The mTOR pathway controls phosphorylation of BRAF at T401.


Journal

Cell communication and signaling : CCS
ISSN: 1478-811X
Titre abrégé: Cell Commun Signal
Pays: England
ID NLM: 101170464

Informations de publication

Date de publication:
02 Sep 2024
Historique:
received: 08 06 2024
accepted: 24 08 2024
medline: 3 9 2024
pubmed: 3 9 2024
entrez: 2 9 2024
Statut: epublish

Résumé

BRAF serves as a gatekeeper of the RAS/RAF/MEK/ERK pathway, which plays a crucial role in homeostasis. Since aberrant signalling of this axis contributes to cancer and other diseases, it is tightly regulated by crosstalk with the PI3K/AKT/mTOR pathway and ERK mediated feedback loops. For example, ERK limits BRAF signalling through phosphorylation of multiple residues. One of these, T401, is widely considered as an ERK substrate following acute pathway activation by growth factors. Here, we demonstrate that prominent T401 phosphorylation (pT401) of endogenous BRAF is already observed in the absence of acute stimulation in various cell lines of murine and human origin. Importantly, the BRAF/RAF1 inhibitor naporafenib, the MEK inhibitor trametinib and the ERK inhibitor ulixertinib failed to reduce pT401 levels in these settings, supporting an alternative ERK-independent pathway to T401 phosphorylation. In contrast, the mTOR inhibitor torin1 and the dual-specific PI3K/mTOR inhibitor dactolisib significantly suppressed pT401 levels in all investigated cell types, in both a time and concentration dependent manner. Conversely, genetic mTOR pathway activation by oncogenic RHEB (Q64L) and mTOR (S2215Y and R2505P) mutants substantially increased pT401, an effect that was reverted by dactolisib and torin1 but not by trametinib. We also show that shRNAmir mediated depletion of the mTORC1 complex subunit Raptor significantly enhanced the suppression of T401 phosphorylation by a low torin1 dose, while knockdown of the mTORC2 complex subunit Rictor was less effective. Using mass spectrometry, we provide further evidence that torin1 suppresses the phosphorylation of T401, S405 and S409 but not of other important regulatory phosphorylation sites such as S446, S729 and S750. In summary, our data identify the mTOR axis and its inhibitors of (pre)clinical relevance as novel modulators of BRAF phosphorylation at T401.

Identifiants

pubmed: 39223665
doi: 10.1186/s12964-024-01808-2
pii: 10.1186/s12964-024-01808-2
doi:

Substances chimiques

TOR Serine-Threonine Kinases EC 2.7.11.1
Proto-Oncogene Proteins B-raf EC 2.7.11.1
Pyrimidinones 0
1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo(h)(1,6)naphthyridin-2(1H)-one 0
Mechanistic Target of Rapamycin Complex 1 EC 2.7.11.1
trametinib 33E86K87QN
Pyridones 0
Naphthyridines 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

428

Subventions

Organisme : Swiss National Science Foundation SNF
ID : 310030E_184433
Organisme : Deutsche Forschungsgemeinschaft
ID : BR3662/4-1
Organisme : Deutschen Konsortium für Translationale Krebsforschung
ID : B310-JF-LOGGIC-MDE

Informations de copyright

© 2024. The Author(s).

Références

Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nature reviews / Molecular cell biology. 2020;21(10):607–32.
pubmed: 32576977 doi: 10.1038/s41580-020-0255-7
Ünal EB, Uhlitz F, Blüthgen N. A compendium of ERK targets. FEBS Lett. 2017;591(17):2607–15.
pubmed: 28675784 doi: 10.1002/1873-3468.12740
Jeon H, Tkacik E, Eck MJ. Signaling from RAS to RAF: The Molecules and Their Mechanisms. Annu Rev Biochem. 2024;93(1):289–316.
Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene. 2018;37(24):3183–99.
pubmed: 29540830 doi: 10.1038/s41388-018-0171-x
Ritt DA, Monson DM, Specht SI, Morrison DK. Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol Cell Biol. 2010;30(3):806–19.
pubmed: 19933846 doi: 10.1128/MCB.00569-09
Rushworth LK, Hindley AD, O’Neill E, Kolch W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol. 2006;26(6):2262–72.
pubmed: 16508002 pmcid: 1430271 doi: 10.1128/MCB.26.6.2262-2272.2006
Brummer T, Naegele H, Reth M, Misawa Y. Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene 2003; 22(55):8823–34. Available from: URL: https://www.nature.com/articles/1207185 .
Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD, et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem. 2000;275(35):27354–9.
pubmed: 10869359 doi: 10.1016/S0021-9258(19)61518-8
Mott HR, Owen D. SHOCing RAF into action. Nat Struct Mol Biol. 2022;29(10):958–60.
pubmed: 36192652 doi: 10.1038/s41594-022-00843-2
Fu W, Hall MN. Regulation of mTORC2 Signaling. Genes (Basel). 2020;11(9):1045.
Battaglioni S, Benjamin D, Wälchli M, Maier T, Hall MN. mTOR substrate phosphorylation in growth control. Cell. 2022;185(11):1814–36.
pubmed: 35580586 doi: 10.1016/j.cell.2022.04.013
Eisenhardt AE, Sprenger A, Röring M, Herr R, Weinberg F, Köhler M, et al. Phospho-proteomic analyses of B-Raf protein complexes reveal new regulatory principles. Oncotarget. 2016;7(18):26628–52.
pubmed: 27034005 pmcid: 5042004 doi: 10.18632/oncotarget.8427
La Cova C de, Greenwald I. SEL-10/Fbw7-dependent negative feedback regulation of LIN-45/Braf signaling in C. elegans via a conserved phosphodegron. Genes Dev 2012; 26(22):2524–35.
Hernandez MA, Patel B, Hey F, Giblett S, Davis H, Pritchard C. Regulation of BRAF protein stability by a negative feedback loop involving the MEK-ERK pathway but not the FBXW7 tumour suppressor. Cell Signal. 2016;28(6):561–71.
pubmed: 26898828 pmcid: 6399479 doi: 10.1016/j.cellsig.2016.02.009
La Cova CC de, Townley R, Greenwald I. Negative feedback by conserved kinases patterns degradation of C. elegans Raf in vulval fate patterning. Development. 2020;147(24):dev195941.
Townley R, Deniaud A, Stacy KS, Rodriguez Torres CS, Cheraghi F, Wicker NB, et al. The E3/E4 ubiquitin ligase UFD-2 suppresses normal and oncogenic signaling mediated by a Raf ortholog in Caenorhabditis elegans. Sci Signal. 2023;16(800):eabq4355.
pubmed: 37643243 pmcid: 10656100 doi: 10.1126/scisignal.abq4355
Röring M, Herr R, Fiala GJ, Heilmann K, Braun S, Eisenhardt AE, et al. Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling. EMBO J. 2012;31(11):2629–47.
pubmed: 22510884 pmcid: 3365413 doi: 10.1038/emboj.2012.100
Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N, et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet. 2002;11(5):525–34.
pubmed: 11875047 doi: 10.1093/hmg/11.5.525
Sato T, Nakashima A, Guo L, Coffman K, Tamanoi F. Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene. 2010;29(18):2746–52.
pubmed: 20190810 pmcid: 2953941 doi: 10.1038/onc.2010.28
Lauinger M, Christen D, Klar RFU, Roubaty C, Heilig CE, Stumpe M, et al. BRAFΔβ3-αC in-frame deletion mutants differ in their dimerization propensity, HSP90 dependence, and druggability. Sci Adv. 2023;9(35):eade7486.
pubmed: 37656784 doi: 10.1126/sciadv.ade7486
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62.
pubmed: 19377485 doi: 10.1038/nmeth.1322
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72.
pubmed: 19029910 doi: 10.1038/nbt.1511
