Valuation of the EQ-5D-3L in Jordan.

Cost-utility EQ-5D-3L Hybrid model Jordan Valuation Virtual interviews

Journal

The European journal of health economics : HEPAC : health economics in prevention and care
ISSN: 1618-7601
Titre abrégé: Eur J Health Econ
Pays: Germany
ID NLM: 101134867

Informations de publication

Date de publication:
03 Sep 2024
Historique:
received: 19 09 2023
accepted: 17 07 2024
medline: 3 9 2024
pubmed: 3 9 2024
entrez: 3 9 2024
Statut: aheadofprint

Résumé

In Jordan, no national value set is available for any preference-accompanied health utility measure. This study aims to develop a value set for EQ-5D-3L based on the preferences of the Jordanian general population. A representative sample of the Jordanian general population was obtained through quota sampling involving age, gender, and region. Participants aged above 18 years were interviewed via videoconferencing using the EuroQol Valuation Technology 2.1 protocol. Participants completed ten composite time trade-offs (cTTO) and ten discrete choice experiments (DCE) tasks. cTTO and DCE data were analyzed using linear and logistic regression models, respectively, and hybrid models were applied to the combined DCE and cTTO data. A total of 301 participants with complete data were included in the analysis. The sample was representative of the general population regarding region, age, and gender. All model types applied, that is, random intercept model, random intercept Tobit, linear model with correction for heteroskedasticity, Tobit with correction for heteroskedasticity, and all hybrid models, were statistically significant. They showed logical consistency in terms of higher utility decrements with more severe levels. The hybrid model corrected for heteroskedasticity was selected to construct the Jordanian EQ-5D-3L value set as it showed the best fit and lowest mean absolute error. The predicted value for the most severe health state (33333) was - 0.563. Utility decrements due to mobility had the largest weight, followed by anxiety/depression, while usual activities had the smallest weight. This study provides the first EQ-5D-3L value set in the Middle East. The Jordanian EQ-5D-3L value set can now be used in health technology assessments for health policy planning by the Jordanian health sector's decision-makers.

Sections du résumé

BACKGROUND BACKGROUND
In Jordan, no national value set is available for any preference-accompanied health utility measure.
OBJECTIVE OBJECTIVE
This study aims to develop a value set for EQ-5D-3L based on the preferences of the Jordanian general population.
METHODS METHODS
A representative sample of the Jordanian general population was obtained through quota sampling involving age, gender, and region. Participants aged above 18 years were interviewed via videoconferencing using the EuroQol Valuation Technology 2.1 protocol. Participants completed ten composite time trade-offs (cTTO) and ten discrete choice experiments (DCE) tasks. cTTO and DCE data were analyzed using linear and logistic regression models, respectively, and hybrid models were applied to the combined DCE and cTTO data.
RESULTS RESULTS
A total of 301 participants with complete data were included in the analysis. The sample was representative of the general population regarding region, age, and gender. All model types applied, that is, random intercept model, random intercept Tobit, linear model with correction for heteroskedasticity, Tobit with correction for heteroskedasticity, and all hybrid models, were statistically significant. They showed logical consistency in terms of higher utility decrements with more severe levels. The hybrid model corrected for heteroskedasticity was selected to construct the Jordanian EQ-5D-3L value set as it showed the best fit and lowest mean absolute error. The predicted value for the most severe health state (33333) was - 0.563. Utility decrements due to mobility had the largest weight, followed by anxiety/depression, while usual activities had the smallest weight.
CONCLUSION CONCLUSIONS
This study provides the first EQ-5D-3L value set in the Middle East. The Jordanian EQ-5D-3L value set can now be used in health technology assessments for health policy planning by the Jordanian health sector's decision-makers.

Identifiants

pubmed: 39225720
doi: 10.1007/s10198-024-01712-z
pii: 10.1007/s10198-024-01712-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : EuroQol Research Foundation
ID : 60-2020VS

Informations de copyright

© 2024. The Author(s).

