Feedforward inhibition of stress by brainstem neuropeptide Y neurons.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
01 Sep 2024
Historique:
received: 17 01 2024
accepted: 20 08 2024
medline: 1 9 2024
pubmed: 1 9 2024
entrez: 31 8 2024
Statut: epublish

Résumé

Resistance to stress is a key determinant for mammalian functioning. While many studies have revealed neural circuits and substrates responsible for initiating and mediating stress responses, little is known about how the brain resists to stress and prevents overreactions. Here, we identified a previously uncharacterized neuropeptide Y (NPY) neuronal population in the dorsal raphe nucleus and ventrolateral periaqueductal gray region (DRN/vlPAG) with anxiolytic effects in male mice. NPY

Identifiants

pubmed: 39217143
doi: 10.1038/s41467-024-51956-9
pii: 10.1038/s41467-024-51956-9
doi:

Substances chimiques

Neuropeptide Y 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7603

Informations de copyright

© 2024. The Author(s).

Références

Hirsch, D. & Zukowska, Z. NPY and stress 30 years later: the peripheral view. Cell Mol. Neurobiol. 32, 645–659 (2012).
pubmed: 22271177 pmcid: 3492947 doi: 10.1007/s10571-011-9793-z
Daviu, N., Bruchas, M. R., Moghaddam, B., Sandi, C. & Beyeler, A. Neurobiological links between stress and anxiety. Neurobiol. Stress 11, 100191 (2019).
pubmed: 31467945 pmcid: 6712367 doi: 10.1016/j.ynstr.2019.100191
Yang, L. et al. The effects of psychological stress on depression. Curr. Neuropharmacol. 13, 494–504 (2015).
pubmed: 26412069 pmcid: 4790405 doi: 10.2174/1570159X1304150831150507
Ip, C. K. et al. Amygdala NPY circuits promote the development of accelerated obesity under chronic stress conditions. Cell Metab. 30, 111–128 (2019).
pubmed: 31031093 doi: 10.1016/j.cmet.2019.04.001
Maniam, J. & Morris, M. J. The link between stress and feeding behaviour. Neuropharmacology 63, 97–110 (2012).
pubmed: 22710442 doi: 10.1016/j.neuropharm.2012.04.017
Yehuda, R. Post-traumatic stress disorder. N. Engl. J. Med. 346, 108–114 (2002).
pubmed: 11784878 doi: 10.1056/NEJMra012941
Xu, Y. Z. et al. Identification of a neurocircuit underlying regulation of feeding by stress-related emotional responses. Nat. Commun. 10, 3446 (2019).
pubmed: 31371721 pmcid: 6671997 doi: 10.1038/s41467-019-11399-z
Albrecht, A., Redavide, E., Regev-Tsur, S., Stork, O. & Richter-Levin, G. Hippocampal GABAergic interneurons and their co-localized neuropeptides in stress vulnerability and resilience. Neurosci. Biobehav. Rev. 122, 229–244 (2021).
pubmed: 33188820 doi: 10.1016/j.neubiorev.2020.11.002
Edvinsson, L., Ekblad, E., Håkanson, R. & Wahlestedt, C. Neuropeptide Y potentiates the effect of various vasoconstrictor agents on rabbit blood vessels. Br. J. Pharmacol. 83, 519–525 (1984).
pubmed: 6593107 pmcid: 1987132 doi: 10.1111/j.1476-5381.1984.tb16516.x
Zhang, L., Bijker, M. S. & Herzog, H. The neuropeptide Y system: pathophysiological and therapeutic implications in obesity and cancer. Pharmacol. Ther. 131, 91–113 (2011).
pubmed: 21439311 doi: 10.1016/j.pharmthera.2011.03.011
Levine, A. S. & Morley, J. E. Neuropeptide Y: a potent inducer of consummatory behavior in rats. Peptides 5, 1025–1029 (1984).
pubmed: 6549409 doi: 10.1016/0196-9781(84)90165-7
Reichmann, F. & Holzer, P. Neuropeptide Y: a stressful review. Neuropeptides 55, 99–109 (2016).
pubmed: 26441327 doi: 10.1016/j.npep.2015.09.008
Heilig, M., Söderpalm, B., Engel, J. A. & Widerlöv, E. Centrally administered neuropeptide Y (NPY) produces anxiolytic-like effects in animal anxiety models. Psychopharmacology 98, 524–529 (1989).
pubmed: 2570434 doi: 10.1007/BF00441953
Kask, A. et al. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci. Biobehav. Rev. 26, 259–283 (2002).
pubmed: 12034130 doi: 10.1016/S0149-7634(01)00066-5
Cohen, H. et al. The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 37, 350–363 (2012).
pubmed: 21976046 doi: 10.1038/npp.2011.230
Bannon, A. W. et al. Behavioral characterization of neuropeptide Y knockout mice. Brain Res. 868, 79–87 (2000).
pubmed: 10841890 doi: 10.1016/S0006-8993(00)02285-X
Sah, R., Ekhator, N. N., Jefferson-Wilson, L., Horn, P. S. & Geracioti, T. D. Jr. Cerebrospinal fluid neuropeptide Y in combat veterans with and without posttraumatic stress disorder. Psychoneuroendocrinology 40, 277–283 (2014).
pubmed: 24485499 doi: 10.1016/j.psyneuen.2013.10.017
Sabban, E. L., Alaluf, L. G. & Serova, L. I. Potential of neuropeptide Y for preventing or treating post-traumatic stress disorder. Neuropeptides 56, 19–24 (2016).
pubmed: 26617395 doi: 10.1016/j.npep.2015.11.004
Adrian, T. E. et al. Neuropeptide Y distribution in human brain. Nature 306, 584–586 (1983).
pubmed: 6358901 doi: 10.1038/306584a0
Hundahl, C. et al. Hypothalamic hormone-sensitive lipase regulates appetite and energy homeostasis. Mol. Metab. 47, 101174 (2021).
pubmed: 33549847 pmcid: 7903013 doi: 10.1016/j.molmet.2021.101174
Zhang, G. W. et al. Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior. Nat. Neurosci. 24, 516–528 (2021).
pubmed: 33526942 pmcid: 8328037 doi: 10.1038/s41593-020-00784-3
Spencer, S. J., Fox, J. C. & Day, T. A. Thalamic paraventricular nucleus lesions facilitate central amygdala neuronal responses to acute psychological stress. Brain Res. 997, 234–237 (2004).
pubmed: 14706875 doi: 10.1016/j.brainres.2003.10.054
Leistner, C. & Menke, A. Hypothalamic-pituitary-adrenal axis and stress. Handb Clin Neurol. 175, 55–64 (2020).
pubmed: 33008543 doi: 10.1016/B978-0-444-64123-6.00004-7
Tovote, P., Fadok, J. P. & Luthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).
pubmed: 25991441 doi: 10.1038/nrn3945
Song, C., Berridge, K. C. & Kalueff, A. V. Stressing’ rodent self-grooming for neuroscience research. Nat. Rev. Neurosci 17, 591 (2016).
pubmed: 27466146 pmcid: 5504409 doi: 10.1038/nrn.2016.103
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).
pubmed: 17360345 pmcid: 1829280 doi: 10.1073/pnas.0700293104
Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).
pubmed: 21209617 doi: 10.1038/nn.2739
Chen, J. et al. A vagal-NTS neural pathway that stimulates feeding. Curr. Biol. 30, 3986–3998 (2020).
pubmed: 32822608 doi: 10.1016/j.cub.2020.07.084
Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013).
pubmed: 23663785 pmcid: 3767768 doi: 10.1016/j.cell.2013.04.017
Guidi, J., Lucente, M., Sonino, N. & Fava, G. A. Allostatic load and its impact on health: a systematic review. Psychother. Psychosom. 90, 11–27 (2021).
pubmed: 32799204 doi: 10.1159/000510696
Jeong, J. Y., Lee, D. H. & Kang, S. S. Effects of chronic restraint stress on body weight, food intake, and hypothalamic gene expressions in mice. Endocrinol. Metab. 28, 288–296 (2013).
doi: 10.3803/EnM.2013.28.4.288
Liu, W. Z. et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat. Commun. 11, 2221 (2020).
pubmed: 32376858 pmcid: 7203160 doi: 10.1038/s41467-020-15920-7
Yang, Y. et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554, 317–322 (2018).
pubmed: 29446381 doi: 10.1038/nature25509
Qu, N. et al. A POMC-originated circuit regulates stress-induced hypophagia, depression, and anhedonia. Mol. Psychiatry 25, 1006–1021 (2020).
pubmed: 31485012 doi: 10.1038/s41380-019-0506-1
Haleem, D. J. Adaptation to repeated restraint stress in rats: failure of ethanol-treated rats to adapt in the stress schedule. Alcohol Alcohol. 31, 471–477 (1996).
pubmed: 8949963 doi: 10.1093/oxfordjournals.alcalc.a008181
Patel, S. & Hillard, C. J. Adaptations in endocannabinoid signaling in response to repeated homotypic stress: a novel mechanism for stress habituation. Eur. J. Neurosci. 27, 2821–2829 (2008).
pubmed: 18588527 pmcid: 2593941 doi: 10.1111/j.1460-9568.2008.06266.x
Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).
pubmed: 28774929 pmcid: 7309169 doi: 10.1126/science.aan2475
Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019).
pubmed: 31209378 pmcid: 6592769 doi: 10.1038/s41593-019-0422-3
Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162, 622–634 (2015).
pubmed: 26232228 pmcid: 4522312 doi: 10.1016/j.cell.2015.07.015
Zheng, Z. W. et al. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset. Neuron 110, 1400–1415.e1406 (2022).
pubmed: 35114101 doi: 10.1016/j.neuron.2022.01.011
Xie, Z. Y. et al. Mechanically evoked defensive attack is controlled by GABAergic neurons in the anterior hypothalamic nucleus. Nat. Neurosci. 25, 72–85 (2022).
pubmed: 34980925 doi: 10.1038/s41593-021-00985-4
Wang, M. et al. Lateral septum adenosine A(2A) receptors control stress-induced depressive-like behaviors via signaling to the hypothalamus and habenula. Nat. Commun. 14, 1880 (2023).
pubmed: 37019936 pmcid: 10076302 doi: 10.1038/s41467-023-37601-x
Stanić, D., Mulder, J., Watanabe, M. & Hökfelt, T. Characterization of NPY Y2 receptor protein expression in the mouse brain. II. Coexistence with NPY, the Y1 receptor, and other neurotransmitter-related molecules. J. Comp. Neurol. 519, 1219–1257 (2011).
pubmed: 21452195 doi: 10.1002/cne.22608
Stanić, D. et al. Characterization of neuropeptide Y2 receptor protein expression in the mouse brain. I. Distribution in cell bodies and nerve terminals. J. Comp. Neurol. 499, 357–390 (2006).
pubmed: 16998904 doi: 10.1002/cne.21046
Kopp, J. et al. Expression of the neuropeptide Y Y1 receptor in the CNS of rat and of wild-type and Y1 receptor knock-out mice. Focus on immunohistochemical localization. Neuroscience 111, 443–532 (2002).
pubmed: 12031341 doi: 10.1016/S0306-4522(01)00463-8
Seo, J. S. et al. Cellular and molecular basis for stress-induced depression. Mol. Psychiatry 22, 1440–1447 (2017).
pubmed: 27457815 doi: 10.1038/mp.2016.118
George, D. T., Ameli, R. & Koob, G. F. Periaqueductal gray sheds light on dark areas of psychopathology. Trends Neurosci. 42, 349–360 (2019).
pubmed: 30955857 doi: 10.1016/j.tins.2019.03.004
Yuan, Y. et al. Reward inhibits paraventricular CRH neurons to relieve stress. Curr. Biol. 29, 1243–1251.e1244 (2019).
pubmed: 30853436 doi: 10.1016/j.cub.2019.02.048
Bacchi, F. et al. Anxiolytic-like effect of the selective neuropeptide Y Y2 receptor antagonist BIIE0246 in the elevated plus-maze. Peptides 27, 3202–3207 (2006).
pubmed: 16959374 doi: 10.1016/j.peptides.2006.07.020
Kask, A., Rägo, L. & Harro, J. Anxiolytic-like effect of neuropeptide Y (NPY) and NPY13-36 microinjected into vicinity of locus coeruleus in rats. Brain Res. 788, 345–348 (1998).
pubmed: 9555090 doi: 10.1016/S0006-8993(98)00076-6
Azevedo E. P., et al. A limbic circuit selectively links active escape to food suppression. Elife 9, (2020).
Wu, Y. et al. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat. Commun. 11, 640 (2020).
pubmed: 32005806 pmcid: 6994462 doi: 10.1038/s41467-020-14281-5
Zhang, J., Chen, D., Sweeney, P. & Yang, Y. An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat. Commun. 11, 6326 (2020).
pubmed: 33303759 pmcid: 7728757 doi: 10.1038/s41467-020-20093-4
Wang, D. et al. Lateral hypothalamus orexinergic inputs to lateral habenula modulate maladaptation after social defeat stress. Neurobiol. Stress 14, 100298 (2021).
pubmed: 33569507 pmcid: 7859368 doi: 10.1016/j.ynstr.2021.100298
Owens-French, J. et al. Lateral hypothalamic galanin neurons are activated by stress and blunt anxiety-like behavior in mice. Behav. Brain Res. 423, 113773 (2022).
pubmed: 35101456 pmcid: 8901126 doi: 10.1016/j.bbr.2022.113773
Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998).
pubmed: 9822755 pmcid: 6793310 doi: 10.1523/JNEUROSCI.18-23-09996.1998
Bonnavion, P., Jackson, A. C., Carter, M. E. & de Lecea, L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat. Commun. 6, 6266 (2015).
pubmed: 25695914 doi: 10.1038/ncomms7266
Mercer, R. E., Chee, M. J. & Colmers, W. F. The role of NPY in hypothalamic mediated food intake. Front. Neuroendocrinol 32, 398–415 (2011).
