Feedforward inhibition of stress by brainstem neuropeptide Y neurons.
Animals
Male
Neuropeptide Y
/ metabolism
Neurons
/ metabolism
Mice
Stress, Psychological
/ physiopathology
Mice, Inbred C57BL
Anxiety
/ physiopathology
Dorsal Raphe Nucleus
/ metabolism
Periaqueductal Gray
/ physiology
Brain Stem
/ physiology
Hypothalamic Area, Lateral
/ physiology
Stress, Physiological
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
01 Sep 2024
01 Sep 2024
Historique:
received:
17
01
2024
accepted:
20
08
2024
medline:
1
9
2024
pubmed:
1
9
2024
entrez:
31
8
2024
Statut:
epublish
Résumé
Resistance to stress is a key determinant for mammalian functioning. While many studies have revealed neural circuits and substrates responsible for initiating and mediating stress responses, little is known about how the brain resists to stress and prevents overreactions. Here, we identified a previously uncharacterized neuropeptide Y (NPY) neuronal population in the dorsal raphe nucleus and ventrolateral periaqueductal gray region (DRN/vlPAG) with anxiolytic effects in male mice. NPY
Identifiants
pubmed: 39217143
doi: 10.1038/s41467-024-51956-9
pii: 10.1038/s41467-024-51956-9
doi:
Substances chimiques
Neuropeptide Y
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7603Informations de copyright
© 2024. The Author(s).
Références
Hirsch, D. & Zukowska, Z. NPY and stress 30 years later: the peripheral view. Cell Mol. Neurobiol. 32, 645–659 (2012).
pubmed: 22271177
pmcid: 3492947
doi: 10.1007/s10571-011-9793-z
Daviu, N., Bruchas, M. R., Moghaddam, B., Sandi, C. & Beyeler, A. Neurobiological links between stress and anxiety. Neurobiol. Stress 11, 100191 (2019).
pubmed: 31467945
pmcid: 6712367
doi: 10.1016/j.ynstr.2019.100191
Yang, L. et al. The effects of psychological stress on depression. Curr. Neuropharmacol. 13, 494–504 (2015).
pubmed: 26412069
pmcid: 4790405
doi: 10.2174/1570159X1304150831150507
Ip, C. K. et al. Amygdala NPY circuits promote the development of accelerated obesity under chronic stress conditions. Cell Metab. 30, 111–128 (2019).
pubmed: 31031093
doi: 10.1016/j.cmet.2019.04.001
Maniam, J. & Morris, M. J. The link between stress and feeding behaviour. Neuropharmacology 63, 97–110 (2012).
pubmed: 22710442
doi: 10.1016/j.neuropharm.2012.04.017
Yehuda, R. Post-traumatic stress disorder. N. Engl. J. Med. 346, 108–114 (2002).
pubmed: 11784878
doi: 10.1056/NEJMra012941
Xu, Y. Z. et al. Identification of a neurocircuit underlying regulation of feeding by stress-related emotional responses. Nat. Commun. 10, 3446 (2019).
pubmed: 31371721
pmcid: 6671997
doi: 10.1038/s41467-019-11399-z
Albrecht, A., Redavide, E., Regev-Tsur, S., Stork, O. & Richter-Levin, G. Hippocampal GABAergic interneurons and their co-localized neuropeptides in stress vulnerability and resilience. Neurosci. Biobehav. Rev. 122, 229–244 (2021).
pubmed: 33188820
doi: 10.1016/j.neubiorev.2020.11.002
Edvinsson, L., Ekblad, E., Håkanson, R. & Wahlestedt, C. Neuropeptide Y potentiates the effect of various vasoconstrictor agents on rabbit blood vessels. Br. J. Pharmacol. 83, 519–525 (1984).
pubmed: 6593107
pmcid: 1987132
doi: 10.1111/j.1476-5381.1984.tb16516.x
Zhang, L., Bijker, M. S. & Herzog, H. The neuropeptide Y system: pathophysiological and therapeutic implications in obesity and cancer. Pharmacol. Ther. 131, 91–113 (2011).
pubmed: 21439311
doi: 10.1016/j.pharmthera.2011.03.011
Levine, A. S. & Morley, J. E. Neuropeptide Y: a potent inducer of consummatory behavior in rats. Peptides 5, 1025–1029 (1984).
pubmed: 6549409
doi: 10.1016/0196-9781(84)90165-7
Reichmann, F. & Holzer, P. Neuropeptide Y: a stressful review. Neuropeptides 55, 99–109 (2016).
pubmed: 26441327
doi: 10.1016/j.npep.2015.09.008
Heilig, M., Söderpalm, B., Engel, J. A. & Widerlöv, E. Centrally administered neuropeptide Y (NPY) produces anxiolytic-like effects in animal anxiety models. Psychopharmacology 98, 524–529 (1989).
pubmed: 2570434
doi: 10.1007/BF00441953
Kask, A. et al. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci. Biobehav. Rev. 26, 259–283 (2002).
pubmed: 12034130
doi: 10.1016/S0149-7634(01)00066-5
Cohen, H. et al. The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 37, 350–363 (2012).
pubmed: 21976046
doi: 10.1038/npp.2011.230
Bannon, A. W. et al. Behavioral characterization of neuropeptide Y knockout mice. Brain Res. 868, 79–87 (2000).
pubmed: 10841890
doi: 10.1016/S0006-8993(00)02285-X
Sah, R., Ekhator, N. N., Jefferson-Wilson, L., Horn, P. S. & Geracioti, T. D. Jr. Cerebrospinal fluid neuropeptide Y in combat veterans with and without posttraumatic stress disorder. Psychoneuroendocrinology 40, 277–283 (2014).
pubmed: 24485499
doi: 10.1016/j.psyneuen.2013.10.017
Sabban, E. L., Alaluf, L. G. & Serova, L. I. Potential of neuropeptide Y for preventing or treating post-traumatic stress disorder. Neuropeptides 56, 19–24 (2016).
pubmed: 26617395
doi: 10.1016/j.npep.2015.11.004
Adrian, T. E. et al. Neuropeptide Y distribution in human brain. Nature 306, 584–586 (1983).
pubmed: 6358901
doi: 10.1038/306584a0
Hundahl, C. et al. Hypothalamic hormone-sensitive lipase regulates appetite and energy homeostasis. Mol. Metab. 47, 101174 (2021).
pubmed: 33549847
pmcid: 7903013
doi: 10.1016/j.molmet.2021.101174
Zhang, G. W. et al. Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior. Nat. Neurosci. 24, 516–528 (2021).
pubmed: 33526942
pmcid: 8328037
doi: 10.1038/s41593-020-00784-3
Spencer, S. J., Fox, J. C. & Day, T. A. Thalamic paraventricular nucleus lesions facilitate central amygdala neuronal responses to acute psychological stress. Brain Res. 997, 234–237 (2004).
pubmed: 14706875
doi: 10.1016/j.brainres.2003.10.054
Leistner, C. & Menke, A. Hypothalamic-pituitary-adrenal axis and stress. Handb Clin Neurol. 175, 55–64 (2020).
pubmed: 33008543
doi: 10.1016/B978-0-444-64123-6.00004-7
Tovote, P., Fadok, J. P. & Luthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).
pubmed: 25991441
doi: 10.1038/nrn3945
Song, C., Berridge, K. C. & Kalueff, A. V. Stressing’ rodent self-grooming for neuroscience research. Nat. Rev. Neurosci 17, 591 (2016).
pubmed: 27466146
pmcid: 5504409
doi: 10.1038/nrn.2016.103
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).
pubmed: 17360345
pmcid: 1829280
doi: 10.1073/pnas.0700293104
Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).
pubmed: 21209617
doi: 10.1038/nn.2739
Chen, J. et al. A vagal-NTS neural pathway that stimulates feeding. Curr. Biol. 30, 3986–3998 (2020).
pubmed: 32822608
doi: 10.1016/j.cub.2020.07.084
Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013).
pubmed: 23663785
pmcid: 3767768
doi: 10.1016/j.cell.2013.04.017
Guidi, J., Lucente, M., Sonino, N. & Fava, G. A. Allostatic load and its impact on health: a systematic review. Psychother. Psychosom. 90, 11–27 (2021).
pubmed: 32799204
doi: 10.1159/000510696
Jeong, J. Y., Lee, D. H. & Kang, S. S. Effects of chronic restraint stress on body weight, food intake, and hypothalamic gene expressions in mice. Endocrinol. Metab. 28, 288–296 (2013).
doi: 10.3803/EnM.2013.28.4.288
Liu, W. Z. et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat. Commun. 11, 2221 (2020).
pubmed: 32376858
pmcid: 7203160
doi: 10.1038/s41467-020-15920-7
Yang, Y. et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554, 317–322 (2018).
pubmed: 29446381
doi: 10.1038/nature25509
Qu, N. et al. A POMC-originated circuit regulates stress-induced hypophagia, depression, and anhedonia. Mol. Psychiatry 25, 1006–1021 (2020).
pubmed: 31485012
doi: 10.1038/s41380-019-0506-1
Haleem, D. J. Adaptation to repeated restraint stress in rats: failure of ethanol-treated rats to adapt in the stress schedule. Alcohol Alcohol. 31, 471–477 (1996).
pubmed: 8949963
doi: 10.1093/oxfordjournals.alcalc.a008181
Patel, S. & Hillard, C. J. Adaptations in endocannabinoid signaling in response to repeated homotypic stress: a novel mechanism for stress habituation. Eur. J. Neurosci. 27, 2821–2829 (2008).
pubmed: 18588527
pmcid: 2593941
doi: 10.1111/j.1460-9568.2008.06266.x
Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).
pubmed: 28774929
pmcid: 7309169
doi: 10.1126/science.aan2475
Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019).
pubmed: 31209378
pmcid: 6592769
doi: 10.1038/s41593-019-0422-3
Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162, 622–634 (2015).
pubmed: 26232228
pmcid: 4522312
doi: 10.1016/j.cell.2015.07.015
Zheng, Z. W. et al. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset. Neuron 110, 1400–1415.e1406 (2022).
pubmed: 35114101
doi: 10.1016/j.neuron.2022.01.011
Xie, Z. Y. et al. Mechanically evoked defensive attack is controlled by GABAergic neurons in the anterior hypothalamic nucleus. Nat. Neurosci. 25, 72–85 (2022).
pubmed: 34980925
doi: 10.1038/s41593-021-00985-4
Wang, M. et al. Lateral septum adenosine A(2A) receptors control stress-induced depressive-like behaviors via signaling to the hypothalamus and habenula. Nat. Commun. 14, 1880 (2023).
pubmed: 37019936
pmcid: 10076302
doi: 10.1038/s41467-023-37601-x
Stanić, D., Mulder, J., Watanabe, M. & Hökfelt, T. Characterization of NPY Y2 receptor protein expression in the mouse brain. II. Coexistence with NPY, the Y1 receptor, and other neurotransmitter-related molecules. J. Comp. Neurol. 519, 1219–1257 (2011).
pubmed: 21452195
doi: 10.1002/cne.22608
Stanić, D. et al. Characterization of neuropeptide Y2 receptor protein expression in the mouse brain. I. Distribution in cell bodies and nerve terminals. J. Comp. Neurol. 499, 357–390 (2006).
pubmed: 16998904
doi: 10.1002/cne.21046
Kopp, J. et al. Expression of the neuropeptide Y Y1 receptor in the CNS of rat and of wild-type and Y1 receptor knock-out mice. Focus on immunohistochemical localization. Neuroscience 111, 443–532 (2002).
pubmed: 12031341
doi: 10.1016/S0306-4522(01)00463-8
Seo, J. S. et al. Cellular and molecular basis for stress-induced depression. Mol. Psychiatry 22, 1440–1447 (2017).
pubmed: 27457815
doi: 10.1038/mp.2016.118
George, D. T., Ameli, R. & Koob, G. F. Periaqueductal gray sheds light on dark areas of psychopathology. Trends Neurosci. 42, 349–360 (2019).
pubmed: 30955857
doi: 10.1016/j.tins.2019.03.004
Yuan, Y. et al. Reward inhibits paraventricular CRH neurons to relieve stress. Curr. Biol. 29, 1243–1251.e1244 (2019).
pubmed: 30853436
doi: 10.1016/j.cub.2019.02.048
Bacchi, F. et al. Anxiolytic-like effect of the selective neuropeptide Y Y2 receptor antagonist BIIE0246 in the elevated plus-maze. Peptides 27, 3202–3207 (2006).
pubmed: 16959374
doi: 10.1016/j.peptides.2006.07.020
Kask, A., Rägo, L. & Harro, J. Anxiolytic-like effect of neuropeptide Y (NPY) and NPY13-36 microinjected into vicinity of locus coeruleus in rats. Brain Res. 788, 345–348 (1998).
pubmed: 9555090
doi: 10.1016/S0006-8993(98)00076-6
Azevedo E. P., et al. A limbic circuit selectively links active escape to food suppression. Elife 9, (2020).
Wu, Y. et al. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat. Commun. 11, 640 (2020).
pubmed: 32005806
pmcid: 6994462
doi: 10.1038/s41467-020-14281-5
Zhang, J., Chen, D., Sweeney, P. & Yang, Y. An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat. Commun. 11, 6326 (2020).
pubmed: 33303759
pmcid: 7728757
doi: 10.1038/s41467-020-20093-4
Wang, D. et al. Lateral hypothalamus orexinergic inputs to lateral habenula modulate maladaptation after social defeat stress. Neurobiol. Stress 14, 100298 (2021).
pubmed: 33569507
pmcid: 7859368
doi: 10.1016/j.ynstr.2021.100298
Owens-French, J. et al. Lateral hypothalamic galanin neurons are activated by stress and blunt anxiety-like behavior in mice. Behav. Brain Res. 423, 113773 (2022).
pubmed: 35101456
pmcid: 8901126
doi: 10.1016/j.bbr.2022.113773
Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998).
pubmed: 9822755
pmcid: 6793310
doi: 10.1523/JNEUROSCI.18-23-09996.1998
Bonnavion, P., Jackson, A. C., Carter, M. E. & de Lecea, L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat. Commun. 6, 6266 (2015).
pubmed: 25695914
doi: 10.1038/ncomms7266
Mercer, R. E., Chee, M. J. & Colmers, W. F. The role of NPY in hypothalamic mediated food intake. Front. Neuroendocrinol 32, 398–415 (2011).
pubmed: 21726573
doi: 10.1016/j.yfrne.2011.06.001
Zhu, C. J. et al. Profound and redundant functions of arcuate neurons in obesity development. Nat. Metab. 2, 763–774 (2020).
pubmed: 32719538
pmcid: 7687864
doi: 10.1038/s42255-020-0229-2
Betley, J. N. et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185 (2015).
pubmed: 25915020
pmcid: 4567040
doi: 10.1038/nature14416
Comeras, L. B., Herzog, H. & Tasan, R. O. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann. N.Y. Acad. Sci. 1455, 59–80 (2019).
pubmed: 31271235
pmcid: 6899945
doi: 10.1111/nyas.14179
Forbes, S., Herzog, H. & Cox, H. M. A role for neuropeptide Y in the gender-specific gastrointestinal, corticosterone and feeding responses to stress. Br. J. Pharmacol. 166, 2307–2316 (2012).
pubmed: 22404240
pmcid: 3448895
doi: 10.1111/j.1476-5381.2012.01939.x
Nectow, A. R. et al. Identification of a brainstem circuit controlling feeding. Cell 170, 429–442.e411 (2017).
pubmed: 28753423
doi: 10.1016/j.cell.2017.06.045
Verma, R., Balhara, Y. P. & Gupta, C. S. Gender differences in stress response: role of developmental and biological determinants. Ind. Psychiatry J. 20, 4–10 (2011).
pubmed: 22969173
pmcid: 3425245
doi: 10.4103/0972-6748.98407
Claes, M., De Groef, L. & Moons, L. The DREADDful hurdles and opportunities of the chronic chemogenetic toolbox. Cells 11, 1110 (2022).
pubmed: 35406674
pmcid: 8998042
doi: 10.3390/cells11071110
Zhao, Z. et al. A central catecholaminergic circuit controls blood glucose levels during stress. Neuron 95, 138–152.e135 (2017).
pubmed: 28625488
doi: 10.1016/j.neuron.2017.05.031
Mimee, A., Kuksis, M. & Ferguson, A. V. α-MSH exerts direct postsynaptic excitatory effects on NTS neurons and enhances GABAergic signaling in the NTS. Neuroscience 262, 70–82 (2014).
pubmed: 24370637
doi: 10.1016/j.neuroscience.2013.12.039
Liu, Z. X. et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374 (2014).
pubmed: 24656254
pmcid: 4411946
doi: 10.1016/j.neuron.2014.02.010
Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, 10503 (2016).
pubmed: 26818705
pmcid: 4738365
doi: 10.1038/ncomms10503