Références

2030 U. UHC2030 warmly welcomes Jordan as a member and signatory to the Global Compact for progress towards UHC: UHC 2030; 2018 [Available from: https://www.uhc2030.org/news-and-stories/news/jordan-signs-the-uhc2030-global-compact-503573/
Council HH. The National Strategy for Health Sector in Jordan 2016–2020. High Health Council (2015)
Jordan UN. The Sustainable Development Goals in Jordan United Nations Jordan 2023 [Available from: https://jordan.un.org/en/sdgs/3
Chalkidou, K., Marten, R., Cutler, D., Culyer, T., Smith, R., Teerawattananon, Y., et al.: Health technology assessment in universal health coverage. Lancet 382(9910), e48–e49 (2013)
pubmed: 24360390 doi: 10.1016/S0140-6736(13)62559-3
Whitehead, S.J., Ali, S.: Health outcomes in economic evaluation: the QALY and utilities. Br. Med. Bull. 96, 5–21 (2010)
pubmed: 21037243 doi: 10.1093/bmb/ldq033
Braithwaite, R.S.: Can life expectancy and QALYs be improved by a framework for deciding whether to apply clinical guidelines to patients with severe comorbid disease? Med. Decis. Making 31(4), 582–595 (2011)
pubmed: 21310855 doi: 10.1177/0272989X10386117
Brazier, J., Ara, R., Rowen, D., Chevrou-Severac, H.: A review of generic preference-based measures for use in cost-effectiveness models. Pharmacoeconomics 35(Suppl 1), 21–31 (2017)
pubmed: 29052157 doi: 10.1007/s40273-017-0545-x
Kennedy-Martin, M., Slaap, B., Herdman, M., van Reenen, M., Kennedy-Martin, T., Greiner, W., et al.: Which multi-attribute utility instruments are recommended for use in cost-utility analysis? A review of national health technology assessment (HTA) guidelines. Eur. J. Health Econ. 21(8), 1245–1257 (2020)
pubmed: 32514643 pmcid: 7561556 doi: 10.1007/s10198-020-01195-8
McDonough, C.M., Tosteson, A.N.: Measuring preferences for cost-utility analysis: how choice of method may influence decision-making. Pharmacoeconomics 25(2), 93–106 (2007)
pubmed: 17249853 pmcid: 3046553 doi: 10.2165/00019053-200725020-00003
Feng, Y.S., Kohlmann, T., Janssen, M.F., Buchholz, I.: Psychometric properties of the EQ-5D-5L: a systematic review of the literature. Qual. Life Res. 30(3), 647–673 (2021)
pubmed: 33284428 doi: 10.1007/s11136-020-02688-y
Foundation ER. EQ-5D-3L User Guide EuroQol Research Foundation; (2018)
Foundation ER. EQ-5D-5L User Guide. (2019)
Mahlich, J., Dilokthornsakul, P., Sruamsiri, R., Chaiyakunapruk, N.: Cultural beliefs, utility values, and health technology assessment. Cost Eff. Resour. Alloc. 16(1), 19 (2018)
pubmed: 29881328 pmcid: 5984787 doi: 10.1186/s12962-018-0103-1
Papadimitropoulos, E.A., Elbarazi, I., Blair, I., Katsaiti, M.S., Shah, K.K., Devlin, N.J.: An investigation of the feasibility and cultural appropriateness of stated preference methods to generate health state values in the United Arab Emirates. Value Health Reg Issues. 7, 34–41 (2015)
pubmed: 29698150 doi: 10.1016/j.vhri.2015.07.002
Singh, K., Kondal, D., Shivashankar, R., Ali, M.K., Pradeepa, R., Ajay, V.S., et al.: Health-related quality of life variations by sociodemographic factors and chronic conditions in three metropolitan cities of South Asia: the CARRS study. BMJ Open 7(10), e018424 (2017)
pubmed: 29038187 pmcid: 5652573 doi: 10.1136/bmjopen-2017-018424
El Hasnaoui, A., Aziz, F., Tariq, L., Lahlou, A., Du Plessis, D.: An omnibus approach to assess the prevalence, burden and quality of life of multiple diseases in the general population: the snapshot program in the middle east. Med. Res. Arch. (2018). https://doi.org/10.18103/mra.v6i2.1605
doi: 10.18103/mra.v6i2.1605
Kularatna, S., Whitty, J.A., Johnson, N.W., Scuffham, P.A.: Health state valuation in low- and middle-income countries: a systematic review of the literature. Value Health. 16(6), 1091–1099 (2013)
pubmed: 24041360 doi: 10.1016/j.jval.2013.05.006
Chemli, J., Drira, C., Felfel, H., Roudijk, B., Al Sayah, F., Kouki, M., et al.: Valuing health-related quality of life using a hybrid approach: Tunisian value set for the EQ-5D-3L. Qual. Life Res. 30(5), 1445–1455 (2021)
pubmed: 33447958 pmcid: 8068700 doi: 10.1007/s11136-020-02730-z
Goudarzi, R., Sari, A.A., Zeraati, H., Rashidian, A., Mohammad, K., Amini, S.: Valuation of quality weights for EuroQol 5-dimensional health states with the time trade-off method in the capital of Iran. Value Health Reg. Issues. 18, 170–175 (2019)
pubmed: 31096140 doi: 10.1016/j.vhri.2019.01.007
Lien, K., Tam, V.C., Ko, Y.J., Mittmann, N., Cheung, M.C., Chan, K.K.: Impact of country-specific EQ-5D-3L tariffs on the economic value of systemic therapies used in the treatment of metastatic pancreatic cancer. Curr. Oncol. 22(6), e443–e452 (2015)
pubmed: 26715881 pmcid: 4687669 doi: 10.3747/co.22.2592
Aburuz, S., Bulatova, N., Twalbeh, M., Gazawi, M.: The validity and reliability of the Arabic version of the EQ-5D: a study from Jordan. Ann. Saudi Med. 29(4), 304–308 (2009)
pubmed: 19584581 pmcid: 2841459 doi: 10.4103/0256-4947.55313
Stolk, E., Ludwig, K., Rand, K., van Hout, B., Ramos-Goñi, J.M.: Overview, update, and lessons learned from the International EQ-5D-5L valuation work: Version 2 of the EQ-5D-5L valuation protocol. Value in Health. 22(1), 23–30 (2019)
pubmed: 30661630 doi: 10.1016/j.jval.2018.05.010
Devlin, N., Roudijk, Bram, Ludwig, Kristina: Value Sets for EQ-5D-5L A Compendium, pp. 276–456. Comparative Review & User Guide. Springer, Cham (2022)
doi: 10.1007/978-3-030-89289-0
Oppe, M., Rand-Hendriksen, K., Shah, K., Ramos-Goni, J.M., Luo, N.: EuroQol protocols for time trade-off valuation of health outcomes. Pharmacoeconomics 34(10), 993–1004 (2016)
pubmed: 27084198 pmcid: 5023738 doi: 10.1007/s40273-016-0404-1
Stolk, E., Ludwig, K., Rand, K., van Hout, B., Ramos-Goni, J.M.: Overview, update, and lessons learned from the International EQ-5D-5L valuation work: Version 2 of the EQ-5D-5L valuation protocol. Value Health. 22(1), 23–30 (2019)
pubmed: 30661630 doi: 10.1016/j.jval.2018.05.010
Omelyanovskiy, V., Musina, N., Ratushnyak, S., Bezdenezhnykh, T., Fediaeva, V., Roudijk, B., Purba, F.D.: Valuation of the EQ-5D-3L in Russia. Qual. Life Res. 30(7), 1997–2007 (2021)
pubmed: 33713323 pmcid: 8233249 doi: 10.1007/s11136-021-02804-6
Wong, E.L.Y., Ramos-Goñi, J.M., Cheung, A.W.L., Wong, A.Y.K., Rivero-Arias, O.: Assessing the use of a feedback module to model EQ-5D-5L health states values in Hong Kong. Patient. 11(2), 235–247 (2018)
pubmed: 29019161 doi: 10.1007/s40271-017-0278-0
Stolk, E.A., Oppe, M., Scalone, L., Krabbe, P.F.: Discrete choice modeling for the quantification of health states: the case of the EQ-5D. Value Health. 13(8), 1005–1013 (2010)
pubmed: 20825618 doi: 10.1111/j.1524-4733.2010.00783.x
Lamers, L.M., McDonnell, J., Stalmeier, P.F., Krabbe, P.F., Busschbach, J.J.: The Dutch tariff: results and arguments for an effective design for national EQ-5D valuation studies. Health Econ. 15(10), 1121–1132 (2006)
