The genetic landscape of neuro-related proteins in human plasma.


Journal

Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750

Informations de publication

Date de publication:
29 Aug 2024
Historique:
received: 21 03 2023
accepted: 22 07 2024
medline: 31 8 2024
pubmed: 31 8 2024
entrez: 29 8 2024
Statut: aheadofprint

Résumé

Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioural traits and the disease aetiology of neuropsychiatric disorders. Here the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,000 individuals for 184 neuro-related proteins in human plasma. The analysis identified 125 cis-regulatory protein quantitative trait loci (cis-pQTL) and 164 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. At the cis-pQTL, multiple proteins shared a genetic basis with human behavioural traits such as alcohol and food intake, smoking and educational attainment, as well as neurological conditions and psychiatric disorders such as pain, neuroticism and schizophrenia. Integrating with established drug information, the causal inference analysis validated 52 out of 66 matched combinations of protein targets and diseases or side effects with available drugs while suggesting hundreds of repurposing and new therapeutic targets.

Identifiants

pubmed: 39210026
doi: 10.1038/s41562-024-01963-z
pii: 10.1038/s41562-024-01963-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 12171495
Organisme : Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
ID : 2021A1515010866
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2022-01309

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Danaei, G. et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 6, 1–23 (2009).
doi: 10.1371/journal.pmed.1000058
Wang, X. et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ https://www.bmj.com/content/349/bmj.g4490 (2014).
Mental Disorders (WHO, 2019); https://www.who.int/news-room/fact-sheets/detail/mental-disorders
Mental Health (Ritchie, H. & Roser, M., 2020); https://ourworldindata.org/mental-health
Hossain, M. M. et al. Epidemiology of mental health problems in COVID-19: a review. F1000Research https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549174/ (2020).
Greenberg, N. Mental health of health-care workers in the COVID-19 era. Nat. Rev. Nephrol. 16, 425–426 (2020).
pubmed: 32561871 pmcid: 7304244 doi: 10.1038/s41581-020-0314-5
Jones, E. A., Mitra, A. K. & Bhuiyan, A. R. Impact of COVID-19 on mental health in adolescents: a systematic review. Int. J. Environ. Res. Public Health 18, 2470 (2021).
pubmed: 33802278 pmcid: 7967607 doi: 10.3390/ijerph18052470
Bearden, C. E., Reus, V. I. & Freimer, N. B. Why genetic investigation of psychiatric disorders is so difficult. Curr. Opin. Genet. Dev. 14, 280–286 (2004).
pubmed: 15172671 doi: 10.1016/j.gde.2004.04.005
Sullivan, P. F. & Geschwind, D. H. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 177, 162–183 (2019).
pubmed: 30901538 pmcid: 6432948 doi: 10.1016/j.cell.2019.01.015
Taylor, M. J. et al. Association of genetic risk factors for psychiatric disorders and traits of these disorders in a Swedish population twin sample. JAMA Psychiatry 76, 280–289 (2019).
pubmed: 30566181 doi: 10.1001/jamapsychiatry.2018.3652
Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).
pubmed: 22243964 pmcid: 3257326 doi: 10.1016/j.ajhg.2011.11.029
Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).
pubmed: 28686856 pmcid: 5501872 doi: 10.1016/j.ajhg.2017.06.005
Chames, P., Regenmortel, M. V., Weiss, E. & Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol. 157, 220–233 (2009).
pubmed: 19459844 pmcid: 2697811 doi: 10.1111/j.1476-5381.2009.00190.x
Solomon, T. et al. Identification of common and rare genetic variation associated with plasma protein levels using whole exome sequencing and mass spectrometry. Circ. Genom. Precis. Med. 11, e002170 (2018).
pubmed: 30562114 pmcid: 6301071 doi: 10.1161/CIRCGEN.118.002170
Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat. Metab. 2, 1135–1148 (2020).
pubmed: 33067605 pmcid: 7611474 doi: 10.1038/s42255-020-00287-2
Westwood, S. et al. Plasma protein biomarkers for the prediction of CSF amyloid and tau and [18F]-flutemetamol PET scan result. Front. Aging Neurosci. 10, 409 (2018).
pubmed: 30618716 pmcid: 6297196 doi: 10.3389/fnagi.2018.00409
Dencker, M., Björgell, O. & Hlebowicz, J. Effect of food intake on 92 neurological biomarkers in plasma. Brain Behav. 7, e00747 (2017).
pubmed: 28948068 pmcid: 5607537 doi: 10.1002/brb3.747
Jabbari, E. et al. Proximity extension assay testing reveals novel diagnostic biomarkers of atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 90, 768–773 (2019).
pubmed: 30867224 doi: 10.1136/jnnp-2018-320151
Hillary, R. F. et al. Genome and epigenome wide studies of neurological protein biomarkers in the Lothian Birth Cohort 1936. Nat. Commun. 10, 3160 (2019).
pubmed: 31320639 pmcid: 6639385 doi: 10.1038/s41467-019-11177-x
Harris, S. E. et al. Neurology-related protein biomarkers are associated with cognitive ability and brain volume in older age. Nat. Commun. 11, 800 (2020).
pubmed: 32041957 pmcid: 7010796 doi: 10.1038/s41467-019-14161-7
Rodrigues-Amorim, D. et al. Plasma β-III tubulin, neurofilament light chain and glial fibrillary acidic protein are associated with neurodegeneration and progression in schizophrenia. Sci. Rep. 10, 1–10 (2020).
doi: 10.1038/s41598-020-71060-4
Sandberg, J. V. et al. Proteins associated with future suicide attempts in bipolar disorder: a large-scale biomarker discovery study. Mol. Psychiatry 27, 3857–3863 (2022).
pubmed: 35697758 pmcid: 9708594 doi: 10.1038/s41380-022-01648-x
Folkersen, L. et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS Genet. 13, e1006706 (2017).
pubmed: 28369058 pmcid: 5393901 doi: 10.1371/journal.pgen.1006706
Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of health. Nat. Med. 25, 1851–1857 (2019).
pubmed: 31792462 pmcid: 6922049 doi: 10.1038/s41591-019-0665-2
Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med. 25, 1843–1850 (2019).
pubmed: 31806903 pmcid: 7062043 doi: 10.1038/s41591-019-0673-2
Wingo, A. P. et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 53, 143–146 (2021).
pubmed: 33510477 pmcid: 8130821 doi: 10.1038/s41588-020-00773-z
Jensen, S. B. et al. Discovery of novel plasma biomarkers for future incident venous thromboembolism by untargeted synchronous precursor selection mass spectrometry proteomics. J. Thromb. Haemost. 16, 1763 (2018).
pubmed: 29964323 pmcid: 6123273 doi: 10.1111/jth.14220
Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).
pubmed: 29875488 pmcid: 6697541 doi: 10.1038/s41586-018-0175-2
Assarsson, E. et al. Homogenous 96-plex pea immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 9, e95192 (2014).
pubmed: 24755770 pmcid: 3995906 doi: 10.1371/journal.pone.0095192
Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).
pubmed: 34475573 pmcid: 8432599 doi: 10.1038/s41588-021-00913-z
Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).
pubmed: 34857953 doi: 10.1038/s41588-021-00978-w
Bulik-Sullivan, B. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676 pmcid: 4797329 doi: 10.1038/ng.3406
Ning, Z., Pawitan, Y. & Shen, X. High-definition likelihood inference of genetic correlations across human complex traits. Nat. Genet. 52, 859–864 (2020).
pubmed: 32601477 doi: 10.1038/s41588-020-0653-y
Aulchenko, Y. S., Ripke, S., Isaacs, A. & van Duijn, C. M. GenABEL: an R library for genome-wide association analysis. Bioinformatics 23, 1294–1296 (2007).
pubmed: 17384015 doi: 10.1093/bioinformatics/btm108
Staley, J. R. et al. PhenoScanner: a database of human genotype–phenotype associations. Bioinformatics 32, 3207–3209 (2016).
pubmed: 27318201 pmcid: 5048068 doi: 10.1093/bioinformatics/btw373
Kamat, M. A. et al. PhenoScanner v2: an expanded tool for searching human genotype–phenotype associations. Bioinformatics 35, 4851–4853 (2019).
pubmed: 31233103 pmcid: 6853652 doi: 10.1093/bioinformatics/btz469
Png, G. et al. Mapping the serum proteome to neurological diseases using whole genome sequencing. Nat. Commun. 12, 7042 (2021).
pubmed: 34857772 pmcid: 8640022 doi: 10.1038/s41467-021-27387-1
Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338 (2023).
pubmed: 37794186 pmcid: 10567551 doi: 10.1038/s41586-023-06592-6
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394 pmcid: 4022491 doi: 10.1371/journal.pgen.1004383
Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 82, 1273–1300 (2020).
pubmed: 37220626 pmcid: 10201948 doi: 10.1111/rssb.12388
Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet. 17, e1009440 (2021).
pubmed: 34587156 pmcid: 8504726 doi: 10.1371/journal.pgen.1009440
Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).
pubmed: 34493870 pmcid: 10243600 doi: 10.1038/s41588-021-00921-z
Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).
pubmed: 29335400 pmcid: 5768719 doi: 10.1038/s41467-017-02317-2
Bretherick, A. D. et al. Linking protein to phenotype with Mendelian randomization detects 38 proteins with causal roles in human diseases and traits. PLoS Genet. 16, e1008785 (2020).
pubmed: 32628676 pmcid: 7337286 doi: 10.1371/journal.pgen.1008785
Molica, M. et al. Cd33 expression and gentuzumab ozogamicin in acute myeloid leukemia: two sides of the same coin. Cancers https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268215/ (2021).
Tomoda, F., Nitta, A., Sugimori, H., Koike, T. & Kinugawa, K. Plasma and urinary levels of nerve growth factor are elevated in primary hypertension. Int. J. Hypertens. 2022, 3003269 (2022).
pubmed: 35284140 pmcid: 8904912 doi: 10.1155/2022/3003269
Knardahl, S. Cardiovascular psychophysiology. Ann. Med. 32, 329–335 (2000).
pubmed: 10949064 doi: 10.3109/07853890008995935
Ioannidis, K., Askelund, A. D., Kievit, R. A. & Harmelen, A. L. V. The complex neurobiology of resilient functioning after childhood maltreatment. BMC Med. 18, 1–16 (2020).
McLaughlin, K. A., Colich, N. L., Rodman, A. M. & Weissman, D. G. Mechanisms linking childhood trauma exposure and psychopathology: a transdiagnostic model of risk and resilience. BMC Med. 18, 1–11 (2020).
doi: 10.1186/s12916-020-01561-6
Fried, E. I. & Robinaugh, D. J. Systems all the way down: embracing complexity in mental health research. BMC Med. 18, 1–4 (2020).
doi: 10.1186/s12916-020-01668-w
Fleshner, M., Frank, M. & Maier, S. F. Danger signals and inflammasomes: stress-evoked sterile inflammation in mood disorders. Neuropsychopharmacology 42, 36–45 (2016).
pubmed: 27412959 pmcid: 5143484 doi: 10.1038/npp.2016.125
Bauer, M. E. & Teixeira, A. L. Inflammation in psychiatric disorders: what comes first? Ann. N. Y. Acad. Sci. 1437, 57–67 (2019).
pubmed: 29752710 doi: 10.1111/nyas.13712
Liu, Y.-L. et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 4309 (2014).
pubmed: 24978903 doi: 10.1038/ncomms5309
Burgess, S., Foley, C. N., Allara, E., Staley, J. R. & Howson, J. M. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat. Commun. 11, 376 (2020).
pubmed: 31953392 pmcid: 6969055 doi: 10.1038/s41467-019-14156-4
Slob, E. A. & Burgess, S. A comparison of robust Mendelian randomization methods using summary data. Genet. Epidemiol. 44, 313–329 (2020).
pubmed: 32249995 pmcid: 7317850 doi: 10.1002/gepi.22295
Smith, G. D. & Ebrahim, S. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol. 33, 30–42 (2004).
pubmed: 15075143 doi: 10.1093/ije/dyh132
Gill, D. et al. Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Res. 6, 24 (2021).
doi: 10.12688/wellcomeopenres.16544.1
Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Primers 2, 1–21 (2022).
doi: 10.1038/s43586-021-00092-5
Heurich, M., Föcking, M., Mongan, D., Cagney, G. & Cotter, D. R. Dysregulation of complement and coagulation pathways: emerging mechanisms in the development of psychosis. Mol. Psychiatry 27, 127–140 (2022).
pubmed: 34226666 doi: 10.1038/s41380-021-01197-9
Yang, Y. et al. Altered levels of acute phase proteins in the plasma of patients with schizophrenia. Anal. Chem. 78, 3571–3576 (2006).
pubmed: 16737209 doi: 10.1021/ac051916x
Levin, Y. et al. Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. Mol. Psychiatry 15, 1088–1100 (2010).
pubmed: 19546861 doi: 10.1038/mp.2009.54
Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M. & Mondelli, V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 21, 642–649 (2016).
pubmed: 26033244 doi: 10.1038/mp.2015.67
Varatharaj, A. & Galea, I. The blood–brain barrier in systemic inflammation. Brain Behav. Immun. 60, 1–12 (2017).
pubmed: 26995317 doi: 10.1016/j.bbi.2016.03.010
Najjar, S. et al. Neurovascular unit dysfunction and blood–brain barrier hyperpermeability contribute to schizophrenia neurobiology: a theoretical integration of clinical and experimental evidence. Front. Psychiatry https://pubmed.ncbi.nlm.nih.gov/28588507/ (2017).
Sharapov, S. Z. et al. Defining the genetic control of human blood plasma N-glycome using genome-wide association study. Hum. Mol. Genet. 28, 2062 (2019).
pubmed: 31163085 pmcid: 6664388
Sharapov, S. Z. et al. Replication of 15 loci involved in human plasma protein N-glycosylation in 4802 samples from four cohorts. Glycobiology 31, 82 (2021).
pubmed: 32521004 doi: 10.1093/glycob/cwaa053
Shen, X. et al. Multivariate discovery and replication of five novel loci associated with immunoglobulin G N-glycosylation. Nat. Commun. http://www.research.ed.ac.uk/portal/files/43181419/Multivariate_discovery_and_replication_of_five_novel_loci_associated_with_Immunoglobulin_G_N_glycosylation.pdf (2017).
Zhao, J. H. et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat. Immunol. 24, 1540–1551 (2023).
pubmed: 37563310 pmcid: 10457199 doi: 10.1038/s41590-023-01588-w
Yang, C. et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat. Neurosci. 24, 1302–1312 (2021).
pubmed: 34239129 pmcid: 8521603 doi: 10.1038/s41593-021-00886-6
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Watanabe, K., Taskesen, E., Bochoven, A. V. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056 pmcid: 5705698 doi: 10.1038/s41467-017-01261-5
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. FUMA: functional mapping and annotation of genetic associations. Eur. Neuropsychopharmacol. 29, S789–S790 (2019).
doi: 10.1016/j.euroneuro.2017.08.018
Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336 (2010).
pubmed: 20634204 pmcid: 2935401 doi: 10.1093/bioinformatics/btq419
Boughton, A. P. et al. LocusZoom.js: interactive and embeddable visualization of genetic association study results. Bioinformatics 37, 3017–3018 (2021).
pubmed: 33734315 pmcid: 8479674 doi: 10.1093/bioinformatics/btab186
Pirinen, M., Donnelly, P. & Spencer, C. C. A. Efficient computation with a linear mixed model on large-scale data sets with applications to genetic studies. Ann. Appl. Stat. 7, 369–390 (2013).
doi: 10.1214/12-AOAS586

Auteurs

Linda Repetto (L)

Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
Health Data Science Centre, Fondazione Human Technopole, Milan, Italy.

Jiantao Chen (J)

Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.

Zhijian Yang (Z)

Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Ranran Zhai (R)

Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Paul R H J Timmers (PRHJ)

Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.

Xiao Feng (X)

Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.

Ting Li (T)

Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.

Yue Yao (Y)

Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.

Denis Maslov (D)

MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia.

Anna Timoshchuk (A)

MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia.

Fengyu Tu (F)

Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Emma L Twait (EL)

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.

Sebastian May-Wilson (S)

Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.

Marisa D Muckian (MD)

Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.

Bram P Prins (BP)

BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

Grace Png (G)

Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany.

Charles Kooperberg (C)

Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.

Åsa Johansson (Å)

Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

Robert F Hillary (RF)

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.

Eleanor Wheeler (E)

MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.

Lu Pan (L)

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Yazhou He (Y)

Department of Epidemiology and Medical Statistics, Division of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.

Sofia Klasson (S)

Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Shahzad Ahmad (S)

Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

James E Peters (JE)

Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK.

Arthur Gilly (A)

Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.

Maria Karaleftheri (M)

Echinos Medical Centre, Echinos, Greece.

Emmanouil Tsafantakis (E)

Anogia Medical Centre, Anogia, Greece.

Jeffrey Haessler (J)

Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.

Ulf Gyllensten (U)

Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

Sarah E Harris (SE)

Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK.

Nicholas J Wareham (NJ)

MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.

Andreas Göteson (A)

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.

Cecilia Lagging (C)

Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.

Mohammad Arfan Ikram (MA)

Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

Cornelia M van Duijn (CM)

Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

Christina Jern (C)

Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.

Mikael Landén (M)

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.

Claudia Langenberg (C)

MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.
Computational Medicine, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany.
Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.

Ian J Deary (IJ)

Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK.

Riccardo E Marioni (RE)

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.

Stefan Enroth (S)

Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

Alexander P Reiner (AP)

Division of Public Health Sciences, Fred Hutchinson Cancer Center and Department of Epidemiology, University of Washington, Seattle, WA, USA.

George Dedoussis (G)

Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece.

Eleftheria Zeggini (E)

Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Munich, Germany.

Sodbo Sharapov (S)

MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia.
Biostatistics Unit-Population and Medical Genomics Programme, Genomics Research Centre, Fondazione Human Technopole, Milan, Italy.

Yurii S Aulchenko (YS)

MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia.
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.

Adam S Butterworth (AS)

BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK.
National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK.
Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.

Anders Mälarstig (A)

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
Emerging Science and Innovation, Pfizer Worldwide Research, Development and Medical, Cambridge, UK.

James F Wilson (JF)

Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.

Pau Navarro (P)

Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.

Xia Shen (X)

Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China. shenx@fudan.edu.cn.
Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China. shenx@fudan.edu.cn.
Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK. shenx@fudan.edu.cn.
State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China. shenx@fudan.edu.cn.
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. shenx@fudan.edu.cn.

Classifications MeSH