Osteokines in Nonalcoholic Fatty Liver Disease.
Bone
Metabolic dysfunction-associated steatotic liver disease
Nonalcoholic fatty liver disease
Nonalcoholic steatohepatitis
Osteokines
Journal
Current obesity reports
ISSN: 2162-4968
Titre abrégé: Curr Obes Rep
Pays: United States
ID NLM: 101578283
Informations de publication
Date de publication:
03 Sep 2024
03 Sep 2024
Historique:
accepted:
21
08
2024
medline:
3
9
2024
pubmed:
3
9
2024
entrez:
3
9
2024
Statut:
aheadofprint
Résumé
To critically summarize evidence on the potential role of osteokines in the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD). There are emerging data supporting that certain osteokines, which are specific bone-derived proteins, may beneficially or adversely affect hepatic metabolism, and their alterations in the setting of osteoporosis or other bone metabolic diseases may possibly contribute to the development and progression of NAFLD. There is evidence showing a potential bidirectional association between NAFLD and bone metabolism, which may imply the existence of a liver-bone axis. In this regard, osteocalcin, osteoprotegerin, bone morphogenic protein 4 (BMP4) and BMP6 appear to have a positive impact on the liver, thus possibly alleviating NAFLD, whereas osteopontin, receptor activator of nuclear factor kappa Β ligand (RANKL), sclerostin, periostin, BMP8B, and fibroblast growth factor 23 (FGF23) appear to have a negative impact on the liver, thus possibly exacerbating NAFLD. The potential implication of osteokines in NAFLD warrants further animal and clinical research in the field that may possibly result in novel therapeutic targets for NAFLD in the future.
Identifiants
pubmed: 39225951
doi: 10.1007/s13679-024-00586-9
pii: 10.1007/s13679-024-00586-9
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 2019;92:82–97.
pubmed: 30502373
doi: 10.1016/j.metabol.2018.11.014
Li L, Liu D-W, Yan H-Y, Wang Z-Y, Zhao S-H, Wang B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes Rev. 2016;17:510–9.
pubmed: 27020692
doi: 10.1111/obr.12407
Polyzos SA, Kountouras J, Mantzoros CS. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinol. 2017;42:92–108.
pubmed: 27711029
doi: 10.23736/S0391-1977.16.02563-3
Makri E, Goulas A, Polyzos SA. Epidemiology, pathogenesis, diagnosis and emerging treatment of nonalcoholic fatty liver disease. Arch Med Res. 2021;52:25–37.
pubmed: 33334622
doi: 10.1016/j.arcmed.2020.11.010
Polyzos SA, Mantzoros CS. Metabolic dysfunction-associated steatotic liver disease: Recent turning points for its diagnosis and management. Metabolism. 2024;157:155936.
Polyzos SA, Kechagias S, Tsochatzis EA. Review article: non-alcoholic fatty liver disease and cardiovascular diseases: associations and treatment considerations. Aliment Pharmacol Ther. 2021;54:1013–25.
pubmed: 34416040
doi: 10.1111/apt.16575
Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79:1542–56.
pubmed: 37364790
doi: 10.1016/j.jhep.2023.06.003
Polyzos SA, Kountouras J, Zavos C, Deretzi G. Nonalcoholic fatty liver disease: multimodal treatment options for a pathogenetically multiple-hit disease. J Clin Gastroenterol. 2012;46:272–84.
pubmed: 22395062
doi: 10.1097/MCG.0b013e31824587e0
Zaidi M, Zaidi S, Yuen T. Understanding osteokine biology. Cell Metab. 2024;36:888–90.
pubmed: 38718755
doi: 10.1016/j.cmet.2024.04.008
Liang W, Wei T, Hu L, Chen M, Tong L, Zhou W, et al. An integrated multi-omics analysis reveals osteokines involved in global regulation. Cell Metab. 2024;36:1144-1163.e7.
pubmed: 38574738
doi: 10.1016/j.cmet.2024.03.006
Shimonty A, Bonewald LF, Huot JR. Metabolic health and disease: A role of osteokines? Calcif Tissue Int. 2023;113:21–38.
pubmed: 37193929
doi: 10.1007/s00223-023-01093-0
Vachliotis ID, Anastasilakis AD, Goulas A, Goulis DG, Polyzos SA. Nonalcoholic fatty liver disease and osteoporosis: A potential association with therapeutic implications. Diabetes Obes Metab. 2022;24:1702–20.
pubmed: 35589613
doi: 10.1111/dom.14774
Drapkina OM, Elkina AY, Sheptulina AF, Kiselev AR. Non-Alcoholic Fatty Liver Disease and Bone Tissue Metabolism: Current Findings and Future Perspectives. Int J Mol Sci. 2023;24:8445.
pubmed: 37176153
pmcid: 10178980
doi: 10.3390/ijms24098445
Azizieh FY, Shehab D, Al Jarallah K, Mojiminiyi O, Gupta R, Raghupathy R. Circulatory pattern of cytokines, adipokines and bone markers in postmenopausal women with low BMD. J Inflamm Res. 2019;12:99–108.
pubmed: 31118735
pmcid: 6503650
doi: 10.2147/JIR.S203590
Filip R, Radzki RP, Bieńko M. Novel insights into the relationship between nonalcoholic fatty liver disease and osteoporosis. Clin Interv Aging. 2018;13:1879–91.
pubmed: 30323574
pmcid: 6174895
doi: 10.2147/CIA.S170533
Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism. 2016;65:1062–79.
pubmed: 26725002
doi: 10.1016/j.metabol.2015.11.006
Shu L, Fu Y, Sun H. The association between common serum adipokines levels and postmenopausal osteoporosis: A meta-analysis. J Cell Mol Med. 2022;26:4333–42.
pubmed: 35791510
pmcid: 9344814
doi: 10.1111/jcmm.17457
Santos JPMD, de Maio MC, Lemes MA, Laurindo LF, Haber JFDS, Bechara MD, et al. Non-Alcoholic Steatohepatitis (NASH) and Organokines: What Is Now and What Will Be in the Future. Int J Mol Sci. 2022;23:498.
pubmed: 35008925
pmcid: 8745668
doi: 10.3390/ijms23010498
Ehnert S, Aspera-Werz RH, Ruoß M, Dooley S, Hengstler JG, Nadalin S, et al. Hepatic osteodystrophy-molecular mechanisms proposed to favor its development. Int J Mol Sci. 2019;20:2555.
pubmed: 31137669
pmcid: 6566554
doi: 10.3390/ijms20102555
Polyzos SA, Anastasilakis AD, Efstathiadou ZA, Yavropoulou MP, Makras P. Postmenopausal osteoporosis coexisting with other metabolic diseases: Treatment considerations. Maturitas. 2021;147:19–25.
pubmed: 33832643
doi: 10.1016/j.maturitas.2021.02.007
Zhao J, Lei H, Wang T, Xiong X. Liver-bone crosstalk in non-alcoholic fatty liver disease: Clinical implications and underlying pathophysiology. Front Endocrinol. 2023;14:1161402.
doi: 10.3389/fendo.2023.1161402
Fukumoto S, Martin TJ. Bone as an endocrine organ. Trends Endocrinol Metab. 2009;20:230–6.
pubmed: 19546009
doi: 10.1016/j.tem.2009.02.001
Wei J, Karsenty G. An overview of the metabolic functions of osteocalcin. Curr Osteoporos Rep. 2015;13:180–5.
pubmed: 25809656
doi: 10.1007/s11914-015-0267-y
Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med. 2009;9:299–314.
pubmed: 19355912
doi: 10.2174/156652409787847191
Zhang M, Nie X, Yuan Y, Wang Y, Ma X, Yin J, et al. Osteocalcin alleviates nonalcoholic fatty liver disease in mice through GPRC6A. Int J Endocrinol. 2021;2021:9178616.
pmcid: 7834799
doi: 10.1155/2021/9178616
Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012;50:568–75.
pubmed: 21550430
doi: 10.1016/j.bone.2011.04.017
Du J, Zhang M, Lu J, Zhang X, Xiong Q, Xu Y, et al. Osteocalcin improves nonalcoholic fatty liver disease in mice through activation of Nrf2 and inhibition of JNK. Endocrine. 2016;53:701–9.
pubmed: 26994931
doi: 10.1007/s12020-016-0926-5
Zhang X-L, Wang Y-N, Ma L-Y, Liu Z-S, Ye F, Yang J-H. Uncarboxylated osteocalcin ameliorates hepatic glucose and lipid metabolism in KKAy mice via activating insulin signaling pathway. Acta Pharmacol Sin. 2020;41:383–93.
pubmed: 31659239
doi: 10.1038/s41401-019-0311-z
Gupte AA, Sabek OM, Fraga D, Minze LJ, Nishimoto SK, Liu JZ, et al. Osteocalcin protects against nonalcoholic steatohepatitis in a mouse model of metabolic syndrome. Endocrinology. 2014;155:4697–705.
pubmed: 25279794
pmcid: 5393336
doi: 10.1210/en.2014-1430
Musso G, Paschetta E, Gambino R, Cassader M, Molinaro F. Interactions among bone, liver, and adipose tissue predisposing to diabesity and fatty liver. Trends Mol Med. 2013;19:522–35.
pubmed: 23816817
doi: 10.1016/j.molmed.2013.05.006
Otani T, Mizokami A, Kawakubo-Yasukochi T, Takeuchi H, Inai T, Hirata M. The roles of osteocalcin in lipid metabolism in adipose tissue and liver. Adv Biol Regul. 2020;78: 100752.
pubmed: 32992234
doi: 10.1016/j.jbior.2020.100752
Patti A, Gennari L, Merlotti D, Dotta F, Nuti R. Endocrine actions of osteocalcin. Int J Endocrinol. 2013;2013: 846480.
pubmed: 23737779
pmcid: 3657394
doi: 10.1155/2013/846480
Polyzos SA, Kountouras J, Zavos C. Adiponectin as a potential therapeutic agent for nonalcoholic steatohepatitis. Hepatol Res. 2010;40:446–7.
pubmed: 20394676
doi: 10.1111/j.1872-034X.2010.00632.x
Polyzos SA, Kountouras J, Zavos C, Tsiaousi E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab. 2010;12:365–83.
pubmed: 20415685
doi: 10.1111/j.1463-1326.2009.01176.x
Dou J, Ma X, Fang Q, Hao Y, Yang R, Wang F, et al. Relationship between serum osteocalcin levels and non-alcoholic fatty liver disease in Chinese men. Clin Exp Pharmacol Physiol. 2013;40:282–8.
pubmed: 23369196
doi: 10.1111/1440-1681.12063
Liu J-J, Chen Y-Y, Mo Z-N, Tian G-X, Tan A-H, Gao Y, et al. Relationship between serum osteocalcin levels and non-alcoholic fatty liver disease in adult males. South China Int J Mol Sci. 2013;14:19782–91.
pubmed: 24084725
doi: 10.3390/ijms141019782
Luo Y-Q, Ma X-J, Hao Y-P, Pan X-P, Xu Y-T, Xiong Q, et al. Inverse relationship between serum osteocalcin levels and nonalcoholic fatty liver disease in postmenopausal Chinese women with normal blood glucose levels. Acta Pharmacol Sin. 2015;36:1497–502.
pubmed: 26567728
pmcid: 4816233
doi: 10.1038/aps.2015.81
Sinn DH, Gwak G-Y, Rhee SY, Cho J, Son HJ, Paik Y-H, et al. Association between serum osteocalcin levels and non-alcoholic fatty liver disease in women. Digestion. 2015;91:150–7.
pubmed: 25677815
doi: 10.1159/000369789
Yang HJ, Shim SG, Ma BO, Kwak JY. Association of nonalcoholic fatty liver disease with bone mineral density and serum osteocalcin levels in Korean men. Eur J Gastroenterol Hepatol. 2016;28:338–44.
