The mTOR pathway controls phosphorylation of BRAF at T401.
Phosphorylation
/ drug effects
Humans
TOR Serine-Threonine Kinases
/ metabolism
Animals
Proto-Oncogene Proteins B-raf
/ metabolism
Mice
Signal Transduction
/ drug effects
HEK293 Cells
Pyrimidinones
/ pharmacology
Mechanistic Target of Rapamycin Complex 1
/ metabolism
Pyridones
/ pharmacology
Naphthyridines
Journal
Cell communication and signaling : CCS
ISSN: 1478-811X
Titre abrégé: Cell Commun Signal
Pays: England
ID NLM: 101170464
Informations de publication
Date de publication:
02 Sep 2024
02 Sep 2024
Historique:
received:
08
06
2024
accepted:
24
08
2024
medline:
3
9
2024
pubmed:
3
9
2024
entrez:
2
9
2024
Statut:
epublish
Résumé
BRAF serves as a gatekeeper of the RAS/RAF/MEK/ERK pathway, which plays a crucial role in homeostasis. Since aberrant signalling of this axis contributes to cancer and other diseases, it is tightly regulated by crosstalk with the PI3K/AKT/mTOR pathway and ERK mediated feedback loops. For example, ERK limits BRAF signalling through phosphorylation of multiple residues. One of these, T401, is widely considered as an ERK substrate following acute pathway activation by growth factors. Here, we demonstrate that prominent T401 phosphorylation (pT401) of endogenous BRAF is already observed in the absence of acute stimulation in various cell lines of murine and human origin. Importantly, the BRAF/RAF1 inhibitor naporafenib, the MEK inhibitor trametinib and the ERK inhibitor ulixertinib failed to reduce pT401 levels in these settings, supporting an alternative ERK-independent pathway to T401 phosphorylation. In contrast, the mTOR inhibitor torin1 and the dual-specific PI3K/mTOR inhibitor dactolisib significantly suppressed pT401 levels in all investigated cell types, in both a time and concentration dependent manner. Conversely, genetic mTOR pathway activation by oncogenic RHEB (Q64L) and mTOR (S2215Y and R2505P) mutants substantially increased pT401, an effect that was reverted by dactolisib and torin1 but not by trametinib. We also show that shRNAmir mediated depletion of the mTORC1 complex subunit Raptor significantly enhanced the suppression of T401 phosphorylation by a low torin1 dose, while knockdown of the mTORC2 complex subunit Rictor was less effective. Using mass spectrometry, we provide further evidence that torin1 suppresses the phosphorylation of T401, S405 and S409 but not of other important regulatory phosphorylation sites such as S446, S729 and S750. In summary, our data identify the mTOR axis and its inhibitors of (pre)clinical relevance as novel modulators of BRAF phosphorylation at T401.
Identifiants
pubmed: 39223665
doi: 10.1186/s12964-024-01808-2
pii: 10.1186/s12964-024-01808-2
doi:
Substances chimiques
TOR Serine-Threonine Kinases
EC 2.7.11.1
Proto-Oncogene Proteins B-raf
EC 2.7.11.1
Pyrimidinones
0
1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo(h)(1,6)naphthyridin-2(1H)-one
0
Mechanistic Target of Rapamycin Complex 1
EC 2.7.11.1
trametinib
33E86K87QN
Pyridones
0
Naphthyridines
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
428Subventions
Organisme : Swiss National Science Foundation SNF
ID : 310030E_184433
Organisme : Deutsche Forschungsgemeinschaft
ID : BR3662/4-1
Organisme : Deutschen Konsortium für Translationale Krebsforschung
ID : B310-JF-LOGGIC-MDE
Informations de copyright
© 2024. The Author(s).
Références
Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nature reviews / Molecular cell biology. 2020;21(10):607–32.
pubmed: 32576977
doi: 10.1038/s41580-020-0255-7
Ünal EB, Uhlitz F, Blüthgen N. A compendium of ERK targets. FEBS Lett. 2017;591(17):2607–15.
pubmed: 28675784
doi: 10.1002/1873-3468.12740
Jeon H, Tkacik E, Eck MJ. Signaling from RAS to RAF: The Molecules and Their Mechanisms. Annu Rev Biochem. 2024;93(1):289–316.
Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene. 2018;37(24):3183–99.
pubmed: 29540830
doi: 10.1038/s41388-018-0171-x
Ritt DA, Monson DM, Specht SI, Morrison DK. Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol Cell Biol. 2010;30(3):806–19.
pubmed: 19933846
doi: 10.1128/MCB.00569-09
Rushworth LK, Hindley AD, O’Neill E, Kolch W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol. 2006;26(6):2262–72.
pubmed: 16508002
pmcid: 1430271
doi: 10.1128/MCB.26.6.2262-2272.2006
Brummer T, Naegele H, Reth M, Misawa Y. Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene 2003; 22(55):8823–34. Available from: URL: https://www.nature.com/articles/1207185 .
Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD, et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem. 2000;275(35):27354–9.
pubmed: 10869359
doi: 10.1016/S0021-9258(19)61518-8
Mott HR, Owen D. SHOCing RAF into action. Nat Struct Mol Biol. 2022;29(10):958–60.
pubmed: 36192652
doi: 10.1038/s41594-022-00843-2
Fu W, Hall MN. Regulation of mTORC2 Signaling. Genes (Basel). 2020;11(9):1045.
Battaglioni S, Benjamin D, Wälchli M, Maier T, Hall MN. mTOR substrate phosphorylation in growth control. Cell. 2022;185(11):1814–36.
pubmed: 35580586
doi: 10.1016/j.cell.2022.04.013
Eisenhardt AE, Sprenger A, Röring M, Herr R, Weinberg F, Köhler M, et al. Phospho-proteomic analyses of B-Raf protein complexes reveal new regulatory principles. Oncotarget. 2016;7(18):26628–52.
pubmed: 27034005
pmcid: 5042004
doi: 10.18632/oncotarget.8427
La Cova C de, Greenwald I. SEL-10/Fbw7-dependent negative feedback regulation of LIN-45/Braf signaling in C. elegans via a conserved phosphodegron. Genes Dev 2012; 26(22):2524–35.
Hernandez MA, Patel B, Hey F, Giblett S, Davis H, Pritchard C. Regulation of BRAF protein stability by a negative feedback loop involving the MEK-ERK pathway but not the FBXW7 tumour suppressor. Cell Signal. 2016;28(6):561–71.
pubmed: 26898828
pmcid: 6399479
doi: 10.1016/j.cellsig.2016.02.009
La Cova CC de, Townley R, Greenwald I. Negative feedback by conserved kinases patterns degradation of C. elegans Raf in vulval fate patterning. Development. 2020;147(24):dev195941.
Townley R, Deniaud A, Stacy KS, Rodriguez Torres CS, Cheraghi F, Wicker NB, et al. The E3/E4 ubiquitin ligase UFD-2 suppresses normal and oncogenic signaling mediated by a Raf ortholog in Caenorhabditis elegans. Sci Signal. 2023;16(800):eabq4355.
pubmed: 37643243
pmcid: 10656100
doi: 10.1126/scisignal.abq4355
Röring M, Herr R, Fiala GJ, Heilmann K, Braun S, Eisenhardt AE, et al. Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling. EMBO J. 2012;31(11):2629–47.
pubmed: 22510884
pmcid: 3365413
doi: 10.1038/emboj.2012.100
Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N, et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet. 2002;11(5):525–34.
pubmed: 11875047
doi: 10.1093/hmg/11.5.525
Sato T, Nakashima A, Guo L, Coffman K, Tamanoi F. Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene. 2010;29(18):2746–52.
pubmed: 20190810
pmcid: 2953941
doi: 10.1038/onc.2010.28
Lauinger M, Christen D, Klar RFU, Roubaty C, Heilig CE, Stumpe M, et al. BRAFΔβ3-αC in-frame deletion mutants differ in their dimerization propensity, HSP90 dependence, and druggability. Sci Adv. 2023;9(35):eade7486.
pubmed: 37656784
doi: 10.1126/sciadv.ade7486
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62.
pubmed: 19377485
doi: 10.1038/nmeth.1322
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72.
pubmed: 19029910
doi: 10.1038/nbt.1511
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301–19.
pubmed: 27809316
doi: 10.1038/nprot.2016.136
Botton T, Talevich E, Mishra VK, Zhang T, Shain AH, Berquet C, et al. Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses. Cell Rep. 2019;29(3):573–88 e7. Accession Number: 31618628. https://doi.org/10.1016/j.celrep.2019.09.009 .
Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 1999;18(8):2137–48. https://doi.org/10.1093/emboj/18.8.2137 .
McKay MM, Ritt DA, Morrison DK. Signaling dynamics of the KSR1 scaffold complex. Proc Natl Acad Sci U S A. 2009;106(27):11022–7.
pubmed: 19541618
pmcid: 2708738
doi: 10.1073/pnas.0901590106
Gaubitz C, Oliveira TM, Prouteau M, Leitner A, Karuppasamy M, Konstantinidou G, et al. Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2. Mol Cell. 2015;58(6):977–88.
pubmed: 26028537
doi: 10.1016/j.molcel.2015.04.031
Bergholz JS, Zhao JJ. How Compensatory Mechanisms and Adaptive Rewiring Have Shaped Our Understanding of Therapeutic Resistance in Cancer. Cancer Res. 2021;81(24):6074–7.
pubmed: 34911779
pmcid: 9033251
doi: 10.1158/0008-5472.CAN-21-3605
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284(12):8023–32.
pubmed: 19150980
pmcid: 2658096
doi: 10.1074/jbc.M900301200
Caligaris M, Virgilio C de. Proxies introduce bias in decoding TORC1 activity. MicroPubl Biol. 2024;27:2024:10.17912/micropub.biology.001170. https://doi.org/10.17912/micropub.biology.001170 . eCollection 2024.
Duan L, Cobb MH. Calcineurin increases glucose activation of ERK1/2 by reversing negative feedback. Proc Natl Acad Sci U S A 2010; 107(51):22314–9. Available from: URL: https://pubmed.ncbi.nlm.nih.gov/21135229/ .
Moldvai D, Sztankovics D, Dankó T, Vetlényi E, Petővári G, Márk Á, et al. Tumorigenic role of tacrolimus through mTORC1/C2 activation in post-transplant renal cell carcinomas. Br J Cancer. 2024;130(7):1119–30.
pubmed: 38341510
pmcid: 10991560
doi: 10.1038/s41416-024-02597-8
Guenzle J, Akasaka H, Joechle K, Reichardt W, Venkatasamy A, Hoeppner J, et al. Pharmacological Inhibition of mTORC2 Reduces Migration and Metastasis in Melanoma. Int J Mol Sci. 2020;22(1):30.
Cook FA, Cook SJ. Inhibition of RAF dimers: it takes two to tango. Biochem Soc Trans. 2021;49(1):237–51.
pubmed: 33367512
doi: 10.1042/BST20200485
Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 2010; 3(104):ra3.
Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD. S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell. 2006;24(2):185–97.
pubmed: 17052453
pmcid: 1880887
doi: 10.1016/j.molcel.2006.09.019
Jiang H, Vogt PK. Constitutively active Rheb induces oncogenic transformation. Oncogene. 2008;27(43):5729–40.
pubmed: 18521078
pmcid: 2562864
doi: 10.1038/onc.2008.180
Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 2014;4(5):554–63.
pubmed: 24631838
pmcid: 4012430
doi: 10.1158/2159-8290.CD-13-0929
Deswal S, Meyer A, Fiala GJ, Eisenhardt AE, Schmitt LC, Salek M, et al. Kidins220/ARMS associates with B-Raf and the TCR, promoting sustained Erk signaling in T cells. J Immunol. 2013;190(5):1927–35.
pubmed: 23359496
doi: 10.4049/jimmunol.1200653
Diedrich B, Rigbolt KT, Röring M, Herr R, Kaeser-Pebernard S, Gretzmeier C, et al. Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition. EMBO J. 2017;36(5):646–63.
pubmed: 28093501
pmcid: 5331759
doi: 10.15252/embj.201694732
Rosner M, Siegel N, Valli A, Fuchs C, Hengstschläger M. mTOR phosphorylated at S2448 binds to raptor and rictor. Amino Acids. 2010;38(1):223–8.
pubmed: 19145465
doi: 10.1007/s00726-008-0230-7
Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015; 43(Database issue):D512–20.
Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534(7605):55–62.
pubmed: 27251275
pmcid: 5102256
doi: 10.1038/nature18003
Klomp JE, Diehl JN, Klomp JA, Edwards AC, Yang R, Morales AJ et al. Determining the ERK-regulated phosphoproteome driving KRAS-mutant cancer. Science 2024; 384(6700):eadk0850.