pubmed: 21726573 doi: 10.1016/j.yfrne.2011.06.001
Zhu, C. J. et al. Profound and redundant functions of arcuate neurons in obesity development. Nat. Metab. 2, 763–774 (2020).
pubmed: 32719538 pmcid: 7687864 doi: 10.1038/s42255-020-0229-2
Betley, J. N. et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185 (2015).
pubmed: 25915020 pmcid: 4567040 doi: 10.1038/nature14416
Comeras, L. B., Herzog, H. & Tasan, R. O. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann. N.Y. Acad. Sci. 1455, 59–80 (2019).
pubmed: 31271235 pmcid: 6899945 doi: 10.1111/nyas.14179
Forbes, S., Herzog, H. & Cox, H. M. A role for neuropeptide Y in the gender-specific gastrointestinal, corticosterone and feeding responses to stress. Br. J. Pharmacol. 166, 2307–2316 (2012).
pubmed: 22404240 pmcid: 3448895 doi: 10.1111/j.1476-5381.2012.01939.x
Nectow, A. R. et al. Identification of a brainstem circuit controlling feeding. Cell 170, 429–442.e411 (2017).
pubmed: 28753423 doi: 10.1016/j.cell.2017.06.045
Verma, R., Balhara, Y. P. & Gupta, C. S. Gender differences in stress response: role of developmental and biological determinants. Ind. Psychiatry J. 20, 4–10 (2011).
pubmed: 22969173 pmcid: 3425245 doi: 10.4103/0972-6748.98407
Claes, M., De Groef, L. & Moons, L. The DREADDful hurdles and opportunities of the chronic chemogenetic toolbox. Cells 11, 1110 (2022).
pubmed: 35406674 pmcid: 8998042 doi: 10.3390/cells11071110
Zhao, Z. et al. A central catecholaminergic circuit controls blood glucose levels during stress. Neuron 95, 138–152.e135 (2017).
pubmed: 28625488 doi: 10.1016/j.neuron.2017.05.031
Mimee, A., Kuksis, M. & Ferguson, A. V. α-MSH exerts direct postsynaptic excitatory effects on NTS neurons and enhances GABAergic signaling in the NTS. Neuroscience 262, 70–82 (2014).
pubmed: 24370637 doi: 10.1016/j.neuroscience.2013.12.039
Liu, Z. X. et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374 (2014).
pubmed: 24656254 pmcid: 4411946 doi: 10.1016/j.neuron.2014.02.010
Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, 10503 (2016).
pubmed: 26818705 pmcid: 4738365 doi: 10.1038/ncomms10503

Auteurs

Yan Zhang (Y)

State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
Human Phenome Institute, Fudan University, Shanghai, China.
Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.

Jiayi Shen (J)

Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Famin Xie (F)

State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.

Zhiwei Liu (Z)

Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Fangfang Yin (F)

Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.

Mingxiu Cheng (M)

National Institute of Biological Sciences, Beijing, China.
Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.

Liang Wang (L)

Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Meiting Cai (M)

Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.

Herbert Herzog (H)

St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, NSW, Australia.
Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.

Ping Wu (P)

Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.

Zhi Zhang (Z)

State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China. z_zhang@fudan.edu.cn.

Cheng Zhan (C)

Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China. zhancheng@ustc.edu.cn.
Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. zhancheng@ustc.edu.cn.

Tiemin Liu (T)

State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China. tiemin_liu@fudan.edu.cn.
Human Phenome Institute, Fudan University, Shanghai, China. tiemin_liu@fudan.edu.cn.
Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China. tiemin_liu@fudan.edu.cn.
Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China. tiemin_liu@fudan.edu.cn.
School of Life Sciences, Inner Mongolia University, Hohhot, China. tiemin_liu@fudan.edu.cn.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH