, Gonçalves de Andrade E, Vecchiarelli HA, Awogbindin IO, Delage CI, Tremblay M-È (2022) Present and future of microglial pharmacology. Trends Pharmacol Sci 43:669–685. https://doi.org/10.1016/j.tips.2021.11.006
doi: 10.1016/j.tips.2021.11.006 pubmed: 35031144
Sipe GO, Lowery RL, Tremblay M-È, Kelly EA, Lamantia CE, Majewska AK (2016) Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun 7:10905. https://doi.org/10.1038/ncomms10905
doi: 10.1038/ncomms10905 pubmed: 26948129 pmcid: 4786684
Snigirevskaya ES, Komissarchik YY (2019) Ultrastructural traits of apoptosis. Cell Biol Int 43:728–738. https://doi.org/10.1002/cbin.11148
doi: 10.1002/cbin.11148 pubmed: 30969020
Soteros BM, Sia GM (2022) Complement and microglia dependent synapse elimination in brain development. WIREs Mech Dis 14:e1545. https://doi.org/10.1002/wsbm.1545
doi: 10.1002/wsbm.1545 pubmed: 34738335
Spencer-Segal JL, Waters EM, Bath KG, Chao MV, McEwen BS, Milner TA (2011) Distribution of phosphorylated TrkB receptor in the mouse hippocampal formation depends on sex and estrous cycle stage. J Neurosci 31:6780–6790. https://doi.org/10.1523/JNEUROSCI.0910-11.2011
doi: 10.1523/JNEUROSCI.0910-11.2011 pubmed: 21543608 pmcid: 3108038
Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, Bessis A, Ginhoux F, Garel S (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8:1271–1279. https://doi.org/10.1016/j.celrep.2014.07.042
doi: 10.1016/j.celrep.2014.07.042 pubmed: 25159150
Stellwagen D, Shatz CJ (2002) An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33:357–367. https://doi.org/10.1016/s0896-6273(02)00577-9
doi: 10.1016/s0896-6273(02)00577-9 pubmed: 11832224
Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389. https://doi.org/10.1146/annurev-neuro-061010-113810
doi: 10.1146/annurev-neuro-061010-113810 pubmed: 22715882
Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SWM, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178. https://doi.org/10.1016/j.cell.2007.10.036
doi: 10.1016/j.cell.2007.10.036 pubmed: 18083105
Swinnen N, Smolders S, Avila A, Notelaers K, Paesen R, Ameloot M, Brône B, Legendre P, Rigo J-M (2013) Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 61:150–163. https://doi.org/10.1002/glia.22421
doi: 10.1002/glia.22421 pubmed: 23001583
Tarozzo G, Bortolazzi S, Crochemore C, Chen S-C, Lira AS, Abrams JS, Beltramo M (2003) Fractalkine protein localization and gene expression in mouse brain. J Neurosci Res 73:81–88. https://doi.org/10.1002/jnr.10645
doi: 10.1002/jnr.10645 pubmed: 12815711
Tay TL, Mai D, Dautzenberg J, Fernández-Klett F, Lin G, null Sagar, Datta M, Drougard A, Stempfl T, Ardura-Fabregat A, Staszewski O, Margineanu A, Sporbert A, Steinmetz LM, Pospisilik JA, Jung S, Priller J, Grün D, Ronneberger O, Prinz M (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20:793–803. https://doi.org/10.1038/nn.4547
doi: 10.1038/nn.4547 pubmed: 28414331
Tenner AJ, Stevens B, Woodruff TM (2018) New tricks for an ancient system: Physiological and pathological roles of complement in the CNS. Mol Immunol 102:3–13. https://doi.org/10.1016/j.molimm.2018.06.264
doi: 10.1016/j.molimm.2018.06.264 pubmed: 29958698 pmcid: 6478444
Torborg CL, Feller MB (2005) Spontaneous patterned retinal activity and the refinement of retinal projections. Prog Neurobiol 76:213–235. https://doi.org/10.1016/j.pneurobio.2005.09.002
doi: 10.1016/j.pneurobio.2005.09.002 pubmed: 16280194
Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794. https://doi.org/10.1038/nature01273
doi: 10.1038/nature01273 pubmed: 12490942
Trang T, Beggs S, Wan X, Salter MW (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 29:3518–3528. https://doi.org/10.1523/JNEUROSCI.5714-08.2009
doi: 10.1523/JNEUROSCI.5714-08.2009 pubmed: 19295157 pmcid: 3589565
Tremblay M-È, Majewska AK (2011) A role for microglia in synaptic plasticity? Commun Integr Biol 4:220–222. https://doi.org/10.4161/cib.4.2.14506
doi: 10.4161/cib.4.2.14506 pubmed: 21655446 pmcid: 3104585
Tremblay M-È, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527. https://doi.org/10.1371/journal.pbio.1000527
doi: 10.1371/journal.pbio.1000527 pubmed: 21072242 pmcid: 2970556
Tremblay M-È, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069. https://doi.org/10.1523/JNEUROSCI.4158-11.2011
doi: 10.1523/JNEUROSCI.4158-11.2011 pubmed: 22072657 pmcid: 6633221
Tremblay M-È, Zettel ML, Ison JR, Allen PD, Majewska AK (2012) Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60:541–558. https://doi.org/10.1002/glia.22287
doi: 10.1002/glia.22287 pubmed: 22223464 pmcid: 3276747
Tsou CL, Haskell CA, Charo IF (2001) Tumor necrosis factor-alpha-converting enzyme mediates the inducible cleavage of fractalkine. J Biol Chem 276:44622–44626. https://doi.org/10.1074/jbc.M107327200
doi: 10.1074/jbc.M107327200 pubmed: 11571300
Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16:543–551. https://doi.org/10.1038/nn.3358
doi: 10.1038/nn.3358 pubmed: 23525041
Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28:11263–11268. https://doi.org/10.1523/JNEUROSCI.2308-08.2008
doi: 10.1523/JNEUROSCI.2308-08.2008 pubmed: 18971468 pmcid: 6671487
Vecchiarelli HA, Tremblay M-È (2023) Microglial transcriptional signatures in the central nervous system: toward a future of unraveling their function in health and disease. Annu Rev Genet 57:65. https://doi.org/10.1146/annurev-genet-022223-093643
doi: 10.1146/annurev-genet-022223-093643 pubmed: 37384734
Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980. https://doi.org/10.1523/JNEUROSCI.4363-08.2009
doi: 10.1523/JNEUROSCI.4363-08.2009 pubmed: 19339593 pmcid: 6665392
Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36:209–217. https://doi.org/10.1016/j.tins.2012.11.007
doi: 10.1016/j.tins.2012.11.007 pubmed: 23260014
Wallace J, Lord J, Dissing-Olesen L, Stevens B, Murthy VN (2020) Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. elife 9:e50531. https://doi.org/10.7554/eLife.50531
doi: 10.7554/eLife.50531 pubmed: 32150529 pmcid: 7062469
Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP, Scheffler B, Steindler DA (2006) Microglia instruct subventricular zone neurogenesis. Glia 54:815–825. https://doi.org/10.1002/glia.20419
doi: 10.1002/glia.20419 pubmed: 16977605
Wan Y, Feng B, You Y, Yu J, Xu C, Dai H, Trapp BD, Shi P, Chen Z, Hu W (2020) Microglial displacement of GABaergic synapses is a protective event during complex febrile seizures. Cell Rep 33:108346. https://doi.org/10.1016/j.celrep.2020.108346
doi: 10.1016/j.celrep.2020.108346 pubmed: 33147450
Wang H-T, Huang F-L, Hu Z-L, Zhang W-J, Qiao X-Q, Huang Y-Q, Dai R-P, Li F, Li C-Q (2017) Early-life social isolation-induced depressive-like behavior in rats results in microglial activation and neuronal histone methylation that are mitigated by minocycline. Neurotox Res 31:505–520. https://doi.org/10.1007/s12640-016-9696-3
doi: 10.1007/s12640-016-9696-3 pubmed: 28092020
Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M, Vadisiute A, Raggioli A, Schertel A, Schwab Y, Gross CT (2018) Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun 9:1228. https://doi.org/10.1038/s41467-018-03566-5
doi: 10.1038/s41467-018-03566-5 pubmed: 29581545 pmcid: 5964317
Werneburg S, Jung J, Kunjamma RB, Ha S-K, Luciano NJ, Willis CM, Gao G, Biscola NP, Havton LA, Crocker SJ, Popko B, Reich DS, Schafer DP (2020) Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity 52:167–182.e7. https://doi.org/10.1016/j.immuni.2019.12.004
doi: 10.1016/j.immuni.2019.12.004 pubmed: 31883839
Whitelaw BS, Stoessel MB, Majewska AK (2023) Movers and shakers: Microglial dynamics and modulation of neural networks. Glia 71:1575–1591. https://doi.org/10.1002/glia.24323
doi: 10.1002/glia.24323 pubmed: 36533844
Williams PA, Tribble JR, Pepper KW, Cross SD, Morgan BP, Morgan JE, John SWM, Howell GR (2016) Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener 11:26. https://doi.org/10.1186/s13024-016-0091-6
doi: 10.1186/s13024-016-0091-6 pubmed: 27048300 pmcid: 4822272
Wilton DK, Dissing-Olesen L, Stevens B (2019) Neuron-Glia signaling in synapse elimination. Annu Rev Neurosci 42:107–127. https://doi.org/10.1146/annurev-neuro-070918-050306
doi: 10.1146/annurev-neuro-070918-050306 pubmed: 31283900
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, Faull RLM, Jayadev S, Yednock T, Yang XW, Stevens B (2023) Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington’s disease. Nat Med 29:2866. https://doi.org/10.1038/s41591-023-02566-3
doi: 10.1038/s41591-023-02566-3 pubmed: 37814059 pmcid: 10667107
Witting A, Müller P, Herrmann A, Kettenmann H, Nolte C (2000) Phagocytic clearance of apoptotic neurons by Microglia/Brain macrophages in vitro: involvement of lectin-, integrin-, and phosphatidylserine-mediated recognition. J Neurochem 75:1060–1070. https://doi.org/10.1046/j.1471-4159.2000.0751060.x
doi: 10.1046/j.1471-4159.2000.0751060.x pubmed: 10936187
Wong AM, Rozovsky I, Arimoto JM, Du Y, Wei M, Morgan TE, Finch CE (2009) Progesterone influence on neurite outgrowth involves microglia. Endocrinology 150:324–332. https://doi.org/10.1210/en.2008-0988
doi: 10.1210/en.2008-0988 pubmed: 18772232
Wu J, Bie B, Yang H, Xu JJ, Brown DL, Naguib M (2013) Suppression of central chemokine fractalkine receptor signaling alleviates amyloid-induced memory deficiency. Neurobiol Aging 34:2843–2852. https://doi.org/10.1016/j.neurobiolaging.2013.06.003
doi: 10.1016/j.neurobiolaging.2013.06.003 pubmed: 23855980
Wu T, Dejanovic B, Gandham VD, Gogineni A, Edmonds R, Schauer S, Srinivasan K, Huntley MA, Wang Y, Wang T-M, Hedehus M, Barck KH, Stark M, Ngu H, Foreman O, Meilandt WJ, Elstrott J, Chang MC, Hansen DV, Carano RAD, Sheng M, Hanson JE (2019) Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep 28:2111–2123.e6. https://doi.org/10.1016/j.celrep.2019.07.060
doi: 10.1016/j.celrep.2019.07.060 pubmed: 31433986
Xin W-J, Weng H-R, Dougherty PM (2009) Plasticity in expression of the glutamate transporters GLT-1 and GLAST in spinal dorsal horn glial cells following partial sciatic nerve ligation. Mol Pain 5:15. https://doi.org/10.1186/1744-8069-5-15
doi: 10.1186/1744-8069-5-15 pubmed: 19323820 pmcid: 2676254
Xiong H, Boyle J, Winkelbauer M, Gorantla S, Zheng J, Ghorpade A, Persidsky Y, Carlson KA, Gendelman HE (2003) Inhibition of long-term potentiation by interleukin-8: implications for human immunodeficiency virus-1-associated dementia. J Neurosci Res 71:600–607. https://doi.org/10.1002/jnr.10503
doi: 10.1002/jnr.10503 pubmed: 12548717
Xu P, Zhang X, Liu Q, Xie Y, Shi X, Chen J, Li Y, Guo H, Sun R, Hong Y, Liu X, Xu G (2019) Microglial TREM-1 receptor mediates neuroinflammatory injury via interaction with SYK in experimental ischemic stroke. Cell Death Dis 10:555. https://doi.org/10.1038/s41419-019-1777-9
doi: 10.1038/s41419-019-1777-9 pubmed: 31324751 pmcid: 6642102
Xu Z-X, Kim GH, Tan J-W, Riso AE, Sun Y, Xu EY, Liao G-Y, Xu H, Lee S-H, Do N-Y, Lee CH, Clipperton-Allen AE, Kwon S, Page DT, Lee KJ, Xu B (2020) Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nat Commun 11:1797. https://doi.org/10.1038/s41467-020-15530-3
doi: 10.1038/s41467-020-15530-3 pubmed: 32286273 pmcid: 7156673
Yamamoto M, Kim M, Imai H, Itakura Y, Ohtsuki G (2019) Microglia-triggered plasticity of intrinsic excitability modulates psychomotor behaviors in acute cerebellar inflammation. Cell Rep 28:2923–2938.e8. https://doi.org/10.1016/j.celrep.2019.07.078
doi: 10.1016/j.celrep.2019.07.078 pubmed: 31509752
Yilmaz M, Yalcin E, Presumey J, Aw E, Ma M, Whelan CW, Stevens B, McCarroll SA, Carroll MC (2021) Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nat Neurosci 24:214–224. https://doi.org/10.1038/s41593-020-00763-8
doi: 10.1038/s41593-020-00763-8 pubmed: 33353966
Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM (2004) The promise of minocycline in neurology. Lancet Neurol 3:744–751. https://doi.org/10.1016/S1474-4422(04)00937-8
doi: 10.1016/S1474-4422(04)00937-8 pubmed: 15556807
Yu T, Zhang X, Shi H, Tian J, Sun L, Hu X, Cui W, Du D (2019) P2Y12 regulates microglia activation and excitatory synaptic transmission in spinal lamina II neurons during neuropathic pain in rodents. Cell Death Dis 10:165. https://doi.org/10.1038/s41419-019-1425-4
doi: 10.1038/s41419-019-1425-4 pubmed: 30778044 pmcid: 6379416
Yu F, Wang Y, Stetler AR, Leak RK, Hu X, Chen J (2022) Phagocytic microglia and macrophages in brain injury and repair. CNS Neurosci Ther 28:1279–1293. https://doi.org/10.1111/cns.13899
doi: 10.1111/cns.13899 pubmed: 35751629 pmcid: 9344092
Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vyssotski AL, Bifone A, Gozzi A, Ragozzino D, Gross CT (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17:400–406. https://doi.org/10.1038/nn.3641
doi: 10.1038/nn.3641 pubmed: 24487234
Zhang J, Malik A, Choi HB, Ko RWY, Dissing-Olesen L, MacVicar BA (2014) Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron 82:195–207. https://doi.org/10.1016/j.neuron.2014.01.043
doi: 10.1016/j.neuron.2014.01.043 pubmed: 24631344
Zhong Y, Zhou L-J, Ren W-J, Xin W-J, Li Y-Y, Zhang T, Liu X-G (2010) The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: the role of tumor necrosis factor-alpha. Brain Behav Immun 24:874–880. https://doi.org/10.1016/j.bbi.2010.01.007
doi: 10.1016/j.bbi.2010.01.007 pubmed: 20116424
Zhou L-J, Yang T, Wei X, Liu Y, Xin W-J, Chen Y, Pang R-P, Zang Y, Li Y-Y, Liu X-G (2011) Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat. Brain Behav Immun 25:322–334. https://doi.org/10.1016/j.bbi.2010.09.025
doi: 10.1016/j.bbi.2010.09.025 pubmed: 20933591
Zhou L-J, Peng J, Xu Y-N, Zeng W-J, Zhang J, Wei X, Mai C-L, Lin Z-J, Liu Y, Murugan M, Eyo UB, Umpierre AD, Xin W-J, Chen T, Li M, Wang H, Richardson JR, Tan Z, Liu X-G, Wu L-J (2019) Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain. Cell Rep 27:3844–3859.e6. https://doi.org/10.1016/j.celrep.2019.05.087
doi: 10.1016/j.celrep.2019.05.087 pubmed: 31242418 pmcid: 7060767
Zhou J, Wade SD, Graykowski D, Xiao M-F, Zhao B, Giannini LAA, Hanson JE, van Swieten JC, Sheng M, Worley PF, Dejanovic B (2023) The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration. Sci Transl Med 15:eadf0141. https://doi.org/10.1126/scitranslmed.adf0141
doi: 10.1126/scitranslmed.adf0141 pubmed: 36989373 pmcid: 10467038
Zuo Y, Lin A, Chang P, Gan W-B (2005) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46:181–189. https://doi.org/10.1016/j.neuron.2005.04.001
doi: 10.1016/j.neuron.2005.04.001 pubmed: 15848798

Auteurs

Haley A Vecchiarelli (HA)

Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.

Luana Tenorio Lopes (LT)

Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.

Rosa C Paolicelli (RC)

Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland.

Beth Stevens (B)

Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA.

Hiroaki Wake (H)

Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan.

Marie-Ève Tremblay (MÈ)

Division of Medical Sciences, University of Victoria, Victoria, BC, Canada. evetremblay@uvic.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH