Monitoring and modulation of respiratory drive in patients with acute hypoxemic respiratory failure in spontaneous breathing.
Acute hypoxemic respiratory failure
Monitoring
Non-invasive respiratory support
Respiratory drive
Sedation
Journal
Internal and emergency medicine
ISSN: 1970-9366
Titre abrégé: Intern Emerg Med
Pays: Italy
ID NLM: 101263418
Informations de publication
Date de publication:
29 Aug 2024
29 Aug 2024
Historique:
received:
10
06
2024
accepted:
10
07
2024
medline:
31
8
2024
pubmed:
31
8
2024
entrez:
29
8
2024
Statut:
aheadofprint
Résumé
Non-invasive respiratory support, namely, non-invasive ventilation, continuous positive airway pressure, and high-flow nasal cannula, has been increasingly used worldwide to treat acute hypoxemic respiratory failure, giving the benefits of keeping spontaneous breathing preserved. In this scenario, monitoring and controlling respiratory drive could be helpful to avoid patient self-inflicted lung injury and promptly identify those patients that require an upgrade to invasive mechanical ventilation. In this review, we first describe the physiological components affecting respiratory drive to outline the risks associated with its hyperactivation. Further, we analyze and compare the leading strategies implemented for respiratory drive monitoring and discuss the sedative drugs and the non-pharmacological approaches used to modulate respiratory drive during non-invasive respiratory support. Refining the available techniques and rethinking our therapeutic and monitoring targets can help critical care physicians develop a personalized and minimally invasive approach.
Identifiants
pubmed: 39207721
doi: 10.1007/s11739-024-03715-3
pii: 10.1007/s11739-024-03715-3
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Ketcham SW, Sedhai YR, Miller HC et al (2020) Causes and characteristics of death in patients with acute hypoxemic respiratory failure and acute respiratory distress syndrome: a retrospective cohort study. Crit Care 24(1):391
pubmed: 32620175
pmcid: 7332537
doi: 10.1186/s13054-020-03108-w
Oczkowski S, Ergan B, Bos L et al (2022) ERS clinical practice guidelines: high-flow nasal cannula in acute respiratory failure. Eur Respir J 59(4):2101574
pubmed: 34649974
doi: 10.1183/13993003.01574-2021
Grieco DL, Maggiore SM, Roca O et al (2021) Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS. Intensiv Care Med 47(8):851–866
doi: 10.1007/s00134-021-06459-2
Qvist J, Pontoppidan H, Wilson RS et al (1975) Hemodynamic responses to mechanical ventilation with PEEP: the effect of hypervolemia. Anesthesiology 42(1):45–55
pubmed: 234210
doi: 10.1097/00000542-197501000-00009
Bellani G, Laffey JG, Pham T et al (2017) Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE study. Am J Respir Crit Care Med 195(1):67–77
pubmed: 27753501
doi: 10.1164/rccm.201606-1306OC
Grieco DL, Menga LS, Eleuteri D et al (2019) Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol 85:1014–1023
pubmed: 30871304
doi: 10.23736/S0375-9393.19.13418-9
Spinelli E, Mauri T, Beitler RJ et al (2020) Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensiv Care Med 46(4):606–618
doi: 10.1007/s00134-020-05942-6
Matthay MA, Arabi Y, Arroliga AC et al (2024) A new global definition of acute respiratory distress syndrome. Am J Respir Crit Care Med 209(1):37–47
pubmed: 37487152
doi: 10.1164/rccm.202303-0558WS
Del Negro CA, Funk GD, Feldman JL (2018) Breathing matters. Nat Rev Neurosci 19(6):351–367
pubmed: 29740175
pmcid: 6636643
doi: 10.1038/s41583-018-0003-6
Jonkman AH, de Vries H, Heunks LMA (2020) Physiology of the respiratory drive in ICU patients: implications for diagnosis and treatment. Crit Care 24(1):104
pubmed: 32204710
pmcid: 7092542
doi: 10.1186/s13054-020-2776-z
Vaporidi K, Akoumianaki E, Telias I et al (2020) Respiratory drive in critically Ill patients. Pathophysiology and clinical implications. Am J Respir Crit Care Med 201(1):20–32
pubmed: 31437406
doi: 10.1164/rccm.201903-0596SO
Kondili E, Prinianakis G, Anastasaki M et al (2001) Acute effects of ventilator settings on respiratory motor output in patients with acute lung injury. Intensiv Care Med 27(7):1147–1157
doi: 10.1007/s001340101000
Mador MJ, Tobin MJ (1991) Effect of alterations in mental activity on the breathing pattern in healthy subjects. Am Rev Respir Dis 144(3 Pt 1):481–487
pubmed: 1892283
doi: 10.1164/ajrccm/144.3_Pt_1.481
Smith CA, Rodman JR, Chenuel BJ et al (2006) Response time and sensitivity of the ventilatory response to CO2 in inanesthetized intact dogs: central vs. peripheral chemoreceptors. J Appl Physiol 100(1):13–19
pubmed: 16166236
doi: 10.1152/japplphysiol.00926.2005
Forster HV, Pan LG, Lowry TF et al (2000) Important role of carotid chemoreceptor afferents in control of breathing of adult and neonatal mammals. Respir Physiol 119(2–3):199–208
pubmed: 10722863
doi: 10.1016/S0034-5687(99)00115-2
Smith CA, Blain GM, Henderson KS et al (2015) Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO
pubmed: 26171601
pmcid: 4594294
doi: 10.1113/JP270114
Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53(1):159–227
pubmed: 4568412
doi: 10.1152/physrev.1973.53.1.159
Sklienka P, Frelich M, Bursa F (2023) Patient self-inflicted lung injury-a narative review od pathophysiology, early recognition, and management options. J Pers Med 13(4):593
pubmed: 37108979
pmcid: 10146629
doi: 10.3390/jpm13040593
Yoshida T, Uchiyama A, Matsuura N et al (2013) The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med 41(2):536–545
pubmed: 23263584
doi: 10.1097/CCM.0b013e3182711972
Yoshida T, Uchiyama A, Matsuura N et al (2012) Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 40(5):1578–1585
pubmed: 22430241
doi: 10.1097/CCM.0b013e3182451c40
Brochard L, Slutsky A, Pesenti A (2017) Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 195:438–442
pubmed: 27626833
doi: 10.1164/rccm.201605-1081CP
Tobin MJ, Laghi F, Jubran A (2012) Ventilatory failure, ventilator support, and ventilator weaning. Compr Physiol 2:2871–2921
pubmed: 23720268
doi: 10.1002/cphy.c110030
Laghi F (2005) Assessment of respiratory output in mechanically ventilated patients. Respir Care Clin N Am 11:173–199
pubmed: 15936689
doi: 10.1016/j.rcc.2005.02.008
Widdicombe J (2009) Lung aferent activity: implications for respiratory sensation. Respir Physiol Neurobiol 167(1):2–8
pubmed: 18952010
doi: 10.1016/j.resp.2008.09.012
Peifer C, Poline JB, Thivard L et al (2001) Neural sub-strates for the perception of acutely induced dyspnea. Am J Respir Crit Care Med 163(4):951–957
doi: 10.1164/ajrccm.163.4.2005057
Parshall MB, Schwartzstein RM, Adams L et al (2012) American thoracic society committee on dyspnea. An official American thoracic society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med 185:435–452
pubmed: 22336677
pmcid: 5448624
doi: 10.1164/rccm.201111-2042ST
Tobin MJ (2019) Why physiology is critical to the practice of medicine: a 40-year personal perspective. Clin Chest Med 40(2):243–257
pubmed: 31078207
doi: 10.1016/j.ccm.2019.02.012
Campbell EJM (1969) Physical signs of diffuse airways obstruction and lung distension. Thorax 24(1):1–3
pubmed: 5763506
pmcid: 471913
doi: 10.1136/thx.24.1.1
Murray JF (1988) History and physical examination. In: Murray JF, Nadel JA (eds) Textbook of respiratory medicine. Elsevier, Amsterdam, pp 431–451
McFadden ER Jr, Kiser R, DeGroot WJ (1973) Acute bronchial asthma. Relations between clinical and physiologic manifestations. N Engl J Med 288(5):221–225
pubmed: 4682217
doi: 10.1056/NEJM197302012880501
Tobin MJ, Jenouri GA, Watson H et al (1983) Noninvasive measurement of pleural pressure by surface inductive plethysmography. J Appl Physiol 55:267–275
pubmed: 6885582
doi: 10.1152/jappl.1983.55.1.267
Gattinoni L, Coppola S, Cressoni M et al (2020) COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 201(10):1299–1300
pubmed: 32228035
pmcid: 7233352
doi: 10.1164/rccm.202003-0817LE
Dhont S, Derom E, Van Braeckel E et al (2020) The pathophysiology of ‘happy’ hypoxemia in COVID-19. Respir Res 21(1):198
pubmed: 32723327
pmcid: 7385717
doi: 10.1186/s12931-020-01462-5
Whitelaw WA, Derenne J-P, Milic-Emili J (1975) Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol 23:181–199
pubmed: 1144940
doi: 10.1016/0034-5687(75)90059-6
Rittayamai N, Beloncle F, Goligher EC et al (2017) Effect of inspiratory synchronization during presure-controlled ventilation on lung distention and inspiratory effort. Ann Intensiv Care 7(1):100
doi: 10.1186/s13613-017-0324-z
Holle RH, Schoene RB, Pavlin EJ (1984) Effect of respiratory muscle weakness on P01 induced by partial curarization. J Appl Physiol Respir Environ Exerc Physiol 57(4):1150–1157
pubmed: 6438029
Lin L, Guan L, Wu W et al (2019) Correlation of surface respiratory electromyography with esophageal diaphragm electromyography. Respir Physiol Neurobiol 259:45–52
pubmed: 30041019
doi: 10.1016/j.resp.2018.07.004
Sinderby C, Navalesi P, Beck J et al (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436
pubmed: 10581089
doi: 10.1038/71012
Yoshida T, Grieco DL, Brochard L (2019) Guiding ventilation with transpulmonary pressure. Intensiv Care Med 45:535–538
doi: 10.1007/s00134-018-5483-3
Grasso S, Stripoli T (2018) Transpulmonary pressure–based mechanical ventilation in acute. Respiratory distress syndrome from theory to practice? Am J Respir Crit Care Med 197(8):977–978
pubmed: 29509430
doi: 10.1164/rccm.201801-0132ED
Tonelli R, Cortegiani A, Marchioni A et al (2022) Nasal pressure swings as the measure of inspiratory effort in spontaneously breathing patients with de novo acute respiratory failure. Crit Care 26(1):70
pubmed: 35331323
pmcid: 8943795
doi: 10.1186/s13054-022-03938-w
Tonelli R, Cortegiani A, Fantini R et al (2023) Accuracy of nasal pressure swing to predict failure of high-flow nasal oxygen in patients with acute hypoxemic respiratory failure. Am J Respir Crit Care Med 207(6):787–789
pubmed: 36476122
doi: 10.1164/rccm.202210-1848LE
Haaksma M, Tuinman PR, Heunks L (2017) Ultrasound to assess diaphragmatic function in the critically ill-a critical perspective. Ann Transl Med 5(5):114
pubmed: 28361079
pmcid: 5360606
doi: 10.21037/atm.2017.01.37
Vivier E, Mekontso DA, Dimassi S et al (2012) Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensiv Care Med 38(5):796–803
doi: 10.1007/s00134-012-2547-7
Umbrello M, Formenti P, Longhi D et al (2015) Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care 19(1):161
pubmed: 25886857
pmcid: 4403842
doi: 10.1186/s13054-015-0894-9
Goligher EC, Jonkman AH, Dianti J et al (2020) Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensiv Care Med 46(12):2314–2326
doi: 10.1007/s00134-020-06288-9
Kassis EB, Beitler JR, Talmor D (2023) Lung-protective sedation: moving toward a new paradigm of precision sedation. Intensiv Care Med 49(1):91–94
doi: 10.1007/s00134-022-06901-z
Longrois D, Conti G, Mantz J et al (2014) Sedation in non-invasive ventilation: do we know what to do (and why)? Multidiscip Respir Med 9(1):56
pubmed: 25699177
pmcid: 4333891
doi: 10.1186/2049-6958-9-56
Frat JP, Thille AW, Mercat A et al (2015) High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 372(23):2185–2196
pubmed: 25981908
doi: 10.1056/NEJMoa1503326
Carlucci A, Richard JC, Wysocki M et al (2001) Noninvasive versus conventional mechanical ventilation. An epidemiologic survey. Am J Respir Crit Care Med 163(4):874–880
pubmed: 11282759
doi: 10.1164/ajrccm.163.4.2006027
Karim HM, Šarc I, Calandra C et al (2022) Role of sedation and analgesia during noninvasive ventilation: systematic review of recent evidence and recommendations. Indian J Crit Care Med 26(8):938–948
pubmed: 36042773
pmcid: 9363803
doi: 10.5005/jp-journals-10071-23950
Hilbert G, Navalesi P, Girault C (2015) Is sedation safe and beneficial in patients receiving NIV? Yes. Intensiv Care Med 41(9):1688–1691
doi: 10.1007/s00134-015-3935-6
Scala R (2013) Sedation during non-invasive ventilation to treat acute respiratory failure. Shortness breath 2(1):35–43
Yang B, Gao L, Tong Z (2023) Sedation and analgesia strategies for non-invasive mechanical ventilation: a systematic review and meta-analysis. Heart Lung 63:42–50
pubmed: 37769542
doi: 10.1016/j.hrtlng.2023.09.005
Reade MC, Finfer S (2014) Sedation and delirium in the intensive care unit. N Engl J Med 370(5):444–454
pubmed: 24476433
doi: 10.1056/NEJMra1208705
Akoumianaki E, Lyazidi A, Rey N et al (2013) Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 143(4):927–938
pubmed: 23187649
doi: 10.1378/chest.12-1817
Dzierba AL, Khalil AM, Derry KL et al (2021) Discordance between respiratory drive and sedation depth in critically Ill patients receiving mechanical ventilation. Crit Care Med 49(12):2090–2101
pubmed: 34115638
pmcid: 8602777
doi: 10.1097/CCM.0000000000005113
Coursin DB, Maccioli GA (2001) Dexmedetomidine. Curr Opin Crit Care 7(4):221–226
pubmed: 11571417
doi: 10.1097/00075198-200108000-00002
Bhana N, Goa KL, McClellan KJ (2000) Dexmedetomidine. Drugs 59(2):263–268
pubmed: 10730549
doi: 10.2165/00003495-200059020-00012
Shi J, Yu T, Song K et al (2021) Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biol 41:101954
pubmed: 33774474
pmcid: 8027777
doi: 10.1016/j.redox.2021.101954
Belleville JP, Ward DS, Bloor BC et al (1992) Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology 77(6):1125–1133
pubmed: 1361310
doi: 10.1097/00000542-199212000-00013
Yun HJ, Hong D, Kim SJ et al (2022) Effects of dexmedetomidine on diaphragm activity measured by ultrasonography in spontaneously breathing patients. Int J Med Sci 19(11):1631–1637
pubmed: 36237990
pmcid: 9553859
doi: 10.7150/ijms.76495
Lewis K, Piticaru M, Chaudhuri D et al (2021) Safety and efficacy of dexmedetomidine in acutely Ill adults requiring noninvasive ventilation: a systematic review and meta-analysis of randomized trials. Chest 159(6):2274–2288
pubmed: 33434496
pmcid: 8579314
doi: 10.1016/j.chest.2020.12.052
Çavuş AM, Bektaş SG, Turan S (2022) Comparison of clinical safety and efficacy of dexmedetomidine, remifentanil, and propofol in patients who cannot tolerate non-invasive mechanical ventilation: a prospective, randomized, cohort study. Front Med (Lausanne) 9:995799
doi: 10.3389/fmed.2022.995799
Keating GM (2015) Dexmedetomidine: a review of its use for sedation in the intensive care setting. Drugs 75(10):1119–1130
pubmed: 26063213
doi: 10.1007/s40265-015-0419-5
Rocker GM, Mackenzie MG, Williams B et al (1999) Noninvasive positive pressure ventilation: successful outcome in patients with acute lung injury/ARDS. Chest 115(1):173–177
pubmed: 9925080
doi: 10.1378/chest.115.1.173
Bouillon T, Bruhn J, Roepcke H et al (2003) Opioid-induced respiratory depression is associated with increased tidal volume variability. Eur J Anaesthesiol 20(2):127–133
pubmed: 12622497
doi: 10.1097/00003643-200302000-00009
Conti G, Arcangeli A, Antonelli M et al (2004) Sedation with sufentanil in patients receiving pressure support ventilation has no effects on respiration: a pilot study. Can J Anaesth 51(5):494–499
pubmed: 15128638
doi: 10.1007/BF03018315
Servin F (2003) Remifentanil; from pharmacological properties to clinical practice. Adv Exp Med Biol 523:245–260
pubmed: 15088856
doi: 10.1007/978-1-4419-9192-8_22
Battershill AJ, Keating GM (2006) Remifentanil: a review of its analgesic and sedative use in the intensive care unit. Drugs 66(3):365–385
pubmed: 16526829
doi: 10.2165/00003495-200666030-00013
Cavaliere F, Antonelli M, Arcangeli A et al (2002) A low-dose remifentanil infusion is well tolerated for sedation in mechanically ventilated, critically-ill patients. Can J Anaesth 49(10):1088–1094
pubmed: 12477685
doi: 10.1007/BF03017909
Costa R, Navalesi P, Cammarota G et al (2017) Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist. Respir Physiol Neurobiol 244:10–16
pubmed: 28673877
doi: 10.1016/j.resp.2017.06.007
Hsu Y-W, Cortinez LI, Robertson KM et al (2004) Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology 101(5):1066–1076
pubmed: 15505441
doi: 10.1097/00000542-200411000-00005
Cortinez LI, Hsu YW, Sum-Ping ST et al (2004) Dexmedetomidine pharmacodynamics: Part II: crossover comparison of the analgesic effect of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology 101(5):1077–1083
pubmed: 15505442
doi: 10.1097/00000542-200411000-00006
Constantin J, Schneider E, Constantin-Cayot S et al (2007) Remifentanil-based sedtion to treat noninvasive ventilation failure: a preliminary study. Intensiv Care Med 33(1):82–87
doi: 10.1007/s00134-006-0447-4
Rocco M, Conti G, Alessandri E et al (2010) Rescue treatment for noninvasive ventilation failure due to interface intolerance with remifentanil analgosedation: a pilot study. Intensiv Care Med 36(12):2060–2065
doi: 10.1007/s00134-010-2026-y
Krasowski MD, Nishikawa K, Nikolaeva N et al (2001) Methionine 286 in transmembrane domain 3 of the GABAA receptor beta subunit controls a binding cavity for propofol and other alkylphenol general anesthetics. Neuropharmacology 41:952–996
pubmed: 11747900
pmcid: 2855216
doi: 10.1016/S0028-3908(01)00141-1
Clouzeau B, Bui HN, Vargas F et al (2010) Target-controlled infusion of propofol for sedation in patients with non-invasive ventilation failure due to low tolerance: a preliminary study. Intensiv Care Med 36(10):1675–1680
doi: 10.1007/s00134-010-1904-7
Vaschetto R, Cammarota G, Colombo D et al (2014) Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med 42(1):74–82
pubmed: 23982026
doi: 10.1097/CCM.0b013e31829e53dc
de Wit M, Pedram S, Best AM et al (2009) Observational study of patientventilator asynchrony and relationship to sedation level. J Crit Care 24:74–80
pubmed: 19272542
pmcid: 2676917
doi: 10.1016/j.jcrc.2008.08.011
Sigel E, Ernst M (2018) The benzodiazepine binding sites of GABAA receptors. Trends Pharmacol Sci 39(7):659–671
pubmed: 29716746
doi: 10.1016/j.tips.2018.03.006
Olkkola KT, Ahonen J (2008) Midazolam and other benzodiazepines. Handb Exp Pharmacol 182:335–360
doi: 10.1007/978-3-540-74806-9_16
Molliex S, Dureuil B, Montravers P et al (1993) Effects of midazolam on respiratory muscles in humans. Anesth Analg 77(3):592–597
pubmed: 8368561
doi: 10.1213/00000539-199309000-00029
Rozé H, Germain A, Perrier V et al (2015) Effect of flumazenil on diaphragm electrical activation during weaning from mechanical ventilation after acute respiratory distress syndrome. Br J Anaesth 114(2):269–275
pubmed: 25416275
doi: 10.1093/bja/aeu374
Devlin JW, Nava S, Fong JJ et al (2007) Survey of sedation practices during noninvasive positive-pressure ventilation to treat acute respiratory failure. Crit Care Med 35(10):2298–2302
pubmed: 17717491
doi: 10.1097/01.CCM.0000284512.21942.F8
Dundee JW, Halliday NJ, Harper KW et al (1984) Midazolam. A review of its pharmacological properties and therapeutic use. Drugs 28(6):519–543
pubmed: 6394264
doi: 10.2165/00003495-198428060-00002
Senoglu N, Oksuz H, Dogan Z et al (2010) Sedation during noninvasive mechanical ventilation with dexmedetomidine or midazolam: a randomized, double-blind, prospective study. Curr Ther Res Clin Exp 71(3):141–153
pubmed: 24683260
pmcid: 3967280
doi: 10.1016/j.curtheres.2010.06.003
Huang Z, Chen YS, Yang ZL et al (2012) Dexmedetomidine versus midazolam for the sedation of patients with non-invasive ventilation failure. Intern Med 51(17):2299–2305
pubmed: 22975538
doi: 10.2169/internalmedicine.51.7810
Sarton E, Teppema LJ, Olievier C et al (2001) The involvement of the mu-opioid receptor in ketamine-induced respiratory depression and antinociception. Anesth Analg 93(6):1495–1500
pubmed: 11726430
doi: 10.1097/00000539-200112000-00031
Gao M, Rejaei D, Liu H (2016) Ketamine use in current clinical practice. Acta Pharmacol Sin 37(7):865–872
pubmed: 27018176
pmcid: 4933765
doi: 10.1038/aps.2016.5
Miller AC, Jamin CT, Elamin EM (2011) Continuous intravenous infusion of ketamine for maintenance sedation. Minerva Anestesiol 77:812–820
pubmed: 21730929
Lorek M, Bąk D, Kwiecień-Jaguś K et al (2023) The effect of music as a non-pharmacological intervention on the physiological, psychological, and social response of patients in an intensive care unit. Healthc (Basel) 11(12):1687
Chlan LL, Weinert CR, Heiderscheit A et al (2013) Effects of patient-directed music intervention on anxiety and sedative exposure in critically ill patients receiving mechanical-ventilatory support: a randomized clinical trial. JAMA 309(22):2335–2344
pubmed: 23689789
pmcid: 3683448
doi: 10.1001/jama.2013.5670
Li D, Yao Y, Chen J et al (2022) The effect of music therapy on the anxiety, depression and sleep quality in intensive care unit patients: a protocol for systematic review and meta-analysis. Med (Baltim) 101(8):e28846
doi: 10.1097/MD.0000000000028846
Messika J, Martin Y, Maquigneau N et al (2019) A musical intervention for respiratory comfort during noninvasive ventilation in the ICU. Eur Respir J 53:1801873
pubmed: 30578396
doi: 10.1183/13993003.01873-2018
Piehl MA, Brown RS (1976) Use of extreme position changes in acute respiratory failure. Crit Care Med 4(1):13–14
pubmed: 1253612
doi: 10.1097/00003246-197601000-00003
Guerin C, Reignier J, Richard JC et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368(23):2159–2168
pubmed: 23688302
doi: 10.1056/NEJMoa1214103
Chiumello D, Chiodaroli E, Coppola S et al (2021) Awake prone position reduces work of breathing in patients with COVID-19 ARDS supported by CPAP. Ann Intensiv Care 11(1):179
doi: 10.1186/s13613-021-00967-6
McNicholas BA, Ibarra-Estrada M, Perez Y et al (2023) Awake prone positioning in acute hypoxaemic respiratory failure. Eur Respir Rev 32(168):220245
pubmed: 37137508
pmcid: 10155045
doi: 10.1183/16000617.0245-2022
Wang J, Chen D, Deng P et al (2023) Efficacy and safety of awake prone positioning in the treatment of non-intubated spontaneously breathing patients with COVID-19-related acute respiratory failure: a systematic review and meta-analysis. J Intensiv Med 3(4):365–372
doi: 10.1016/j.jointm.2023.02.001
Tonelli R, Pisani L, Tabbì L et al (2022) Early awake proning in critical and severe COVID-19 patients undergoing noninvasive respiratory support: a retrospective multicenter cohort study. Pulmonology 28(3):181–192
pubmed: 33824084
doi: 10.1016/j.pulmoe.2021.03.002
Weatherald J, Parhar KKS, Al Duhailib Z et al (2022) Efficacy of awake prone positioning in patients with covid-19 related hypoxemic respiratory failure: systematic review and meta-analysis of randomized trials. BMJ 379:e071966
pubmed: 36740866
doi: 10.1136/bmj-2022-071966
Grasselli G, Calfee CS, Camporota L et al (2023) ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensiv Care Med 49:727–759
doi: 10.1007/s00134-023-07050-7
Cove ME, MacLaren G, Federspiel WJ et al (2012) Bench to bedside review: extracorporeal carbon dioxide removal, past present and future. Crit Care 16(5):232
pubmed: 23014710
pmcid: 3682237
doi: 10.1186/cc11356
Crotti S, Bottino N, Ruggeri GM et al (2017) Spontaneous breathing during extracorporeal membrane oxygenation in acute respiratory failure. Anesthesiology 126:978–987
doi: 10.1097/ALN.0000000000001546
Grieco DL, Menga LS, Raggi V et al (2020) Physiological comparison of high-flow nasal cannula and helmet noninvasive ventilation in acute hypoxemic respiratory failure. Am J Respir Crit Care Med 201(3):303–312
pubmed: 31687831
doi: 10.1164/rccm.201904-0841OC
Menga LS, Delle CL, Rosà T et al (2023) Respective effects of helmet pressure support, continuous positive airway pressure, and nasal high-flow in hypoxemic respiratory failure. AM J Respir Crit Care Med 207(10):1310–1323
pubmed: 36378814
doi: 10.1164/rccm.202204-0629OC