Volatile anesthetics for lung- and diaphragm-protective sedation.
Diaphragm
Inhaled sedation
Intensive care
Lung
Lung- and diaphragm-protective sedation
Ventilation
Ventilator weaning
Volatile anesthetics
Journal
Critical care (London, England)
ISSN: 1466-609X
Titre abrégé: Crit Care
Pays: England
ID NLM: 9801902
Informations de publication
Date de publication:
01 Sep 2024
01 Sep 2024
Historique:
received:
12
06
2024
accepted:
30
07
2024
medline:
1
9
2024
pubmed:
1
9
2024
entrez:
31
8
2024
Statut:
epublish
Résumé
This review explores the complex interactions between sedation and invasive ventilation and examines the potential of volatile anesthetics for lung- and diaphragm-protective sedation. In the early stages of invasive ventilation, many critically ill patients experience insufficient respiratory drive and effort, leading to compromised diaphragm function. Compared with common intravenous agents, inhaled sedation with volatile anesthetics better preserves respiratory drive, potentially helping to maintain diaphragm function during prolonged periods of invasive ventilation. In turn, higher concentrations of volatile anesthetics reduce the size of spontaneously generated tidal volumes, potentially reducing lung stress and strain and with that the risk of self-inflicted lung injury. Taken together, inhaled sedation may allow titration of respiratory drive to maintain inspiratory efforts within lung- and diaphragm-protective ranges. Particularly in patients who are expected to require prolonged invasive ventilation, in whom the restoration of adequate but safe inspiratory effort is crucial for successful weaning, inhaled sedation represents an attractive option for lung- and diaphragm-protective sedation. A technical limitation is ventilatory dead space introduced by volatile anesthetic reflectors, although this impact is minimal and comparable to ventilation with heat and moisture exchangers. Further studies are imperative for a comprehensive understanding of the specific effects of inhaled sedation on respiratory drive and effort and, ultimately, how this translates into patient-centered outcomes in critically ill patients.
Identifiants
pubmed: 39217380
doi: 10.1186/s13054-024-05049-0
pii: 10.1186/s13054-024-05049-0
doi:
Substances chimiques
Anesthetics, Inhalation
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
269Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : MU4688-1-1
Organisme : NIH HHS
ID : R01-HL168102
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Van Haren F, Pham T, Brochard L, Bellani G, Laffey J, Dres M, et al. Spontaneous breathing in early acute respiratory distress syndrome: insights from the large observational study to understand the global impact of severe acute respiratory failure study∗. Crit Care Med. 2019;47:229–38.
pubmed: 30379668
pmcid: 6336491
doi: 10.1097/CCM.0000000000003519
Dos RAM, Midega TD, Deliberato RO, Johnson AE, Bulgarelli L, Correa TD, et al. Effect of spontaneous breathing on ventilator-free days in critically ill patients—an analysis of patients in a large observational cohort. Ann Transl Med. 2021;9:783–783.
doi: 10.21037/atm-20-7901
Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192:1080–8.
pubmed: 26167730
doi: 10.1164/rccm.201503-0620OC
Yoshida T, Grieco DL, Brochard L, Fujino Y. Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing. Curr Opin Crit Care. 2020;26:59–65.
pubmed: 31815775
doi: 10.1097/MCC.0000000000000691
Quickfall D, Sklar MC, Tomlinson G, Orchanian-Cheff A, Goligher EC. The influence of drugs used for sedation during mechanical ventilation on respiratory pattern during unassisted breathing and assisted mechanical ventilation: a physiological systematic review and meta-analysis. EClinicalMedicine. 2024;68: 102417.
pubmed: 38235422
pmcid: 10789641
doi: 10.1016/j.eclinm.2023.102417
Stuth EAE, Stucke AG, Zuperku EJ. Effects of anesthetics, sedatives, and opioids on ventilatory control. Compr Physiol. 2012;2:2281–367.
pubmed: 23720250
doi: 10.1002/cphy.c100061
Kassis EB, Beitler JR, Talmor D. Lung-protective sedation: moving toward a new paradigm of precision sedation. Intensive Care Med. 2023;49:91–4.
pubmed: 36239747
doi: 10.1007/s00134-022-06901-z
Goligher EC, Jonkman AH, Dianti J, Vaporidi K, Beitler JR, Patel BK, et al. Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med. 2020;46:2314–26.
pubmed: 33140181
pmcid: 7605467
doi: 10.1007/s00134-020-06288-9
Beitler JR, Sands SA, Loring SH, Owens RL, Malhotra A, Spragg RG, et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med. 2016;42:1427–36.
pubmed: 27342819
pmcid: 4992404
doi: 10.1007/s00134-016-4423-3
Wittenstein J, Huhle R, Leiderman M, Möbius M, Braune A, Tauer S, et al. Effect of patient-ventilator asynchrony on lung and diaphragmatic injury in experimental acute respiratory distress syndrome in a porcine model. Br J Anaesth. 2023;130:e169–78.
pubmed: 34895719
doi: 10.1016/j.bja.2021.10.037
Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo MA, EL Costa V, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188:1420–7.
pubmed: 24199628
doi: 10.1164/rccm.201303-0539OC
Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model. Crit Care Med. 2012;40:1578–85.
pubmed: 22430241
doi: 10.1097/CCM.0b013e3182451c40
Bachmann MC, Cruces P, Díaz F, Oviedo V, Goich M, Fuenzalida J, et al. Spontaneous breathing promotes lung injury in an experimental model of alveolar collapse. Sci Rep. 2022;12:12648.
pubmed: 35879511
pmcid: 9310356
doi: 10.1038/s41598-022-16446-2
Sarge T, Baedorf-Kassis E, Banner-Goodspeed V, Novack V, Loring SH, Gong MN, et al. Effect of esophageal pressure-guided positive end-expiratory pressure on survival from acute respiratory distress syndrome: a risk-based and mechanistic reanalysis of the EPVent-2 trial. Am J Respir Crit Care Med. 2021;204:1153–63.
pubmed: 34464237
pmcid: 8759303
doi: 10.1164/rccm.202009-3539OC
Bellani G, Grassi A, Sosio S, Gatti S, Kavanagh BP, Pesenti A, et al. Driving pressure is associated with outcome during assisted ventilation in acute respiratory distress syndrome. Anesthesiology. 2019;131:594–604.
pubmed: 31335543
doi: 10.1097/ALN.0000000000002846
Serafini SC, van Meenen DMP, Pisani L, Neto AS, Ball L, de Abreu MG, et al. Different ventilation intensities among various categories of patients ventilated for reasons other than ARDS––A pooled analysis of 4 observational studies. J Crit Care. 2024;81: 154531.
pubmed: 38341938
doi: 10.1016/j.jcrc.2024.154531
Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.
pubmed: 18367735
doi: 10.1056/NEJMoa070447
Jaber S, Petrof BJ, Jung B, Chanques G, Berthet J-P, Rabuel C, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–71.
pubmed: 20813887
doi: 10.1164/rccm.201004-0670OC
Hooijman PE, Beishuizen A, Witt CC, de Waard MC, Girbes ARJ, Spoelstra-de Man AME, et al. Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. Am J Respir Crit Care Med. 2015;191:1126–38.
pubmed: 25760684
pmcid: 4451621
doi: 10.1164/rccm.201412-2214OC
Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–13.
pubmed: 28930478
doi: 10.1164/rccm.201703-0536OC
Goligher EC, Brochard LJ, Reid WD, Fan E, Saarela O, Slutsky AS, et al. Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respir Med. 2019;7:90–8.
pubmed: 30455078
doi: 10.1016/S2213-2600(18)30366-7
Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation- perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159:1241–8.
pubmed: 10194172
doi: 10.1164/ajrccm.159.4.9806077
Putensen C, Zech S, Wrigge H, Zinserling J, Stüber F, Von Spiegel T, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164:43–9.
pubmed: 11435237
doi: 10.1164/ajrccm.164.1.2001078
Hering R, Peters D, Zinserling J, Wrigge H, Von Spiegel T, Putensen C. Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med. 2002;28:1426–33.
pubmed: 12373467
doi: 10.1007/s00134-002-1442-z
Hering R, Bolten JC, Kreyer S, Berg A, Wrigge H, Zinserling J, et al. Spontaneous breathing during airway pressure release ventilation in experimental lung injury: effects on hepatic blood flow. Intensive Care Med. 2008;34:523–7.
pubmed: 18087691
doi: 10.1007/s00134-007-0957-8
Dzierba AL, Khalil AM, Derry KL, Madahar P, Beitler JR. Discordance between respiratory drive and sedation depth in critically ill patients receiving mechanical ventilation. Crit Care Med. 2021;49:2090–101.
pubmed: 34115638
pmcid: 8602777
doi: 10.1097/CCM.0000000000005113
Coiffard B, Dianti J, Telias I, Brochard LJ, Slutsky AS, Beck J, et al. Dyssynchronous diaphragm contractions impair diaphragm function in mechanically ventilated patients. Crit Care. 2024;28:107.
pubmed: 38566126
pmcid: 10988824
doi: 10.1186/s13054-024-04894-3
de Vries HJ, Tuinman PR, Jonkman AH, Liu L, Qiu H, Girbes ARJ, et al. Performance of noninvasive airway occlusion maneuvers to assess lung stress and diaphragm effort in mechanically ventilated critically ill patients. Anesthesiology. 2023;138:274–88.
pubmed: 36520507
doi: 10.1097/ALN.0000000000004467
Bertoni M, Telias I, Urner M, Long M, Del Sorbo L, Fan E, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care. 2019;23:346.
pubmed: 31694692
pmcid: 6836358
doi: 10.1186/s13054-019-2617-0
Telias I, Junhasavasdikul D, Rittayamai N, Piquilloud L, Chen L, Ferguson ND, et al. Airway occlusion pressure as an estimate of respiratory drive and inspiratory effort during assisted ventilation. Am J Respir Crit Care Med. 2020;201:1086–98.
pubmed: 32097569
doi: 10.1164/rccm.201907-1425OC
Jonkman AH, Telias I, Spinelli E, Akoumianaki E, Piquilloud L. The oesophageal balloon for respiratory monitoring in ventilated patients: updated clinical review and practical aspects. Eur Respir Rev. 2023;32: 220186.
pubmed: 37197768
pmcid: 10189643
doi: 10.1183/16000617.0186-2022
Jonkman AH, Warnaar RSP, Baccinelli W, Carbon NM, D’Cruz RF, Doorduin J, et al. Analysis and applications of respiratory surface EMG: report of a round table meeting. Crit Care. 2024;28:2.
pubmed: 38166968
pmcid: 10759550
doi: 10.1186/s13054-023-04779-x
Devlin JW, Skrobik Y, Gélinas C, Needham DM, Slooter AJC, Pandharipande PP, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46:e825–73.
pubmed: 30113379
doi: 10.1097/CCM.0000000000003299
Costa R, Navalesi P, Cammarota G, Longhini F, Spinazzola G, Cipriani F, et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist. Respir Physiol Neurobiol. 2017;244:10–6.
pubmed: 28673877
doi: 10.1016/j.resp.2017.06.007
Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med. 2020;46:606–18.
pubmed: 32016537
pmcid: 7224136
doi: 10.1007/s00134-020-05942-6
Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically ill patients pathophysiology and clinical implications. Am J Respir Crit Care Med. 2020;201:20–32.
pubmed: 31437406
doi: 10.1164/rccm.201903-0596SO
Doi M, Ikeda K. Respiratory effects of sevoflurane. Anesth Analg. 1987;66:241–4.
pubmed: 3826666
doi: 10.1213/00000539-198703000-00007
Lockhart SH, Rampil IJ, Yasuda N, Eger EI, Welskopf RB. Depression of ventilation by desflurane in humans. Anesthesiology. 1991;74:484–8.
pubmed: 1900396
doi: 10.1097/00000542-199103000-00016
Canet J, Sanchis J, Zegrí A, Llorente C, Navajas D, Casan P. Effects of halothane and isoflurane on ventilation and occlusion pressure. Anesthesiology. 1994;81:563–71.
pubmed: 8092500
doi: 10.1097/00000542-199409000-00007
Meiser A, Volk T, Wallenborn J, Guenther U, Becher T, Bracht H, et al. Inhaled isoflurane via the anaesthetic conserving device versus propofol for sedation of invasively ventilated patients in intensive care units in Germany and Slovenia: an open-label, phase 3, randomised controlled, non-inferiority trial. Lancet Respir Med. 2021;9:1231–40.
pubmed: 34454654
doi: 10.1016/S2213-2600(21)00323-4
Dahan A, Nieuwenhuijs D, Olofsen E, Sarton E, Romberg R, Teppema L. Response surface modeling of alfentanil-sevoflurane interaction on cardiorespiratory control and bispectral index. Anesthesiology. 2001;94:982–91.
pubmed: 11465624
doi: 10.1097/00000542-200106000-00011
Bourgeois T, Ringot M, Ramanantsoa N, Matrot B, Dauger S, Delclaux C, et al. Breathing under anesthesia. Anesthesiology. 2019;130:995–1006.
pubmed: 31091200
doi: 10.1097/ALN.0000000000002675
Yang Y, Ou M, Liu J, Zhao W, Zhuoma L, Liang Y, et al. Volatile anesthetics activate a leak sodium conductance in retrotrapezoid nucleus neurons to maintain breathing during anesthesia in mice. Anesthesiology. 2020;133(4):824–38.
pubmed: 32773689
doi: 10.1097/ALN.0000000000003493
Lazarenko RM, Fortuna MG, Shi Y, Mulkey DK, Takakura AC, Moreira TS, et al. Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K+ current. J Neurosci. 2010;30:9324–34.
pubmed: 20610767
pmcid: 2910363
doi: 10.1523/JNEUROSCI.1956-10.2010
Eikermann M, Malhotra A, Fassbender P, Zaremba S, Jordan AS, Gautam S, et al. Differential effects of isoflurane and propofol on upper airway dilator muscle activity and breathing. Anesthesiology. 2008;108:897–906.
pubmed: 18431126
doi: 10.1097/ALN.0b013e31816c8a60
Hao X, Ou M, Li Y, Zhou C. Volatile anesthetics maintain tidal volume and minute ventilation to a greater degree than propofol under spontaneous respiration. BMC Anesthesiol. 2021;21:238.
pubmed: 34615483
pmcid: 8493718
doi: 10.1186/s12871-021-01438-y
Simons JCP, Pierce E, Diaz-Gil D, Malviya SA, Meyer MJ, Timm FP, et al. Effects of depth of propofol and sevoflurane anesthesia on upper airway collapsibility, respiratory genioglossus activation, and breathing in healthy volunteers. Anesthesiology. 2016;125:525–34.
pubmed: 27404221
doi: 10.1097/ALN.0000000000001225
van den Elsen MJ, Dahan A, Berkenbosch A, DeGoede J, van Kleef JW, Olievier ICW. Does subanesthetic isoflurane affect the ventilatory response to acute isocapnic hypoxia in healthy volunteers? Anesthesiology. 1994;81:860–7.
pubmed: 7943837
doi: 10.1097/00000542-199410000-00013
van den Elsen M, Sarton E, Teppema L, Berkenbosch A, Dahan A. Influence of 0.1 minimum alveolar concentration of sevoflurane, desflurane and isoflurane on dynamic ventilatory response to hypercapnia in humans. Br J Anaesth. 1998;80:174–82.
pubmed: 9602581
doi: 10.1093/bja/80.2.174
Pandit JJ, Manning-Fox J, Dorrington KL, Robbins PA. Effects of subanaesthetic sevoflurane on ventilation. 2: Response to acute and sustained hypoxia in humans. Br J Anaesth. 1999;83:210–6.
pubmed: 10618931
doi: 10.1093/bja/83.2.210
Pandit JJ, Manning-Fox J, Dorrington KL, Robbins PA. Effects of subanaesthetic sevoflurane on ventilation. 1: Response to acute and sustained hypercapnia in humans. Br J Anaesth. 1999;83:204–9.
pubmed: 10618930
doi: 10.1093/bja/83.2.204
Müller-Wirtz LM, Behne F, Kermad A, Wagenpfeil G, Schroeder M, Sessler DI, et al. Isoflurane promotes early spontaneous breathing in ventilated intensive care patients: a post hoc subgroup analysis of a randomized trial. Acta Anaesthesiol Scand. 2022;66:354–64.
pubmed: 34870852
doi: 10.1111/aas.14010
Müller-Wirtz L, Becher T, Günther U, Bellgardt M, Sackey P, Volk T, et al. Ventilatory effects of isoflurane sedation via the sedaconda ACD-S versus ACD-L: a substudy of a randomized trial. J Clin Med. 2023;12:3314.
pubmed: 37176754
pmcid: 10179426
doi: 10.3390/jcm12093314
Sturesson LW, Malmkvist G, Bodelsson M, Niklason L, Jonson B. Carbon dioxide rebreathing with the anaesthetic conserving device, AnaConDa®. Br J Anaesth. 2012;109:279–83.
pubmed: 22505637
doi: 10.1093/bja/aes102
Marcos-Vidal JM, Merino M, González R, García C, Rey S, Pérez I. Comparison of the use of AnaConDa® versus AnaConDa-S® during the post-operative period of cardiac surgery under standard conditions of practice. J Clin Monit Comput. 2020;34:89–95.
pubmed: 30784010
doi: 10.1007/s10877-019-00285-0
Sturesson LW, Bodelsson M, Johansson A, Jonson B, Malmkvist G. Apparent dead space with the anesthetic conserving device, AnaConDa®: a clinical and laboratory investigation. Anesth Analg. 2013;117:1319–24.
pubmed: 24257381
doi: 10.1213/ANE.0b013e3182a7778e
Soukup J, Michel P, Christel A, Schittek GA, Wagner N-M, Kellner P. Prolonged sedation with sevoflurane in comparison to intravenous sedation in critically ill patients – A randomized controlled trial. J Crit Care. 2023;74: 154251.
pubmed: 36640476
doi: 10.1016/j.jcrc.2022.154251
Meiser A, Groesdonk HV, Bonnekessel S, Volk T, Bomberg H. Inhalation sedation in subjects with ARDS undergoing continuous lateral rotational therapy. Respir Care. 2018;63:441–7.
pubmed: 29233852
doi: 10.4187/respcare.05751
Heider J, Bansbach J, Kaufmann K, Heinrich S, Loop T, Kalbhenn J. Does volatile sedation with sevoflurane allow spontaneous breathing during prolonged prone positioning in intubated ARDS patients? A retrospective observational feasibility trial. Ann Intensive Care. 2019;9:41.
pubmed: 30911854
pmcid: 6434001
doi: 10.1186/s13613-019-0517-8
Bansbach J, Wenz J, Kaufmann K, Heinrich S, Kalbhenn J. Sevoflurane in combination with esketamine is an effective sedation regimen in COVID-19 patients enabling assisted spontaneous breathing even during prone positioning. Anaesthesiol Intensive Ther. 2022;54:23–9.
pubmed: 35359138
pmcid: 10156492
doi: 10.5114/ait.2022.113950
Sklar MC, Madotto F, Jonkman A, Rauseo M, Soliman I, Damiani LF, et al. Duration of diaphragmatic inactivity after endotracheal intubation of critically ill patients. Crit Care. 2021;25:26.
pubmed: 33430930
pmcid: 7798017
doi: 10.1186/s13054-020-03435-y
Pham T, Heunks L, Bellani G, Madotto F, Aragao I, Beduneau G, et al. Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study. Lancet Respir Med. 2023;11:465–76.
pubmed: 36693401
doi: 10.1016/S2213-2600(22)00449-0
Longhini F, Simonte R, Vaschetto R, Navalesi P, Cammarota G. Reverse triggered breath during pressure support ventilation and neurally adjusted ventilatory assist at increasing propofol infusion. J Clin Med. 2023;12:4857.
pubmed: 37510970
pmcid: 10381884
doi: 10.3390/jcm12144857
Buckley MS, Smithburger PL, Wong A, Fraser GL, Reade MC, Klein-Fedyshin M, et al. Dexmedetomidine for facilitating mechanical ventilation extubation in difficult-to-wean ICU patients: systematic review and meta-analysis of clinical trials. J Intensive Care Med. 2021;36:925–36.
pubmed: 32627672
doi: 10.1177/0885066620937673
Conti G, Ranieri VM, Costa R, Garratt C, Wighton A, Spinazzola G, et al. Effects of dexmedetomidine and propofol on patient-ventilator interaction in difficult-to-wean, mechanically ventilated patients: a prospective, open-label, randomised, multicentre study. Crit Care. 2016;20:206.
pubmed: 27368279
pmcid: 4930611
doi: 10.1186/s13054-016-1386-2
Vaschetto R, Cammarota G, Colombo D, Longhini F, Grossi F, Giovanniello A, et al. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist*. Crit Care Med. 2014;42:74–82.
pubmed: 23982026
doi: 10.1097/CCM.0b013e31829e53dc
Sackey PV, Martling C-R, Granath F, Radell PJ. Prolonged isoflurane sedation of intensive care unit patients with the Anesthetic Conserving Device. Crit Care Med. 2004;32:2241–6.
pubmed: 15640636
doi: 10.1097/01.CCM.0000145951.76082.77
Bracht H, Meiser A, Wallenborn J, Guenther U, Kogelmann KM, Faltlhauser A, et al. ICU- and ventilator-free days with isoflurane or propofol as a primary sedative - A post- hoc analysis of a randomized controlled trial. J Crit Care. 2023;78: 154350.
pubmed: 37327507
doi: 10.1016/j.jcrc.2023.154350
Fuchs VF, Simon HV, Soldinger N, Volk T, Meiser A. Neuropsychological follow-up of isoflurane sedated intensive care patients: a substudy of a randomized trial. Minerva Anestesiol. 2024;90:377–85.
pubmed: 38482637
doi: 10.23736/S0375-9393.24.17834-0
Jerath A, Ferguson ND, Cuthbertson B. Inhalational volatile-based sedation for COVID-19 pneumonia and ARDS. Intensive Care Med. 2020;46:1563–6.
pubmed: 32588067
pmcid: 7315695
doi: 10.1007/s00134-020-06154-8
Jerath A, Parotto M, Wasowicz M, Ferguson ND. Volatile anesthetics is a new player emerging in critical care sedation? Am J Respir Crit Care Med. 2016;193:1202–12.
pubmed: 27002466
doi: 10.1164/rccm.201512-2435CP
Yassen KA, Jabaudon M, Alsultan HA, Almousa H, Shahwar DI, Alhejji FY, et al. Inhaled sedation with volatile anesthetics for mechanically ventilated patients in intensive care units: a narrative review. J Clin Med. 2023;12:1069.
pubmed: 36769718
pmcid: 9918250
doi: 10.3390/jcm12031069
Jabaudon M, Zhai R, Blondonnet R, Bonda WLM. Inhaled sedation in the intensive care unit. Anaesth Crit Care Pain Med. 2022;41: 101133.
pubmed: 35907598
doi: 10.1016/j.accpm.2022.101133
O’Gara B, Boncyk C, Meiser A, Jerath A, Bellgardt M, Jabaudon M, et al. Volatile anesthetic sedation for critically ill patients. Anesthesiology. 2024;141:163–74.
pubmed: 38860793
doi: 10.1097/ALN.0000000000004994
Bomberg H, Volk T, Groesdonk HV, Meiser A. Efficient application of volatile anaesthetics: total rebreathing or specific reflection? J Clin Monit Comput. 2018;32:615–22.
pubmed: 29302897
doi: 10.1007/s10877-017-0096-x
Bomberg H, Glas M, Groesdonk VH, Bellgardt M, Schwarz J, Volk T, et al. A novel device for target controlled administration and reflection of desflurane–the MirusTM. Anaesthesia. 2014;69:1241–50.