Kennedy SA, Jarboui M-A, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat Commun. 2020;11(1):499.
pubmed: 31980649
pmcid: 6981206
doi: 10.1038/s41467-019-14224-9
Yin Q, Han T, Fang B, Zhang G, Zhang C, Roberts ER, et al. K27-linked ubiquitination of BRAF by ITCH engages cytokine response to maintain MEK-ERK signaling. Nat Commun. 2019;10(1):1870.
pubmed: 31015455
pmcid: 6478693
doi: 10.1038/s41467-019-09844-0
Brewer A, Sathe G, Pflug BE, Clarke RG, Macartney TJ, Sapkota GP. Mapping the substrate landscape of protein phosphatase 2A catalytic subunit PPP2CA. iScience 2024; 27(3):109302.
Meske V, Albert F, Ohm TG. Coupling of mammalian target of rapamycin with phosphoinositide 3-kinase signaling pathway regulates protein phosphatase 2A- and glycogen synthase kinase-3 -dependent phosphorylation of Tau. J Biol Chem. 2008;283(1):100–9.
pubmed: 17971449
doi: 10.1074/jbc.M704292200
Hui L, Rodrik V, Pielak RM, Knirr S, Zheng Y, Foster DA. mTOR-dependent suppression of protein phosphatase 2A is critical for phospholipase D survival signals in human breast cancer cells. J Biol Chem. 2005;280(43):35829–35.
pubmed: 16109716
doi: 10.1074/jbc.M504192200
Young DA, Nickerson-Nutter CL. mTOR–beyond transplantation. Curr Opin Pharmacol. 2005;5(4):418–23.
pubmed: 15955739
doi: 10.1016/j.coph.2005.03.004
Peterson RT, Desai BN, Hardwick JS, Schreiber SL. Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci U S A. 1999;96(8):4438–42.
pubmed: 10200280
pmcid: 16350
doi: 10.1073/pnas.96.8.4438
Lee W-J, Kim D-U, Lee M-Y, Choi K-Y. Identification of proteins interacting with the catalytic subunit of PP2A by proteomics. Proteomics. 2007;7(2):206–14.
pubmed: 17163575
doi: 10.1002/pmic.200600480
Chen X, Yu C, Liu X, Liu B, Wu X, Wu J, et al. Intracellular galectin-3 is a lipopolysaccharide sensor that promotes glycolysis through mTORC1 activation. Nat Commun. 2022;13(1):7578.
pubmed: 36481721
pmcid: 9732310
doi: 10.1038/s41467-022-35334-x
Huynh H, Wan Y. mTORC1 impedes osteoclast differentiation via calcineurin and NFATc1. Commun Biol. 2018;1:29.
pubmed: 30271915
pmcid: 6123628
doi: 10.1038/s42003-018-0028-4
Liu T, Han S, Dai Q, Zheng J, Liu C, Li S, et al. IL-17A-Mediated Excessive Autophagy Aggravated Neuronal Ischemic Injuries via Src-PP2B-mTOR Pathway. Front Immunol. 2019;10:2952.
pubmed: 31921197
pmcid: 6933613
doi: 10.3389/fimmu.2019.02952
Romeo Y, Moreau J, Zindy P-J, Saba-El-Leil M, Lavoie G, Dandachi F, et al. RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth. Oncogene. 2013;32(24):2917–26.
pubmed: 22797077
doi: 10.1038/onc.2012.312
Faustino A, Couto JP, Pópulo H, Rocha AS, Pardal F, Cameselle-Teijeiro JM, et al. mTOR pathway overactivation in BRAF mutated papillary thyroid carcinoma. J Clin Endocrinol Metab. 2012;97(7):E1139–49.
pubmed: 22549934
doi: 10.1210/jc.2011-2748
Kaul A, Chen Y-H, Emnett RJ, Dahiya S, Gutmann DH. Pediatric glioma-associated KIAA1549:BRAF expression regulates neuroglial cell growth in a cell type-specific and mTOR-dependent manner. Genes Dev. 2012;26(23):2561–6.
pubmed: 23152448
pmcid: 3521628
doi: 10.1101/gad.200907.112