Selection on genome-wide gene expression plasticity of rice in wet and dry field environments.
Oryza sativa (rice)
costs of adaptive plasticity
genotypic selection analysis
natural selection
transcriptome profiling
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
30 Aug 2024
30 Aug 2024
Historique:
revised:
29
07
2024
received:
30
01
2024
accepted:
16
08
2024
medline:
31
8
2024
pubmed:
31
8
2024
entrez:
31
8
2024
Statut:
aheadofprint
Résumé
Gene expression can be highly plastic in response to environmental variation. However, we know little about how expression plasticity is shaped by natural selection and evolves in wild and domesticated species. We used genotypic selection analysis to characterize selection on drought-induced plasticity of over 7,500 leaf transcripts of 118 rice accessions (genotypes) from different environmental conditions grown in a field experiment. Gene expression plasticity was neutral for most gradually plastic transcripts, but transcripts with discrete patterns of expression showed stronger selection on expression plasticity. Whether plasticity was adaptive and co-gradient or maladaptive and counter-gradient varied among varietal groups. No transcripts that experienced selection for plasticity across environments showed selection against plasticity within environments, indicating a lack of evidence for costs of adaptive plasticity that may constrain its evolution. Selection on expression plasticity was influenced by degree of plasticity, transcript length and gene body methylation. We observed positive selection on plasticity of co-expression modules containing transcripts involved in photosynthesis, translation and responsiveness to abiotic stress. Taken together, these results indicate that patterns of selection on expression plasticity were context-dependent and likely associated with environmental conditions of varietal groups, but that the evolution of adaptive plasticity would likely not be constrained by opposing patterns of selection on plasticity within compared to across environments. These results offer a genome-wide view of patterns of selection and ecological constraints on gene expression plasticity and provide insights into the interplay between plastic and evolutionary responses to drought at the molecular level.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e17522Subventions
Organisme : Research Institute Centers, New York University Abu Dhabi
Organisme : Graduate School of Arts and Sciences, Fordham University
Organisme : University of California Riverside
Organisme : Division of Environmental Biology
ID : DEB-1142784
Organisme : Division of Integrative Organismal Systems
ID : IOS-1546218
Organisme : Zegar Family Foundation
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : P2BSP3_168833
Organisme : NIGMS NIH HHS
ID : R35GM151194
Pays : United States
Informations de copyright
© 2024 The Author(s). Molecular Ecology published by John Wiley & Sons Ltd.
Références
Aceituno, F. F., Moseyko, N., Rhee, S. Y., & Gutiérrez, R. A. (2008). The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana. BMC Genomics, 9(1), 438.
Agrawal, A. A., Conner, J. K., Johnson, M. T., & Wallsgrove, R. (2002). Ecological genetics of an induced plant defense against herbivores: Additive genetic variance and costs of phenotypic plasticity. Evolution, 56(11), 2206–2213.
Ahmad, F., Debes, P. V., Nousiainen, I., Kahar, S., Pukk, L., Gross, R., Ozerov, M., & Vasemägi, A. (2021). The strength and form of natural selection on transcript abundance in the wild. Molecular Ecology, 30(12), 2724–2737.
Alpert, P., & Simms, E. L. (2002). The relative advantages of plasticity and fixity in different environments: When is it good for a plant to adjust? Evolutionary Ecology, 16(3), 285–297.
Arnold, A., & Nikoloski, Z. (2014). Bottom‐up metabolic reconstruction of Arabidopsis and its application to determining the metabolic costs of enzyme production. Plant Physiology, 165(3), 1380–1391.
Arnold, P. A., Nicotra, A. B., & Kruuk, L. E. B. (2019). Sparse evidence for selection on phenotypic plasticity in response to temperature. Philosophical Transactions of the Royal Society, B: Biological Sciences, 374(1768), 20180185.
Aubin‐Horth, N., & Renn, S. C. P. (2009). Genomic reaction norms: Using integrative biology to understand molecular mechanisms of phenotypic plasticity. Molecular Ecology, 18(18), 3763–3780.
Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2010). Re‐evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 503–511.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57(1), 289–300.
Bergelson, J., & Purrington, C. B. (1996). Surveying patterns in the cost of resistance in plants. The American Naturalist, 148(3), 536–558.
Bittner, N., Mack, K., & Nachman, M. (2020). Plasticity in gene expression facilitates invasion of the desert environment in house mice. bioRxiv.
