The oocyte microenvironment is altered in adolescents compared to oocyte donors.
RNA-seq
children
cumulus cells
cytokine analysis
egg quality
fertility preservation
follicular fluid
Journal
Human reproduction open
ISSN: 2399-3529
Titre abrégé: Hum Reprod Open
Pays: England
ID NLM: 101722764
Informations de publication
Date de publication:
2024
2024
Historique:
received:
01
03
2024
revised:
03
07
2024
medline:
1
9
2024
pubmed:
1
9
2024
entrez:
30
8
2024
Statut:
epublish
Résumé
Do the molecular signatures of cumulus cells (CCs) and follicular fluid (FF) of adolescents undergoing fertility preservation differ from that of oocyte donors? The microenvironment immediately surrounding the oocyte, including the CCs and FF, is altered in adolescents undergoing fertility preservation compared to oocyte donors. Adolescents experience a period of subfecundity following menarche. Recent evidence suggests that this may be at least partially due to increased oocyte aneuploidy. Reproductive juvenescence in mammals is associated with suboptimal oocyte quality. This was a prospective cohort study. Adolescents (10-19 years old, n = 23) and oocyte donors (22-30 years old, n = 31) undergoing ovarian stimulation and oocyte retrieval at a single center between 1 November 2020 and 1 May 2023 were enrolled in this study. Patient demographics, ovarian stimulation, and oocyte retrieval outcomes were collected for all participants. The transcriptome of CCs associated with mature oocytes was compared between adolescents (10-19 years old, n = 19) and oocyte donors (22-30 years old, n = 19) using bulk RNA-sequencing. FF cytokine profiles (10-19 years old, n = 18 vs 25-30 years old, n = 16) were compared using cytokine arrays. RNA-seq analysis revealed 581 differentially expressed genes in CCs of adolescents relative to oocyte donors, with 361 genes downregulated and 220 upregulated. Genes enriched in pathways involved in cell cycle and cell division (e.g. GO: 1903047, Original high-throughput sequencing data have been deposited in Gene Expression Omnibus (GEO) database with the accession number GSE265995. This study aims to gain insights into the associated gamete quality by studying the immediate oocyte microenvironment. The direct study of oocytes is more challenging due to sample scarcity, as they are cryopreserved for future use, but would provide a more accurate assessment of oocyte reproductive potential. Our findings have implications for the adolescent fertility preservation cycles. Understanding the expected quality of cryopreserved eggs in this age group will lead to better counseling of these patients about their reproductive potential and may help to determine the number of eggs that is recommended to be banked to achieve a reasonable chance of future live birth(s). This project was supported by Friends of Prentice organization SP0061324 (M.M.L. and E.B.), Gesualdo Family Foundation (Research Scholar: M.M.L.), and NIH/NICHD K12 HD050121 (E.B.). The authors have declared that no conflict of interest exists.
Identifiants
pubmed: 39211054
doi: 10.1093/hropen/hoae047
pii: hoae047
pmc: PMC11361810
doi:
Types de publication
Journal Article
Langues
eng
Pagination
hoae047Subventions
Organisme : NICHD NIH HHS
ID : K12 HD050121
Pays : United States
Informations de copyright
© The Author(s) 2024. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology.
Déclaration de conflit d'intérêts
None declared.
Références
Endocrinology. 1999 Jun;140(6):2685-95
pubmed: 10342859
Fertil Steril. 2014 Mar;101(3):656-663.e1
pubmed: 24355045
Semin Reprod Med. 2009 Jan;27(1):32-42
pubmed: 19197803
Physiology (Bethesda). 2011 Oct;26(5):314-25
pubmed: 22013190
Anim Reprod Sci. 2004 Jul;82-83:431-46
pubmed: 15271471
Science. 2004 Jan 30;303(5658):682-4
pubmed: 14726596
Clin Exp Allergy. 2003 Apr;33(4):531-7
pubmed: 12680872
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
J Ovarian Res. 2020 Aug 12;13(1):93
pubmed: 32787963
Mol Endocrinol. 2007 May;21(5):1246-57
pubmed: 17312271
Fertil Steril. 2021 Jul;116(1):36-47
pubmed: 34148587
Theriogenology. 2007 Sep 15;68(5):755-62
pubmed: 17628654
Aging Cell. 2020 Nov;19(11):e13259
pubmed: 33079460
J Assist Reprod Genet. 2010 Nov;27(11):629-39
pubmed: 20721618
Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2424-9
pubmed: 26864200
Platelets. 2021 Aug 18;32(6):770-778
pubmed: 34097561
Mol Endocrinol. 2002 Jun;16(6):1154-67
pubmed: 12040004
Reproduction. 2016 Sep;152(3):245-260
pubmed: 27491879
Biol Reprod. 2000 Apr;62(4):913-9
pubmed: 10727260
Fertil Steril. 2012 Dec;98(6):1574-80.e5
pubmed: 22968048
Genome Biol. 2014;15(12):550
pubmed: 25516281
Clin Pract Pediatr Psychol. 2018 Mar;6(1):93-100
pubmed: 29963344
Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10501-6
pubmed: 10468638
Biol Reprod. 2000 Dec;63(6):1580-5
pubmed: 11090423
Fertil Steril. 2015 Feb;103(2):303-16
pubmed: 25497448
J Genet Genomics. 2023 Mar;50(3):141-150
pubmed: 35840100
Hum Reprod. 2021 Apr 20;36(5):1310-1325
pubmed: 33454781
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3186-3191
pubmed: 28270607
Life Sci. 2003 Oct 3;73(20):2571-81
pubmed: 12967681
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Biol Reprod. 2022 Feb 22;106(2):351-365
pubmed: 34982142
Int J Mol Sci. 2021 May 05;22(9):
pubmed: 34063149
Annu Rev Immunol. 1995;13:251-76
pubmed: 7612223
Microbes Infect. 2012 Mar;14(3):247-61
pubmed: 22064066
Hum Reprod Update. 2008 Mar-Apr;14(2):159-77
pubmed: 18175787
Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2950-4
pubmed: 1557400
Mol Hum Reprod. 2016 Aug;22(8):866-76
pubmed: 27268410
Fertil Steril. 2019 Dec;112(6):1022-1033
pubmed: 31843073
Biol Reprod. 1993 Dec;49(6):1158-62
pubmed: 8286598
Fertil Steril. 2021 Aug;116(2):357-358
pubmed: 34247760
J Reprod Med. 2010 Nov-Dec;55(11-12):491-7
pubmed: 21291035
Hum Reprod Update. 2007 May-Jun;13(3):209-23
pubmed: 17208948
Biol Reprod. 2013 Aug 29;89(2):43
pubmed: 23863407
Eur J Obstet Gynecol Reprod Biol. 2002 Nov 15;105(2):150-4
pubmed: 12381478
J Reprod Fertil. 1974 Mar;37(1):189-219
pubmed: 4274030
Biochim Biophys Acta. 2009 Sep;1790(9):925-35
pubmed: 19328836
Front Cell Dev Biol. 2021 Aug 02;9:710033
pubmed: 34409039
Lancet Oncol. 2021 Feb;22(2):e45-e56
pubmed: 33539753
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
J Biol Chem. 2001 Mar 16;276(11):7693-6
pubmed: 11145954
Hum Fertil (Camb). 2014 Jun;17(2):90-8
pubmed: 24684237
Front Cell Dev Biol. 2023 Jan 19;11:1087612
pubmed: 36743407
Science. 2019 Sep 27;365(6460):1466-1469
pubmed: 31604276
Biol Reprod. 2005 Aug;73(2):351-7
pubmed: 15843493
Aging Cell. 2012 Dec;11(6):1121-4
pubmed: 22823533
J Sex Res. 2004 Feb;41(1):101-12
pubmed: 15216429
Autoimmun Rev. 2021 Apr;20(4):102785
pubmed: 33621698
Br J Pharmacol. 2014 Feb;171(4):827-36
pubmed: 23889362
Hum Reprod. 2020 Jun 1;35(6):1332-1345
pubmed: 32474592
Development. 2004 Apr;131(7):1577-86
pubmed: 14998931
Front Endocrinol (Lausanne). 2017 Sep 04;8:226
pubmed: 28928717
Cell Reprogram. 2022 Aug;24(4):175-185
pubmed: 35861708
Nucleic Acids Res. 2023 Jan 6;51(D1):D933-D941
pubmed: 36318249
Ann Afr Med. 2019 Jul-Sep;18(3):121-126
pubmed: 31417011
Development. 2003 May;130(10):2253-61
pubmed: 12668637
J Cell Physiol. 2021 Dec;236(12):7966-7983
pubmed: 34121193
Nat Commun. 2019 Apr 3;10(1):1523
pubmed: 30944313
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):599-608
pubmed: 30587590
Front Cell Dev Biol. 2021 Jun 16;9:693742
pubmed: 34222262
Adv Cancer Res. 2007;97:275-94
pubmed: 17419950
Biomed Res Int. 2014;2014:964614
pubmed: 25276836
Aging Cell. 2023 Nov;22(11):e14004
pubmed: 37850336
Fertil Steril. 2005 Sep;84(3):627-33
pubmed: 16169395
Sci Adv. 2022 Jun 17;8(24):eabn4564
pubmed: 35714185
Immunol Cell Biol. 2023 Aug;101(7):600-609
pubmed: 36975092
N Engl J Med. 2016 Mar 3;374(9):833-42
pubmed: 26761625
Br J Pharmacol. 2019 Jan;176(1):82-92
pubmed: 29510460
Ann N Y Acad Sci. 2010 Aug;1204:43-53
pubmed: 20738274
Science. 1931 Aug 28;74(1913):226-7
pubmed: 17834965