The genetic landscape of neuro-related proteins in human plasma.
Journal
Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750
Informations de publication
Date de publication:
29 Aug 2024
29 Aug 2024
Historique:
received:
21
03
2023
accepted:
22
07
2024
medline:
31
8
2024
pubmed:
31
8
2024
entrez:
29
8
2024
Statut:
aheadofprint
Résumé
Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioural traits and the disease aetiology of neuropsychiatric disorders. Here the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,000 individuals for 184 neuro-related proteins in human plasma. The analysis identified 125 cis-regulatory protein quantitative trait loci (cis-pQTL) and 164 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. At the cis-pQTL, multiple proteins shared a genetic basis with human behavioural traits such as alcohol and food intake, smoking and educational attainment, as well as neurological conditions and psychiatric disorders such as pain, neuroticism and schizophrenia. Integrating with established drug information, the causal inference analysis validated 52 out of 66 matched combinations of protein targets and diseases or side effects with available drugs while suggesting hundreds of repurposing and new therapeutic targets.
Identifiants
pubmed: 39210026
doi: 10.1038/s41562-024-01963-z
pii: 10.1038/s41562-024-01963-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 12171495
Organisme : Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
ID : 2021A1515010866
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2022-01309
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Danaei, G. et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 6, 1–23 (2009).
doi: 10.1371/journal.pmed.1000058
Wang, X. et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ https://www.bmj.com/content/349/bmj.g4490 (2014).
Mental Disorders (WHO, 2019); https://www.who.int/news-room/fact-sheets/detail/mental-disorders
Mental Health (Ritchie, H. & Roser, M., 2020); https://ourworldindata.org/mental-health
Hossain, M. M. et al. Epidemiology of mental health problems in COVID-19: a review. F1000Research https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549174/ (2020).
Greenberg, N. Mental health of health-care workers in the COVID-19 era. Nat. Rev. Nephrol. 16, 425–426 (2020).
pubmed: 32561871
pmcid: 7304244
doi: 10.1038/s41581-020-0314-5
Jones, E. A., Mitra, A. K. & Bhuiyan, A. R. Impact of COVID-19 on mental health in adolescents: a systematic review. Int. J. Environ. Res. Public Health 18, 2470 (2021).
pubmed: 33802278
pmcid: 7967607
doi: 10.3390/ijerph18052470
Bearden, C. E., Reus, V. I. & Freimer, N. B. Why genetic investigation of psychiatric disorders is so difficult. Curr. Opin. Genet. Dev. 14, 280–286 (2004).
pubmed: 15172671
doi: 10.1016/j.gde.2004.04.005
Sullivan, P. F. & Geschwind, D. H. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 177, 162–183 (2019).
pubmed: 30901538
pmcid: 6432948
doi: 10.1016/j.cell.2019.01.015
Taylor, M. J. et al. Association of genetic risk factors for psychiatric disorders and traits of these disorders in a Swedish population twin sample. JAMA Psychiatry 76, 280–289 (2019).
pubmed: 30566181
doi: 10.1001/jamapsychiatry.2018.3652
Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).
pubmed: 22243964
pmcid: 3257326
doi: 10.1016/j.ajhg.2011.11.029
Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).
pubmed: 28686856
pmcid: 5501872
doi: 10.1016/j.ajhg.2017.06.005
Chames, P., Regenmortel, M. V., Weiss, E. & Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol. 157, 220–233 (2009).
pubmed: 19459844
pmcid: 2697811
doi: 10.1111/j.1476-5381.2009.00190.x
Solomon, T. et al. Identification of common and rare genetic variation associated with plasma protein levels using whole exome sequencing and mass spectrometry. Circ. Genom. Precis. Med. 11, e002170 (2018).
pubmed: 30562114
pmcid: 6301071
doi: 10.1161/CIRCGEN.118.002170
Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat. Metab. 2, 1135–1148 (2020).
pubmed: 33067605
pmcid: 7611474
doi: 10.1038/s42255-020-00287-2
Westwood, S. et al. Plasma protein biomarkers for the prediction of CSF amyloid and tau and [18F]-flutemetamol PET scan result. Front. Aging Neurosci. 10, 409 (2018).
pubmed: 30618716
pmcid: 6297196
doi: 10.3389/fnagi.2018.00409
Dencker, M., Björgell, O. & Hlebowicz, J. Effect of food intake on 92 neurological biomarkers in plasma. Brain Behav. 7, e00747 (2017).
pubmed: 28948068
pmcid: 5607537
doi: 10.1002/brb3.747
Jabbari, E. et al. Proximity extension assay testing reveals novel diagnostic biomarkers of atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 90, 768–773 (2019).
pubmed: 30867224
doi: 10.1136/jnnp-2018-320151
Hillary, R. F. et al. Genome and epigenome wide studies of neurological protein biomarkers in the Lothian Birth Cohort 1936. Nat. Commun. 10, 3160 (2019).
pubmed: 31320639
pmcid: 6639385
doi: 10.1038/s41467-019-11177-x
Harris, S. E. et al. Neurology-related protein biomarkers are associated with cognitive ability and brain volume in older age. Nat. Commun. 11, 800 (2020).
pubmed: 32041957
pmcid: 7010796
doi: 10.1038/s41467-019-14161-7
Rodrigues-Amorim, D. et al. Plasma β-III tubulin, neurofilament light chain and glial fibrillary acidic protein are associated with neurodegeneration and progression in schizophrenia. Sci. Rep. 10, 1–10 (2020).
doi: 10.1038/s41598-020-71060-4
Sandberg, J. V. et al. Proteins associated with future suicide attempts in bipolar disorder: a large-scale biomarker discovery study. Mol. Psychiatry 27, 3857–3863 (2022).
pubmed: 35697758
pmcid: 9708594
doi: 10.1038/s41380-022-01648-x
Folkersen, L. et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS Genet. 13, e1006706 (2017).
pubmed: 28369058
pmcid: 5393901
doi: 10.1371/journal.pgen.1006706
Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of health. Nat. Med. 25, 1851–1857 (2019).
pubmed: 31792462
pmcid: 6922049
doi: 10.1038/s41591-019-0665-2
Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med. 25, 1843–1850 (2019).
pubmed: 31806903
pmcid: 7062043
doi: 10.1038/s41591-019-0673-2
Wingo, A. P. et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 53, 143–146 (2021).
pubmed: 33510477
pmcid: 8130821
doi: 10.1038/s41588-020-00773-z
Jensen, S. B. et al. Discovery of novel plasma biomarkers for future incident venous thromboembolism by untargeted synchronous precursor selection mass spectrometry proteomics. J. Thromb. Haemost. 16, 1763 (2018).
pubmed: 29964323
pmcid: 6123273
doi: 10.1111/jth.14220
Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).
pubmed: 29875488
pmcid: 6697541
doi: 10.1038/s41586-018-0175-2
Assarsson, E. et al. Homogenous 96-plex pea immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 9, e95192 (2014).
pubmed: 24755770
pmcid: 3995906
doi: 10.1371/journal.pone.0095192
Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).
pubmed: 34475573
pmcid: 8432599
doi: 10.1038/s41588-021-00913-z
Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).
pubmed: 34857953
doi: 10.1038/s41588-021-00978-w
Bulik-Sullivan, B. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630
pmcid: 4495769
doi: 10.1038/ng.3211
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676
pmcid: 4797329
doi: 10.1038/ng.3406
Ning, Z., Pawitan, Y. & Shen, X. High-definition likelihood inference of genetic correlations across human complex traits. Nat. Genet. 52, 859–864 (2020).
pubmed: 32601477
doi: 10.1038/s41588-020-0653-y
Aulchenko, Y. S., Ripke, S., Isaacs, A. & van Duijn, C. M. GenABEL: an R library for genome-wide association analysis. Bioinformatics 23, 1294–1296 (2007).
pubmed: 17384015
doi: 10.1093/bioinformatics/btm108
Staley, J. R. et al. PhenoScanner: a database of human genotype–phenotype associations. Bioinformatics 32, 3207–3209 (2016).
pubmed: 27318201
pmcid: 5048068
doi: 10.1093/bioinformatics/btw373
Kamat, M. A. et al. PhenoScanner v2: an expanded tool for searching human genotype–phenotype associations. Bioinformatics 35, 4851–4853 (2019).
pubmed: 31233103
pmcid: 6853652
doi: 10.1093/bioinformatics/btz469
Png, G. et al. Mapping the serum proteome to neurological diseases using whole genome sequencing. Nat. Commun. 12, 7042 (2021).
pubmed: 34857772
pmcid: 8640022
doi: 10.1038/s41467-021-27387-1
Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338 (2023).
pubmed: 37794186
pmcid: 10567551
doi: 10.1038/s41586-023-06592-6
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394
pmcid: 4022491
doi: 10.1371/journal.pgen.1004383
Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 82, 1273–1300 (2020).
pubmed: 37220626
pmcid: 10201948
doi: 10.1111/rssb.12388
Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet. 17, e1009440 (2021).
pubmed: 34587156
pmcid: 8504726
doi: 10.1371/journal.pgen.1009440
Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).
pubmed: 34493870
pmcid: 10243600
doi: 10.1038/s41588-021-00921-z
Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).
pubmed: 29335400
pmcid: 5768719
doi: 10.1038/s41467-017-02317-2
Bretherick, A. D. et al. Linking protein to phenotype with Mendelian randomization detects 38 proteins with causal roles in human diseases and traits. PLoS Genet. 16, e1008785 (2020).
pubmed: 32628676
pmcid: 7337286
doi: 10.1371/journal.pgen.1008785
Molica, M. et al. Cd33 expression and gentuzumab ozogamicin in acute myeloid leukemia: two sides of the same coin. Cancers https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268215/ (2021).
Tomoda, F., Nitta, A., Sugimori, H., Koike, T. & Kinugawa, K. Plasma and urinary levels of nerve growth factor are elevated in primary hypertension. Int. J. Hypertens. 2022, 3003269 (2022).
pubmed: 35284140
pmcid: 8904912
doi: 10.1155/2022/3003269
Knardahl, S. Cardiovascular psychophysiology. Ann. Med. 32, 329–335 (2000).
pubmed: 10949064
doi: 10.3109/07853890008995935
Ioannidis, K., Askelund, A. D., Kievit, R. A. & Harmelen, A. L. V. The complex neurobiology of resilient functioning after childhood maltreatment. BMC Med. 18, 1–16 (2020).
McLaughlin, K. A., Colich, N. L., Rodman, A. M. & Weissman, D. G. Mechanisms linking childhood trauma exposure and psychopathology: a transdiagnostic model of risk and resilience. BMC Med. 18, 1–11 (2020).
doi: 10.1186/s12916-020-01561-6
Fried, E. I. & Robinaugh, D. J. Systems all the way down: embracing complexity in mental health research. BMC Med. 18, 1–4 (2020).
doi: 10.1186/s12916-020-01668-w
Fleshner, M., Frank, M. & Maier, S. F. Danger signals and inflammasomes: stress-evoked sterile inflammation in mood disorders. Neuropsychopharmacology 42, 36–45 (2016).
pubmed: 27412959
pmcid: 5143484
doi: 10.1038/npp.2016.125
Bauer, M. E. & Teixeira, A. L. Inflammation in psychiatric disorders: what comes first? Ann. N. Y. Acad. Sci. 1437, 57–67 (2019).
pubmed: 29752710
doi: 10.1111/nyas.13712
Liu, Y.-L. et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 4309 (2014).
pubmed: 24978903
doi: 10.1038/ncomms5309
Burgess, S., Foley, C. N., Allara, E., Staley, J. R. & Howson, J. M. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat. Commun. 11, 376 (2020).
pubmed: 31953392
pmcid: 6969055
doi: 10.1038/s41467-019-14156-4
Slob, E. A. & Burgess, S. A comparison of robust Mendelian randomization methods using summary data. Genet. Epidemiol. 44, 313–329 (2020).