pubmed: 16786549 doi: 10.1002/hec.1124
Oppe, M., Van Hout, B.: The “power” of eliciting EQ- 5D-5L values: the experimental design of the EQ-VT. . Rotterdam: EuroQol Research Foundation. (2017)
statistics Do.: Population. In: statistics Do, editor. Department of statistics; (2022)
Matías-Guiu, J., Serrano-Castro, P.J., Mauri-Llerda, J., Hernández-Ramos, F.J., Sánchez-Alvarez, J.C., Sanz, M.: Analysis of factors influencing telephone call response rate in an epidemiological study. Sci. World J. 2014, 179375 (2014)
doi: 10.1155/2014/179375
Ramos-Goni, J.M., Oppe, M., Slaap, B., Busschbach, J.J., Stolk, E.: Quality control process for EQ-5D-5L valuation studies. Value Health. 20(3), 466–473 (2017)
pubmed: 28292492 doi: 10.1016/j.jval.2016.10.012
Ramos-Goñi, J.M.C.B., Oppe, M., van Hout, B.: Combining continuous and dichotomous responses in a hybrid model. Rotterdam EuroQol Research Foundation. (2016)
Ramos-Goñi, J.M., Pinto-Prades, J.L., Oppe, M., Cabasés, J.M., Serrano-Aguilar, P., Rivero-Arias, O.: Valuation and modeling of EQ-5D-5L health states using a hybrid approach. Med. Care 55(7), e51–e58 (2017)
pubmed: 25521503 doi: 10.1097/MLR.0000000000000283
Yangb BRaZ.: Modelling your valuation data; a practical guide. (2022)
van Hout, B., Janssen, M.F., Feng, Y.S., Kohlmann, T., Busschbach, J., Golicki, D., et al.: Interim scoring for the EQ-5D-5L: mapping the EQ-5D-5L to EQ-5D-3L value sets. Value Health. 15(5), 708–715 (2012)
pubmed: 22867780 doi: 10.1016/j.jval.2012.02.008
Stastistics D. Jordan in Figures 2021. In: Statistics Do, editor. Amman-Jordan (2022)
Dolan, P.: Modeling valuations for EuroQol health states. Med. Care 35(11), 1095–1108 (1997)
pubmed: 9366889 doi: 10.1097/00005650-199711000-00002
Badia, X., Roset, M., Herdman, M., Kind, P.: A comparison of United Kingdom and Spanish general population time trade-off values for EQ-5D health states. Med. Decis. Mak. 21(1), 7–16 (2001)
doi: 10.1177/0272989X0102100102
Tsuchiya, A., Ikeda, S., Ikegami, N., Nishimura, S., Sakai, I., Fukuda, T., et al.: Estimating an EQ-5D population value set: the case of Japan. Health Econ. 11(4), 341–353 (2002)
pubmed: 12007165 doi: 10.1002/hec.673
Wittrup-Jensen, K.U., Lauridsen, J., Gudex, C., Pedersen, K.M.: Generation of a Danish TTO value set for EQ-5D health states. Scand J Public Health. 37(5), 459–466 (2009)
pubmed: 19411320 doi: 10.1177/1403494809105287
Shaw, J.W., Johnson, J.A., Coons, S.J.: US valuation of the EQ-5D health states: development and testing of the D1 valuation model. Med. Care 43(3), 203–220 (2005)
pubmed: 15725977 doi: 10.1097/00005650-200503000-00003
Rencz, F., Brodszky, V., Gulacsi, L., Golicki, D., Ruzsa, G., Pickard, A.S., et al.: Parallel valuation of the EQ-5D-3L and EQ-5D-5L by time trade-off in Hungary. Value Health. 23(9), 1235–1245 (2020)
pubmed: 32940242 doi: 10.1016/j.jval.2020.03.019
Paveliu, M.S., Olariu, E., Caplescu, R., Oluboyede, Y., Niculescu-Aron, I.G., Ernu, S., Vale, L.: Estimating an EQ-5D-3L value set for Romania using time trade-off. Int. J. Environ. Res. Public Health. 18(14), 7415 (2021)
pubmed: 34299864 pmcid: 8306594 doi: 10.3390/ijerph18147415
Goudarzi, R., Sari, A.A., Zeraati, H., Rashidian, A., Mohammad, K., Amini, S.: Valuation of quality weights for EuroQol 5-dimensional health states with the time trade-off method in the capital of Iran. Value Health Regional Issues. 18, 170–175 (2019)
doi: 10.1016/j.vhri.2019.01.007
Scalone, L., Cortesi, P.A., Ciampichini, R., Belisari, A., D’Angiolella, L.S., Cesana, G., Mantovani, L.G.: Italian population-based values of EQ-5D health states. Value Health. 16(5), 814–822 (2013)
pubmed: 23947975 doi: 10.1016/j.jval.2013.04.008
Foundation ER. EQ-5D-3L Valuation 2023 [Available from: https://euroqol.org/eq-5d-instruments/eq-5d-3l-about/valuation/
Al Shabasy, S., Abbassi, M., Finch, A., Roudijk, B., Baines, D., Farid, S.: The EQ-5D-5L valuation study in Egypt. Pharmacoeconomics 40(4), 433–447 (2022)
pubmed: 34786590 doi: 10.1007/s40273-021-01100-y
Al-Jedai, A., Almudaiheem, H., Al-Salamah, T., Aldosari, M., Almutairi, A.R., Almogbel, Y., et al.: Valuation of EQ-5D-5L in the Kingdom of Saudi Arabia: a national representative study. Value Health. 27(5), 552–561 (2024)
pubmed: 38342365 doi: 10.1016/j.jval.2024.01.017
Afshari, S., Daroudi, R., Goudarzi, R., Mahboub-Ahari, A., Yaseri, M., Sari, A.A., et al.: A national survey of Iranian general population to estimate a value set for the EQ-5D-5L. Qual. Life Res. 32(7), 2079–2087 (2023)
pubmed: 36897530 doi: 10.1007/s11136-023-03378-1
Foundation ER. EQ-5D-5L Valuation 2023 [Available from: https://euroqol.org/eq-5d-instruments/eq-5d-5l-about/valuation-standard-value-sets/ .
NextStep ERFW. EQ-5D-3L Valuation 2023 [Available from: https://euroqol.org/eq-5d-instruments/eq-5d-3l-about/valuation/ .
Fasseeh, A., Karam, R., Jameleddine, M., George, M., Kristensen, F.B., Al-Rabayah, A.A., et al.: Implementation of health technology assessment in the Middle East And North Africa: comparison between the current and preferred status. Front. Pharmacol. 11, 15 (2020)
pubmed: 32153393 pmcid: 7046555 doi: 10.3389/fphar.2020.00015
Organization WH. COVID-19 pandemic triggers 25% increase in prevalence of anxiety and depression worldwide 2022 [Available from: https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide
Finch, A.P., Meregaglia, M., Ciani, O., Roudijk, B., Jommi, C.: An EQ-5D-5L value set for Italy using videoconferencing interviews and feasibility of a new mode of administration. Soc. Sci. Med. 292, 114519 (2022)
pubmed: 34736804 doi: 10.1016/j.socscimed.2021.114519
Peasgood, T., Bourke, M., Devlin, N., Rowen, D., Yang, Y., Dalziel, K.: Randomised comparison of online interviews versus face-to-face interviews to value health states. Soc. Sci. Med. 323, 115818 (2023)
pubmed: 36940582 pmcid: 9993735 doi: 10.1016/j.socscimed.2023.115818
Rowen, D., Mukuria, C., Bray, N., Carlton, J., Longworth, L., Meads, D., et al.: Assessing the comparative feasibility, acceptability and equivalence of videoconference interviews and face-to-face interviews using the time trade-off technique. Soc. Sci. Med. 309, 115227 (2022)
pubmed: 35969979 doi: 10.1016/j.socscimed.2022.115227
Entrepreneurship MoDEa.: Telecom prevalence and usage survey and information technology in homes. Ministry of Digital Economy and Entrepreneurship (2021)
Rencz, F., Brodszky, V., Gulácsi, L., Golicki, D., Ruzsa, G., Pickard, A.S., et al.: Parallel valuation of the EQ-5D-3L and EQ-5D-5L by time trade-off in Hungary. Value Health. 23(9), 1235–1245 (2020)
pubmed: 32940242 doi: 10.1016/j.jval.2020.03.019
Welie, A.G., Gebretekle, G.B., Stolk, E., Mukuria, C., Krahn, M.D., Enquoselassie, F., Fenta, T.G.: Valuing health state: an EQ-5D-5L value set for Ethiopians. Value Health Reg Issues. 22, 7–14 (2020)
pubmed: 31683254 doi: 10.1016/j.vhri.2019.08.475
Group WB.: The World by Income and Region 2023 [Available from: https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html .
Webb, E.J.D., Kind, P., Meads, D., Martin, A.: Does a health crisis change how we value health? Health Econ. 30(10), 2547–2560 (2021)
pubmed: 34302310 doi: 10.1002/hec.4399
Vo, C.Q., Samuelsen, P.-J., Sommerseth, H.L., Wisløff, T., Wilsgaard, T., Eggen, A.E.: Comparing the sociodemographic characteristics of participants and non-participants in the population-based Tromsø Study. BMC Public Health 23(1), 994 (2023)
pubmed: 37248482 pmcid: 10226228 doi: 10.1186/s12889-023-15928-w
Jyani, G., Prinja, S., Goyal, A., Garg, B., Kaur, M., Grover, S.: Do people with different sociodemographic backgrounds value their health differently? Evaluating the role of positional objectivity. Front. Public Health 11, 1234320 (2023)
pubmed: 38162609 pmcid: 10756676 doi: 10.3389/fpubh.2023.1234320
Sayah, F.A., Bansback, N., Bryan, S., Ohinmaa, A., Poissant, L., Pullenayegum, E., et al.: Determinants of time trade-off valuations for EQ-5D-5L health states: data from the Canadian EQ-5D-5L valuation study. Qual. Life Res. 25(7), 1679–1685 (2016)
pubmed: 26659899 doi: 10.1007/s11136-015-1203-4
Al Shabasy, S., Al Sayah, F., Abbassi, M., Farid, S.: Determinants of health preferences using data from the Egyptian EQ-5D-5L valuation study. Patient. 15(5), 589–598 (2022)
pubmed: 35156181 pmcid: 9365720 doi: 10.1007/s40271-022-00572-0
van Nooten, F., Busschbach, J., van Agthoven, M., van Exel, J., Brouwer, W.: What should we know about the person behind a TTO? Eur. J. Health Econ. 19(9), 1207–1211 (2018)
pubmed: 29671142 doi: 10.1007/s10198-018-0975-1
Opinion IGMRaP. Distribution of Jordanians above 18 years by level of education [Unpublished data]. In press (2023)
Statitics Do.: General population and housing census 2015. Jordan (2015)

Auteurs

Abeer Al Rabayah (A)

Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research, and Health Technology Assessment, UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria. Abeer-Ahmad-Hamdan.Al-Rabayah@umit-tirol.at.
Center for Drug Policy and Technology Assessment, Pharmacy Department, King Hussein Cancer Center, Amman, Jordan. Abeer-Ahmad-Hamdan.Al-Rabayah@umit-tirol.at.

Bram Roudijk (B)

EuroQol Research Foundation, Rotterdam, The Netherlands.

Fredrick Dermawan Purba (FD)

Faculty of Psychology, Padjadjaran University, Bandung, Indonesia.

Fanni Rencz (F)

Department of Health Policy, Corvinus University of Budapest, Budapest, Hungary.

Saad Jaddoua (S)

Pharmacy Department, King Hussein Cancer Center, Amman, Jordan.

Uwe Siebert (U)

Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research, and Health Technology Assessment, UMIT TIROL-University for Health Sciences and Technology, Hall in Tirol, Austria.
Division of Health Technology Assessment, ONCOTYROL-Center for Personalized Cancer Medicine, Innsbruck, Austria.
Center for Health Decision Science, Departments of Epidemiology and Health Policy & Management, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Institute for Technology Assessment and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Classifications MeSH