Bittner, N. K. J., Mack, K. L., & Nachman, M. W. (2021). Gene expression plasticity and desert adaptation in house mice. Evolution, 75(6), 1477–1491. https://doi.org/10.1111/evo.14172
Block, S., Alexander, J. M., & Levine, J. M. (2020). Phenological plasticity is a poor predictor of subalpine plant population performance following experimental climate change. Oikos, 129(2), 184–193.
Byars, S. G., Papst, W., & Hoffmann, A. A. (2007). Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution, 61(12), 2925–2941.
Ćalić, I., Groen, S. C., Choi, J. Y., Joly‐Lopez, Z., Hamann, E., Natividad, M. A., Dorph, K., Cabral, C. L. U., Torres, R. O., Vergara, G. V., Henry, A., Purugganan, M. D., & Franks, S. J. (2022). The influence of genetic architecture on responses to selection under drought in rice. Evolutionary Applications, 15(10), 1670–1690.
Campbell‐Staton, S. C., Velotta, J. P., & Winchell, K. M. (2021). Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands. Nature Communications, 12(1), 6195.
Carreira, V. P., Imberti, M. A., Mensch, J., & Fanara, J. J. (2013). Gene‐by‐temperature interactions and candidate plasticity genes for morphological traits in Drosophila melanogaster. PLoS One, 8(7), e70851.
Chodavarapu, R. K., Feng, S., Ding, B., Simon, S. A., Lopez, D., Jia, Y., Wang, G. L., Meyers, B. C., Jacobsen, S. E., & Pellegrini, M. (2012). Transcriptome and methylome interactions in rice hybrids. Proceedings of the National Academy of Sciences of the United States of America, 109(30), 12040–12045.
Choi, J. Y., Lye, Z. N., Groen, S. C., Dai, X., Rughani, P., Zaaijer, S., Harrington, E. D., Juul, S., & Purugganan, M. D. (2020). Nanopore sequencing‐based genome assembly and evolutionary genomics of circum‐basmati rice. Genome Biology, 21(1), 21.
Dang, Z., Jia, Y., Tian, Y., Li, J., Zhang, Y., Huang, L., Liang, C., Lockhart, P. J., Matthew, C., & Li, F. Y. (2021). Transcriptome‐wide gene expression plasticity in Stipa grandis in response to grazing intensity differences. International Journal of Molecular Sciences, 22(21). 11882. https://doi.org/10.3390/ijms222111882
Dayan, D. I., Crawford, D. L., & Oleksiak, M. F. (2015). Phenotypic plasticity in gene expression contributes to divergence of locally adapted populations of Fundulus heteroclitus. Molecular Ecology, 24(13), 3345–3359.
Deprost, D., Yao, L., Sormani, R., Moreau, M., Leterreux, G., Nicolaï, M., Bedu, M., Robaglia, C., & Meyer, C. (2007). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Reports, 8(9), 864–870.
Des Marais, D. L., McKay, J. K., Richards, J. H., Sen, S., Wayne, T., & Juenger, T. E. (2012). Physiological genomics of response to soil drying in diverse Arabidopsis accessions. The Plant Cell, 24(3), 893–914.
DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13(2), 77–81.
Dixon, G., Liao, Y., Bay, L. K., & Matz, M. V. (2018). Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proceedings of the National Academy of Sciences, 115(52), 13342–13346.
Dong, Z., Li, W., Liu, J., Li, L., Pan, S., Liu, S., Gao, J., Liu, L., Liu, X., Wang, G. L., & Dai, L. (2019). The Rice phosphate transporter protein OsPT8 regulates disease resistance and plant growth. Scientific Reports, 9(1), 5408.
Dudley, S. A., & Schmitt, J. (1995). Genetic differentiation in morphological responses to simulated foliage shade between populations of Impatiens capensis from open and woodland sites. Functional Ecology, 9(4), 655–666.
Elhaik, E., Pellegrini, M., & Tatarinova, T. V. (2014). Gene expression and nucleotide composition are associated with genic methylation level in Oryza sativa. BMC Bioinformatics, 15(1), 23.
Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: A graphical gene‐set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628–2629.
Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., … Zhang, J. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology, 5(10), R80.
Ghalambor, C. K., Hoke, K. L., Ruell, E. W., Fischer, E. K., Reznick, D. N., & Hughes, K. A. (2015). Non‐adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature, 525(7569), 372–375.
Ghalambor, C. K., McKay, J. K., Carroll, S. P., & Reznick, D. N. (2007). Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 21(3), 394–407.
Groen, S. C., Ćalić, I., Joly‐Lopez, Z., Platts, A. E., Choi, J. Y., Natividad, M., Dorph, K., Mauck, W. M., Bracken, B., Cabral, C. L. U., et al. (2020). The strength and pattern of natural selection on gene expression in rice. Nature, 578(7796), 572–576.
Groen, S. C., Humphrey, P. T., Chevasco, D., Ausubel, F. M., Pierce, N. E., & Whiteman, N. K. (2016). Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis. Journal of Insect Physiology, 84, 90–102.
Groen, S. C., Joly‐Lopez, Z., Platts, A. E., Natividad, M., Fresquez, Z., Mauck, W. M., III, Quintana, M. R., Cabral, C. L. U., Torres, R. O., Satija, R., Purugganan, M. D., & Henry, A. (2022). Evolutionary systems biology reveals patterns of rice adaptation to drought‐prone agro‐ecosystems. The Plant Cell, 34(2), 759–783.
Gutaker, R. M., Groen, S. C., Bellis, E. S., Choi, J. Y., Pires, I. S., Bocinsky, R. K., Slayton, E. R., Wilkins, O., Castillo, C. C., Negrão, S., Oliveira, M. M., Fuller, D. Q., Guedes, J. A., Lasky, J. R., & Purugganan, M. D. (2020). Genomic history and ecology of the geographic spread of rice. Nature Plants, 6(5), 492–502.
Gutteling, E. W., Riksen, J. A. G., Bakker, J., & Kammenga, J. E. (2007). Mapping phenotypic plasticity and genotype–environment interactions affecting life‐history traits in Caenorhabditis elegans. Heredity, 98(1), 28–37.
Hämälä, T., Guiltinan, M. J., Marden, J. H., Maximova, S. N., dePamphilis, C. W., & Tiffin, P. (2019). Gene expression modularity reveals footprints of polygenic adaptation in Theobroma cacao. Molecular Biology and Evolution, 37(1), 110–123.
Hamann, E., Denney, D., Day, S., Lombardi, E., Jameel, M. I., MacTavish, R., & Anderson, J. T. (2020). Review: Plant eco‐evolutionary responses to climate change: Emerging directions. Plant Science, 304, 110737.
Hamann, E., Pauli, C. S., Joly‐Lopez, Z., Groen, S. C., Rest, J. S., Kane, N. C., Purugganan, M. D., & Franks, S. J. (2021). Rapid evolutionary changes in gene expression in response to climate fluctuations. Molecular Ecology, 30, 193–206.
He, F., Steige, K. A., Kovacova, V., Göbel, U., Bouzid, M., Keightley, P. D., Beyer, A., & de Meaux, J. (2021). Cis‐regulatory evolution spotlights species differences in the adaptive potential of gene expression plasticity. Nature Communications, 12(1), 3376.
Hendry, A. P. (2015). Key questions on the role of phenotypic plasticity in eco‐evolutionary dynamics. Journal of Heredity, 107(1), 25–41.
Hendry, A. P., & Kinnison, M. T. (1999). The pace of modern life: Measuring rates of contemporary microevolution. Evolution, 53(6), 1637–1653.
Hodgins‐Davis, A., & Townsend, J. P. (2009). Evolving gene expression: From G to E to G×E. Trends in Ecology & Evolution, 24(12), 649–658.
Horvath, R., Laenen, B., Takuno, S., & Slotte, T. (2019). Single‐cell expression noise and gene‐body methylation in Arabidopsis thaliana. Heredity, 123(2), 81–91.
Huang, W., Carbone, M. A., Lyman, R. F., Anholt, R. R. H., & Mackay, T. F. C. (2020). Genotype by environment interaction for gene expression in Drosophila melanogaster. Nature Communications, 11(1), 5451.
Jentsch, K., Kreyling, J., & Beierkuhnlein, C. (2007). A new generation of climate change experiments: Events not trends. Frontiers in Ecology and the Environment, 5, 365–374.
Kawecki, T. J. (1994). Accumulation of deleterious mutations and the evolutionary cost of being a generalist. The American Naturalist, 144(5), 833–838.
Kelly, S. (2018). The amount of nitrogen used for photosynthesis modulates molecular evolution in plants. Molecular Biology and Evolution, 35(7), 1616–1625.
Kenkel, C. D., & Matz, M. V. (2016). Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nature Ecology & Evolution, 1(1), 14.
Koch, E. L., & Guillaume, F. (2020). Additive and mostly adaptive plastic responses of gene expression to multiple stress in Tribolium castaneum. PLoS Genetics, 16(5), e1008768.
Konate, A. K., Zongo, A., Kam, H., Sanni, A., & Audebert, A. (2016). Genetic variability and correlation analysis of rice (Oryza sativa L.) inbred lines based on agro‐morphological traits. African Journal of Agricultural Research, 11(35), 3340–3346.
Kremling, K. A. G., Chen, S. Y., Su, M. H., Lepak, N. K., Romay, M. C., Swarts, K. L., Lu, F., Lorant, A., Bradbury, P. J., & Buckler, E. S. (2018). Dysregulation of expression correlates with rare‐allele burden and fitness loss in maize. Nature, 555(7697), 520–523.
Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K., & Long, S. P. (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354(6314), 857–861.
Kusmec, A., Srinivasan, S., Nettleton, D., & Schnable, P. S. (2017). Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nature Plants, 3(9), 715–723.
Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37(6), 1210–1226.
Larracuente, A. M., Sackton, T. B., Greenberg, A. J., Wong, A., Singh, N. D., Sturgill, D., Zhang, Y., Oliver, B., & Clark, A. G. (2008). Evolution of protein‐coding genes in drosophila. Trends in Genetics, 24(3), 114–123.
Latta, L. C., Weider, L. J., Colbourne, J. K., & Pfrender, M. E. (2012). The evolution of salinity tolerance in daphnia: A functional genomics approach. Ecology Letters, 15(8), 794–802.
Li, C., & Wong, W. H. (2001). Model‐based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proceedings of the National Academy of Sciences of the United States of America, 98(1), 31–36.
Li, R., Wang, J., Xu, L., Sun, M., Yi, K., & Zhao, H. (2020). Functional analysis of phosphate transporter OsPHT4 family members in rice. Rice Science, 27(6), 493–503.
Lynch, M., & Marinov, G. K., (2015). The bioenergetic costs of a gene. Proceedings of the National Academy of Sciences, 112(51), 15690–15695. https://doi.org/10.1073/pnas.1514974112
Mäkinen, H., Papakostas, S., Vøllestad, L. A., Leder, E. H., & Primmer, C. R. (2015). Plastic and evolutionary gene expression responses are correlated in European Grayling (Thymallus thymallus) subpopulations adapted to different thermal environments. Journal of Heredity, 107(1), 82–89.
McCairns, R. J. S., & Bernatchez, L. (2010). Adaptive divergence between freshwater and marine sticklebacks: Insights into the role of phenotypic plasticity from an integrated analysis of candidate gene expression. Evolution, 64(4), 1029–1047.
Merila, J., & Hendry, A. P. (2014). Climate change, adaptation, and phenotypic plasticity: The problem and the evidence. Evolutionary Applications, 7(1), 1–14.
Metsalu, T., & Vilo, J. (2015). ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Research, 43(W1), W566–W570.
Mi, H., Ebert, D., Muruganujan, A., Mills, C., Albou, L.‐P., Mushayamaha, T., & Thomas, P. D. (2020). PANTHER version 16: A revised family classification, tree‐based classification tool, enhancer regions and extensive API. Nucleic Acids Research, 49(D1), D394–D403.
Murren, C. J., Auld, J. R., Callahan, H., Ghalambor, C. K., Handelsman, C. A., Heskel, M. A., Kingsolver, J. G., Maclean, H. J., Masel, J., Maughan, H., Pfennig, D. W., Relyea, R. A., Seiter, S., Snell‐Rood, E., Steiner, U. K., & Schlichting, C. D. (2015). Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity, 115(4), 293–301.
Nakamura, Y., Gojobori, T., & Ikemura, T. (2000). Codon usage tabulated from international DNA sequence databases: Status for the year 2000. Nucleic Acids Research, 28(1), 292.
Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., Valladares, F., & van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15(12), 684–692.
Oomen, R. A., & Hutchings, J. A. (2022). Genomic reaction norms inform predictions of plastic and adaptive responses to climate change. Journal of Animal Ecology, 91(6), 1073–1087.
Oostra, V., Saastamoinen, M., Zwaan, B. J., & Wheat, C. W. (2018). Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nature Communications, 9(1), 1005.
Plessis, A., Hafemeister, C., Wilkins, O., Gonzaga, Z. J., Meyer, R. S., Pires, I., Müller, C., Septiningsih, E. M., Bonneau, R., & Purugganan, M. (2015). Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions. eLife, 4, e08411. https://doi.org/10.7554/eLife.08411
Price, T. D., Qvarnstrom, A., & Irwin, D. E. (2003). The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270, 1433–1440.
Priest, H. D., Fox, S. E., Rowley, E. R., Murray, J. R., Michael, T. P., & Mockler, T. C. (2014). Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress. PLoS One, 9(1), e87499.
R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C. E., Socci, N. D., & Betel, D. (2013). Comprehensive evaluation of differential gene expression analysis methods for RNA‐seq data. Genome Biology, 14(9), 3158.
Rausher, M. D. (1992). The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution, 46(3), 616–626.
Relyea, R. A. (2002). Costs of phenotypic plasticity. The American Naturalist, 159(3), 272–282.
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). Limma powers differential expression analyses for RNA‐sequencing and microarray studies. Nucleic Acids Research, 43(7), e47.
Roberts, M., & Josephs, E. B. (2023). Weaker selection on genes with treatment‐specific expression consistent with a limit on plasticity evolution in Arabidopsis thaliana. Genetics, 224(2), iyad074. https://doi.org/10.1093/genetics/iyad074
Roy, S. C., & Shil, P. (2020). Assessment of genetic heritability in rice breeding lines based on morphological traits and caryopsis ultrastructure. Scientific Reports, 10(1), 7830.
Rutherford, S. L. (2000). From genotype to phenotype: Buffering mechanisms and the storage of genetic information. BioEssays, 22(12), 1095–1105.
Saltz, J. B., Bell, A. M., Flint, J., Gomulkiewicz, R., Hughes, K. A., & Keagy, J. (2018). Why does the magnitude of genotype‐by‐environment interaction vary? Ecology and Evolution, 8, 6342–6353.
Satija Lab. (2018). Barcoded Plate‐Based Single Cell RNA‐seq: protocols.io. https://doi.org/10.17504/protocols.io.nkgdctw
Schäfer, J., & Strimmer, K. (2005). A shrinkage approach to large‐scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4, 32.
Scheiner, S. M., Barfield, M., & Holt, R. D. (2020). The genetics of phenotypic plasticity. XVII. Response to climate change. Evolutionary Applications, 13(2), 388–399.
Schlichting, C., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sinauer.
Schlichting, C. D., & Levin, D. A., (1984). Phenotypic plasticity of annual Phlox: tests of some hypotheses. American Journal of Botany, 71(2), 252–260. https://doi.org/10.1002/j.1537‐2197.1984.tb12511.x
Schlichting, C. D. (1986). The evolution of phenotypic plasticity in plants. Annual Review of Ecology and Systematics, 17, 667–693.
Schlichting, C. D., & Smith, H. (2002). Phenotypic plasticity: Linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology, 16(3), 189–211.
Schmitt, J., Stinchcombe, J. R., Heschel, M. S., & Huber, H. (2003). The adaptive evolution of plasticity: Phytochrome‐mediated shade avoidance responses. Integrative and Comparative Biology, 43(3), 459–469.
Seymour, D. K., & Gaut, B. S. (2019). Phylogenetic shifts in gene body methylation correlate with gene expression and reflect trait conservation. Molecular Biology and Evolution, 37(1), 31–43.
Shakiba, E., Edwards, J. D., Jodari, F., Duke, S. E., Baldo, A. M., Korniliev, P., McCouch, S. R., & Eizenga, G. C. (2017). Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome‐wide analysis. PLoS One, 12(3), e0172133.
Stearns, S. C. (1989). The evolutionary significance of phenotypic plasticity—Phenotypic sources of variation among organisms can be described by developmental switches and reaction norms. Bioscience, 39(7), 436–445.
Stoltzfus, A. (1999). On the possibility of constructive neutral evolution. Journal of Molecular Evolution, 49(2), 169–181.
Su, Z., Tang, Y., Ritchey, L. E., Tack, D. C., Zhu, M., Bevilacqua, P. C., & Assmann, S. M. (2018). Genome‐wide RNA structurome reprogramming by acute heat shock globally regulates mRNA abundance. Proceedings of the National Academy of Sciences, 115(48), 12170–12175.
Sultan, S. E. (1987). Evolutionary implications of phenotypic plasticity in plants. Evolutionary Biology, 21, 127–178.
Sultan, S. E. (1995). Phenotypic plasticity and plant adaptation. Acta Botanica Neerlandica, 44(4), 363–383.
Sultan, S. E. (2004). Promising directions in plant phenotypic plasticity. Perspectives in Plant Ecology, Evolution and Systematics, 6(4), 227–233.
Ungerer, M. C., Halldorsdottir, S. S., Purugganan, M. D., & Mackay, T. F. (2003). Genotype‐environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. Genetics, 165(1), 353–365.
Valladares, F., Sanchez‐Gomez, D., & Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94(6), 1103–1116.
van Buskirk, J., & Steiner, U. K. (2009). The fitness costs of developmental canalization and plasticity. Journal of Evolutionary Biology, 22(4), 852–860.
van Kleunen, M., & Fischer, M. (2005). Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytologist, 166(1), 49–60.
van Kleunen, M., & Fischer, M. (2007). Progress in the detection of costs of phenotypic plasticity in plants. New Phytologist, 176, 727–730.
Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S. M., Schlichting, C. D., & Van Tienderen, P. H. (1995). Adaptive phenotypic plasticity: Consensus and controversy. Trends in Ecology & Evolution, 10(5), 212–217.
Wang, G., Li, H., Meng, S., Yang, J., Ye, N., & Zhang, J. (2020). Analysis of global methylome and gene expression during carbon reserve mobilization in stems under soil drying. Plant Physiology, 183(4), 1809–1824.
Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R. R., Zhang, F., Mansueto, L., Copetti, D., Sanciangco, M., Palis, K. C., Xu, J., Sun, C., Fu, B., Zhang, H., Gao, Y., … Leung, H. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 557(7703), 43–49.
West, M. A. L., Kim, K., Kliebenstein, D. J., van Leeuwen, H., Michelmore, R. W., Doerge, R. W., & St Clair, D. A. (2007). Global eQTL mapping reveals the complex genetic architecture of transcript‐level variation in Arabidopsis. Genetics, 175(3), 1441–1450.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., … Yutani, H. (2019). Welcome to tidyverse. Journal of Open Source Software, 4(43), 1686.
Wilkins, O., Hafemeister, C., Plessis, A., Holloway‐Phillips, M.‐M., Pham, G. M., Nicotra, A. B., Gregorio, G. B., Jagadish, S. V. K., Septiningsih, E. M., Bonneau, R., & Purugganan, M. (2016). EGRINs (environmental gene regulatory influence networks) in rice that function in the response to water deficit, high temperature, and agricultural environments. The Plant Cell, 28(10), 2365–2384.
Wing, R. A., Purugganan, M. D., & Zhang, Q., (2018). The rice genome revolution: from an ancient grain to Green Super Rice. Nature Reviews Genetics, 19(8), 505–517. https://doi.org/10.1038/s41576‐018‐0024‐z
Yanai, I., Benjamin, H., Shmoish, M., Chalifa‐Caspi, V., Shklar, M., Ophir, R., Bar‐Even, A., Horn‐Saban, S., Safran, M., Domany, E., Lancet, D., & Shmueli, O. (2005). Genome‐wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics, 21(5), 650–659.
Yoon, D.‐K., Ishiyama, K., Suganami, M., Tazoe, Y., Watanabe, M., Imaruoka, S., Ogura, M., Ishida, H., Suzuki, Y., Obara, M., Mae, T., & Makino, A. (2020). Transgenic rice overproducing rubisco exhibits increased yields with improved nitrogen‐use efficiency in an experimental paddy field. Nature Food, 1(2), 134–139.
Zhao, D., Hamilton, J. P., Hardigan, M., Yin, D., He, T., Vaillancourt, B., Reynoso, M., Pauluzzi, G., Funkhouser, S., Cui, Y., Bailey‐Serres, J., Jiang, J., Buell, C. R., & Jiang, N. (2017). Analysis of ribosome‐associated mRNAs in rice reveals the importance of transcript size and GC content in translation. G3, 7(1), 203–219.
Zhou, J., Wang, X., Jiao, Y., Qin, Y., Liu, X., He, K., Chen, C., Ma, L., Wang, J., Xiong, L., Zhang, Q., Fan, L., & Deng, X. W. (2007). Global genome expression analysis of rice in response to drought and high‐salinity stresses in shoot, flag leaf, and panicle. Plant Molecular Biology, 63(5), 591–608.
Zilberman, D. (2017). An evolutionary case for functional gene body methylation in plants and animals. Genome Biology, 18(1), 87.