pubmed: 32249995
pmcid: 7317850
doi: 10.1002/gepi.22295
Smith, G. D. & Ebrahim, S. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol. 33, 30–42 (2004).
pubmed: 15075143
doi: 10.1093/ije/dyh132
Gill, D. et al. Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Res. 6, 24 (2021).
doi: 10.12688/wellcomeopenres.16544.1
Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Primers 2, 1–21 (2022).
doi: 10.1038/s43586-021-00092-5
Heurich, M., Föcking, M., Mongan, D., Cagney, G. & Cotter, D. R. Dysregulation of complement and coagulation pathways: emerging mechanisms in the development of psychosis. Mol. Psychiatry 27, 127–140 (2022).
pubmed: 34226666
doi: 10.1038/s41380-021-01197-9
Yang, Y. et al. Altered levels of acute phase proteins in the plasma of patients with schizophrenia. Anal. Chem. 78, 3571–3576 (2006).
pubmed: 16737209
doi: 10.1021/ac051916x
Levin, Y. et al. Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. Mol. Psychiatry 15, 1088–1100 (2010).
pubmed: 19546861
doi: 10.1038/mp.2009.54
Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M. & Mondelli, V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 21, 642–649 (2016).
pubmed: 26033244
doi: 10.1038/mp.2015.67
Varatharaj, A. & Galea, I. The blood–brain barrier in systemic inflammation. Brain Behav. Immun. 60, 1–12 (2017).
pubmed: 26995317
doi: 10.1016/j.bbi.2016.03.010
Najjar, S. et al. Neurovascular unit dysfunction and blood–brain barrier hyperpermeability contribute to schizophrenia neurobiology: a theoretical integration of clinical and experimental evidence. Front. Psychiatry https://pubmed.ncbi.nlm.nih.gov/28588507/ (2017).
Sharapov, S. Z. et al. Defining the genetic control of human blood plasma N-glycome using genome-wide association study. Hum. Mol. Genet. 28, 2062 (2019).
pubmed: 31163085
pmcid: 6664388
Sharapov, S. Z. et al. Replication of 15 loci involved in human plasma protein N-glycosylation in 4802 samples from four cohorts. Glycobiology 31, 82 (2021).
pubmed: 32521004
doi: 10.1093/glycob/cwaa053
Shen, X. et al. Multivariate discovery and replication of five novel loci associated with immunoglobulin G N-glycosylation. Nat. Commun. http://www.research.ed.ac.uk/portal/files/43181419/Multivariate_discovery_and_replication_of_five_novel_loci_associated_with_Immunoglobulin_G_N_glycosylation.pdf (2017).
Zhao, J. H. et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat. Immunol. 24, 1540–1551 (2023).
pubmed: 37563310
pmcid: 10457199
doi: 10.1038/s41590-023-01588-w
Yang, C. et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat. Neurosci. 24, 1302–1312 (2021).
pubmed: 34239129
pmcid: 8521603
doi: 10.1038/s41593-021-00886-6
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Watanabe, K., Taskesen, E., Bochoven, A. V. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056
pmcid: 5705698
doi: 10.1038/s41467-017-01261-5
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. FUMA: functional mapping and annotation of genetic associations. Eur. Neuropsychopharmacol. 29, S789–S790 (2019).
doi: 10.1016/j.euroneuro.2017.08.018
Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336 (2010).
pubmed: 20634204
pmcid: 2935401
doi: 10.1093/bioinformatics/btq419
Boughton, A. P. et al. LocusZoom.js: interactive and embeddable visualization of genetic association study results. Bioinformatics 37, 3017–3018 (2021).
pubmed: 33734315
pmcid: 8479674
doi: 10.1093/bioinformatics/btab186
Pirinen, M., Donnelly, P. & Spencer, C. C. A. Efficient computation with a linear mixed model on large-scale data sets with applications to genetic studies. Ann. Appl. Stat. 7, 369–390 (2013).
doi: 10.1214/12-AOAS586