pubmed: 25040673
pmcid: 4303981
doi: 10.1111/anae.12798
Meiser A, Bellgardt M, Belda J, Röhm K, Laubenthal H, Sirtl C. Technical performance and reflection capacity of the anaesthetic conserving device - A bench study with isoflurane and sevoflurane. J Clin Monit Comput. 2009;23:11–9.
pubmed: 19189222
pmcid: 2799001
doi: 10.1007/s10877-008-9158-4
Meiser A, Laubenthal H. Inhalational anaesthetics in the ICU: theory and practice of inhalational sedation in the ICU, economics, risk-benefit. Best Pract Res Clin Anaesthesiol. 2005;19:523–38.
pubmed: 16013698
doi: 10.1016/j.bpa.2005.02.006
Kermad A, Speltz J, Daume P, Volk T, Meiser A. Reflection efficiencies of AnaConDa-S and AnaConDa-100 for isoflurane under dry laboratory and simulated clinical conditions: a bench study using a test lung. Expert Rev Med Devices. 2021;18:189–95.
pubmed: 33322972
doi: 10.1080/17434440.2021.1865151
Bomberg H, Veddeler M, Volk T, Groesdonk HV, Meiser A. Volumetric and reflective device dead space of anaesthetic reflectors under different conditions. J Clin Monit Comput. 2018;32:1073–80.
pubmed: 29374847
doi: 10.1007/s10877-018-0105-8
Bomberg H, Meiser F, Daume P, Bellgardt M, Volk T, Sessler DI, et al. Halving the Volume of AnaConDa: evaluation of a new small-volume anesthetic reflector in a test lung model. Anesth Analg. 2019;129:371–9.
pubmed: 29787413
doi: 10.1213/ANE.0000000000003452
Sturesson LW, Bodelsson M, Jonson B, Malmkvist G. Anaesthetic conserving device AnaConDa: dead space effect and significance for lung protective ventilation. Br J Anaesth. 2014;113:508–14.
pubmed: 24871871
doi: 10.1093/bja/aeu102
Pellet P-L, Stevic N, Degivry F, Louis B, Argaud L, Guérin C, et al. Effects on mechanical power of different devices used for inhaled sedation in a bench model of protective ventilation in ICU. Ann Intensive Care. 2024;14:18.
pubmed: 38285231
pmcid: 10825094
doi: 10.1186/s13613-024-01245-x
Farrell R, Oomen G, Carey P. A technical review of the history, development and performance of the anaesthetic conserving device “AnaConDa” for delivering volatile anaesthetic in intensive and post-operative critical care. J Clin Monit Comput. 2018;32:595–604.
pubmed: 29388094
pmcid: 6061082
doi: 10.1007/s10877-017-0097-9
Alcántara Carmona S, del Saz A, Contreras S, Riera J, Blandino A, Gómez JM, et al. Volatile sedation practices in patients with severe acute respiratory distress syndrome under VV-ECMO support. Intensive Care Med. 2024;50:1161–3.
pubmed: 38753268
doi: 10.1007/s00134-024-07479-4
Grasselli G, Giani M, Scaravilli V, Fumagalli B, Mariani C, Redaelli S, et al. Volatile sedation for acute respiratory distress syndrome patients on venovenous extracorporeal membrane oxygenation and ultraprotective ventilation. Crit Care Explor. 2021;3: e0310.
pubmed: 33458679
pmcid: 7803679
doi: 10.1097/CCE.0000000000000310
Meiser A, Bomberg H, Lepper PM, Trudzinski FC, Volk T, Groesdonk HV. Inhaled sedation in patients with acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation. Anesth Analg. 2017;125:1235–9.
pubmed: 28301417
doi: 10.1213/ANE.0000000000001915
Müller-Wirtz LM, Grimm D, Albrecht FW, Fink T, Volk T, Meiser A. Increased respiratory drive after prolonged isoflurane sedation: a retrospective cohort study. J Clin Med. 2022;11:5422.
pubmed: 36143068
pmcid: 9504554
doi: 10.3390/jcm11185422