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301–19.
pubmed: 27809316 doi: 10.1038/nprot.2016.136
Botton T, Talevich E, Mishra VK, Zhang T, Shain AH, Berquet C, et al. Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses. Cell Rep. 2019;29(3):573–88 e7. Accession Number: 31618628. https://doi.org/10.1016/j.celrep.2019.09.009 .
Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 1999;18(8):2137–48. https://doi.org/10.1093/emboj/18.8.2137 .
McKay MM, Ritt DA, Morrison DK. Signaling dynamics of the KSR1 scaffold complex. Proc Natl Acad Sci U S A. 2009;106(27):11022–7.
pubmed: 19541618 pmcid: 2708738 doi: 10.1073/pnas.0901590106
Gaubitz C, Oliveira TM, Prouteau M, Leitner A, Karuppasamy M, Konstantinidou G, et al. Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2. Mol Cell. 2015;58(6):977–88.
pubmed: 26028537 doi: 10.1016/j.molcel.2015.04.031
Bergholz JS, Zhao JJ. How Compensatory Mechanisms and Adaptive Rewiring Have Shaped Our Understanding of Therapeutic Resistance in Cancer. Cancer Res. 2021;81(24):6074–7.
pubmed: 34911779 pmcid: 9033251 doi: 10.1158/0008-5472.CAN-21-3605
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284(12):8023–32.
pubmed: 19150980 pmcid: 2658096 doi: 10.1074/jbc.M900301200
Caligaris M, Virgilio C de. Proxies introduce bias in decoding TORC1 activity. MicroPubl Biol. 2024;27:2024:10.17912/micropub.biology.001170. https://doi.org/10.17912/micropub.biology.001170 . eCollection 2024.
Duan L, Cobb MH. Calcineurin increases glucose activation of ERK1/2 by reversing negative feedback. Proc Natl Acad Sci U S A 2010; 107(51):22314–9. Available from: URL: https://pubmed.ncbi.nlm.nih.gov/21135229/ .
Moldvai D, Sztankovics D, Dankó T, Vetlényi E, Petővári G, Márk Á, et al. Tumorigenic role of tacrolimus through mTORC1/C2 activation in post-transplant renal cell carcinomas. Br J Cancer. 2024;130(7):1119–30.
pubmed: 38341510 pmcid: 10991560 doi: 10.1038/s41416-024-02597-8
Guenzle J, Akasaka H, Joechle K, Reichardt W, Venkatasamy A, Hoeppner J, et al. Pharmacological Inhibition of mTORC2 Reduces Migration and Metastasis in Melanoma. Int J Mol Sci. 2020;22(1):30.
Cook FA, Cook SJ. Inhibition of RAF dimers: it takes two to tango. Biochem Soc Trans. 2021;49(1):237–51.
pubmed: 33367512 doi: 10.1042/BST20200485
Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 2010; 3(104):ra3.
Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD. S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell. 2006;24(2):185–97.
pubmed: 17052453 pmcid: 1880887 doi: 10.1016/j.molcel.2006.09.019
Jiang H, Vogt PK. Constitutively active Rheb induces oncogenic transformation. Oncogene. 2008;27(43):5729–40.
pubmed: 18521078 pmcid: 2562864 doi: 10.1038/onc.2008.180
Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 2014;4(5):554–63.
pubmed: 24631838 pmcid: 4012430 doi: 10.1158/2159-8290.CD-13-0929
Deswal S, Meyer A, Fiala GJ, Eisenhardt AE, Schmitt LC, Salek M, et al. Kidins220/ARMS associates with B-Raf and the TCR, promoting sustained Erk signaling in T cells. J Immunol. 2013;190(5):1927–35.
pubmed: 23359496 doi: 10.4049/jimmunol.1200653
Diedrich B, Rigbolt KT, Röring M, Herr R, Kaeser-Pebernard S, Gretzmeier C, et al. Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition. EMBO J. 2017;36(5):646–63.
pubmed: 28093501 pmcid: 5331759 doi: 10.15252/embj.201694732
Rosner M, Siegel N, Valli A, Fuchs C, Hengstschläger M. mTOR phosphorylated at S2448 binds to raptor and rictor. Amino Acids. 2010;38(1):223–8.
pubmed: 19145465 doi: 10.1007/s00726-008-0230-7
Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015; 43(Database issue):D512–20.
Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534(7605):55–62.
pubmed: 27251275 pmcid: 5102256 doi: 10.1038/nature18003
Klomp JE, Diehl JN, Klomp JA, Edwards AC, Yang R, Morales AJ et al. Determining the ERK-regulated phosphoproteome driving KRAS-mutant cancer. Science 2024; 384(6700):eadk0850.
Kennedy SA, Jarboui M-A, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat Commun. 2020;11(1):499.
pubmed: 31980649 pmcid: 6981206 doi: 10.1038/s41467-019-14224-9
Yin Q, Han T, Fang B, Zhang G, Zhang C, Roberts ER, et al. K27-linked ubiquitination of BRAF by ITCH engages cytokine response to maintain MEK-ERK signaling. Nat Commun. 2019;10(1):1870.
pubmed: 31015455 pmcid: 6478693 doi: 10.1038/s41467-019-09844-0
Brewer A, Sathe G, Pflug BE, Clarke RG, Macartney TJ, Sapkota GP. Mapping the substrate landscape of protein phosphatase 2A catalytic subunit PPP2CA. iScience 2024; 27(3):109302.
Meske V, Albert F, Ohm TG. Coupling of mammalian target of rapamycin with phosphoinositide 3-kinase signaling pathway regulates protein phosphatase 2A- and glycogen synthase kinase-3 -dependent phosphorylation of Tau. J Biol Chem. 2008;283(1):100–9.
pubmed: 17971449 doi: 10.1074/jbc.M704292200
Hui L, Rodrik V, Pielak RM, Knirr S, Zheng Y, Foster DA. mTOR-dependent suppression of protein phosphatase 2A is critical for phospholipase D survival signals in human breast cancer cells. J Biol Chem. 2005;280(43):35829–35.
pubmed: 16109716 doi: 10.1074/jbc.M504192200
Young DA, Nickerson-Nutter CL. mTOR–beyond transplantation. Curr Opin Pharmacol. 2005;5(4):418–23.
pubmed: 15955739 doi: 10.1016/j.coph.2005.03.004
Peterson RT, Desai BN, Hardwick JS, Schreiber SL. Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci U S A. 1999;96(8):4438–42.
pubmed: 10200280 pmcid: 16350 doi: 10.1073/pnas.96.8.4438
Lee W-J, Kim D-U, Lee M-Y, Choi K-Y. Identification of proteins interacting with the catalytic subunit of PP2A by proteomics. Proteomics. 2007;7(2):206–14.
pubmed: 17163575 doi: 10.1002/pmic.200600480
Chen X, Yu C, Liu X, Liu B, Wu X, Wu J, et al. Intracellular galectin-3 is a lipopolysaccharide sensor that promotes glycolysis through mTORC1 activation. Nat Commun. 2022;13(1):7578.
pubmed: 36481721 pmcid: 9732310 doi: 10.1038/s41467-022-35334-x
Huynh H, Wan Y. mTORC1 impedes osteoclast differentiation via calcineurin and NFATc1. Commun Biol. 2018;1:29.
pubmed: 30271915 pmcid: 6123628 doi: 10.1038/s42003-018-0028-4
Liu T, Han S, Dai Q, Zheng J, Liu C, Li S, et al. IL-17A-Mediated Excessive Autophagy Aggravated Neuronal Ischemic Injuries via Src-PP2B-mTOR Pathway. Front Immunol. 2019;10:2952.
pubmed: 31921197 pmcid: 6933613 doi: 10.3389/fimmu.2019.02952
Romeo Y, Moreau J, Zindy P-J, Saba-El-Leil M, Lavoie G, Dandachi F, et al. RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth. Oncogene. 2013;32(24):2917–26.
pubmed: 22797077 doi: 10.1038/onc.2012.312
Faustino A, Couto JP, Pópulo H, Rocha AS, Pardal F, Cameselle-Teijeiro JM, et al. mTOR pathway overactivation in BRAF mutated papillary thyroid carcinoma. J Clin Endocrinol Metab. 2012;97(7):E1139–49.
pubmed: 22549934 doi: 10.1210/jc.2011-2748
Kaul A, Chen Y-H, Emnett RJ, Dahiya S, Gutmann DH. Pediatric glioma-associated KIAA1549:BRAF expression regulates neuroglial cell growth in a cell type-specific and mTOR-dependent manner. Genes Dev. 2012;26(23):2561–6.
pubmed: 23152448 pmcid: 3521628 doi: 10.1101/gad.200907.112

Auteurs

Daniel Christen (D)

Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.
German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany.

Manuel Lauinger (M)

Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Melanie Brunner (M)

Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland.

Jörn Dengjel (J)

Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland.

Tilman Brummer (T)

Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany. tilman.brummer@mol-med.uni-freiburg.de.
German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany. tilman.brummer@mol-med.uni-freiburg.de.
Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, 79106, Freiburg, Germany. tilman.brummer@mol-med.uni-freiburg.de.
Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany. tilman.brummer@mol-med.uni-freiburg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH