SpikeFlow: automated and flexible analysis of ChIP-Seq data with spike-in control.
Journal
NAR genomics and bioinformatics
ISSN: 2631-9268
Titre abrégé: NAR Genom Bioinform
Pays: England
ID NLM: 101756213
Informations de publication
Date de publication:
Sep 2024
Sep 2024
Historique:
received:
12
06
2024
revised:
02
08
2024
accepted:
20
08
2024
medline:
31
8
2024
pubmed:
31
8
2024
entrez:
30
8
2024
Statut:
epublish
Résumé
ChIP with reference exogenous genome (ChIP-Rx) is widely used to study histone modification changes across different biological conditions. A key step in the bioinformatics analysis of this data is calculating the normalization factors, which vary from the standard ChIP-seq pipelines. Choosing and applying the appropriate normalization method is crucial for interpreting the biological results. However, a comprehensive pipeline for complete ChIP-Rx data analysis is lacking. To address these challenges, we introduce SpikeFlow, an integrated Snakemake workflow that combines features from various existing tools to streamline ChIP-Rx data processing and enhance usability. SpikeFlow automates spike-in data scaling and provides multiple normalization options. It also performs peak calling and differential analysis with distinct modalities, enabling the detection of enrichment regions for histone modifications and transcription factor binding. Our workflow runs in-depth quality control at all the processing steps and generates an analysis report with tables and graphs to facilitate results interpretation. We validated the pipeline by performing a comparative analysis with DiffBind and SpikChIP, demonstrating robust performances in various biological models. By combining diverse functionalities into a single platform, SpikeFlow aims to simplify ChIP-Rx data analysis for the research community.
Identifiants
pubmed: 39211331
doi: 10.1093/nargab/lqae118
pii: lqae118
pmc: PMC11358820
doi:
Types de publication
Journal Article
Langues
eng
Pagination
lqae118Informations de copyright
© The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
Références
Genome Res. 2012 Sep;22(9):1813-31
pubmed: 22955991
Genome Biol. 2014;15(12):550
pubmed: 25516281
Genome Res. 2014 Jul;24(7):1157-68
pubmed: 24709819
Mol Cell. 2019 Jun 6;74(5):1020-1036.e8
pubmed: 31029541
Bioinformatics. 2014 Sep 1;30(17):2503-5
pubmed: 24812344
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Nucleic Acids Res. 2018 Jul 6;46(12):e75
pubmed: 29672735
Nat Rev Genet. 2009 Oct;10(10):669-80
pubmed: 19736561
Sci Adv. 2024 Mar 15;10(11):eadh4435
pubmed: 38489371
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Bio Protoc. 2018 Aug 20;8(16):e2981
pubmed: 34395781
Bioinformatics. 2016 Oct 1;32(19):3047-8
pubmed: 27312411
STAR Protoc. 2021 Jul 17;2(3):100681
pubmed: 34337446
Nat Chem. 2020 Oct;12(10):929-938
pubmed: 32747755
NAR Genom Bioinform. 2021 Jul 27;3(3):lqab064
pubmed: 34327329
Genome Biol. 2008;9(9):R137
pubmed: 18798982
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Bioinformatics. 2015 Jul 15;31(14):2382-3
pubmed: 25765347
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W187-91
pubmed: 24799436
F1000Res. 2021 Jan 18;10:33
pubmed: 34035898
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
PLoS One. 2016 Nov 22;11(11):e0166438
pubmed: 27875550
Nat Rev Genet. 2012 Dec;13(12):840-52
pubmed: 23090257
Cancer Cell. 2017 Nov 13;32(5):684-700.e9
pubmed: 29107533
Bioinformatics. 2019 Nov 1;35(21):4392-4393
pubmed: 30923821
Cell Rep. 2014 Nov 6;9(3):1163-70
pubmed: 25437568
Nucleic Acids Res. 2014 Jun;42(11):e92
pubmed: 24782521