pubmed: 26636404
pmcid: 4739310
doi: 10.1097/MEG.0000000000000535
Wang N, Wang Y, Chen X, Zhang W, Chen Y, Xia F, et al. Bone Turnover Markers and Probable Advanced Nonalcoholic Fatty Liver Disease in Middle-Aged and Elderly Men and Postmenopausal Women With Type 2 Diabetes. Front Endocrinol. 2019;10:926.
doi: 10.3389/fendo.2019.00926
Aller R, Castrillon JLP, de Luis DA, Conde R, Izaola O, Sagrado MG, et al. Relation of osteocalcin with insulin resistance and histopathological changes of non alcoholic fatty liver disease. Ann Hepatol. 2011;10:50–5.
pubmed: 21301010
doi: 10.1016/S1665-2681(19)31587-X
Yilmaz Y, Kurt R, Eren F, Imeryuz N. Serum osteocalcin levels in patients with nonalcoholic fatty liver disease: association with ballooning degeneration. Scand J Clin Lab Invest. 2011;71:631–6.
pubmed: 21859358
doi: 10.3109/00365513.2011.604427
Xia M, Rong S, Zhu X, Yan H, Chang X, Sun X, et al. Osteocalcin and Non-Alcoholic Fatty Liver Disease: Lessons From Two Population-Based Cohorts and Animal Models. J Bone Miner Res. 2021;36:712–28.
pubmed: 33270924
doi: 10.1002/jbmr.4227
Fang D, Yin H, Ji X, Sun H, Zhao X, Bi Y, et al. Low levels of osteocalcin, but not CTX or P1NP, are associated with nonalcoholic hepatic steatosis and steatohepatitis. Diabetes Metab. 2023;49: 101397.
pubmed: 36283619
doi: 10.1016/j.diabet.2022.101397
Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73:202–9.
pubmed: 32278004
doi: 10.1016/j.jhep.2020.03.039
Wang Y-J, Jin C-H, Ke J-F, Wang J-W, Ma Y-L, Lu J-X, et al. Decreased serum osteocalcin is an independent risk factor for metabolic dysfunction-associated fatty liver disease in type 2 diabetes. Diabetes Metab Syndr Obes. 2022;15:3717–28.
pubmed: 36471670
pmcid: 9719286
doi: 10.2147/DMSO.S389794
McKee MD, Nanci A. Osteopontin: an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res. 1996;35:197–205.
pubmed: 9084658
doi: 10.3109/03008209609029192
Gimba ER, Tilli TM. Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett. 2013;331:11–7.
pubmed: 23246372
doi: 10.1016/j.canlet.2012.12.003
Chellaiah MA, Kizer N, Biswas R, Alvarez U, Strauss-Schoenberger J, Rifas L, et al. Osteopontin deficiency produces osteoclast dysfunction due to reduced CD44 surface expression. Mol Biol Cell. 2003;14:173–89.
pubmed: 12529435
pmcid: 140236
doi: 10.1091/mbc.e02-06-0354
Si J, Wang C, Zhang D, Wang B, Zhou Y. Osteopontin in bone metabolism and bone diseases. Med Sci Monit. 2020;26: e919159.
pubmed: 31996665
pmcid: 7003659
doi: 10.12659/MSM.919159
Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int. 2002;71:145–54.
pubmed: 12073157
doi: 10.1007/s00223-001-1121-z
Lund SA, Giachelli CM, Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009;3:311–22.
pubmed: 19798593
pmcid: 2778587
doi: 10.1007/s12079-009-0068-0
Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol. 2007;27:2302–9.
pubmed: 17717292
doi: 10.1161/ATVBAHA.107.144824
Sahai A, Malladi P, Melin-Aldana H, Green RM, Whitington PF. Upregulation of osteopontin expression is involved in the development of nonalcoholic steatohepatitis in a dietary murine model. Am J Physiol Gastrointest Liver Physiol. 2004;287:G264–73.
pubmed: 15044174
doi: 10.1152/ajpgi.00002.2004
Song Z, Chen W, Athavale D, Ge X, Desert R, Das S, et al. Osteopontin takes center stage in chronic liver disease. Hepatology. 2021;73:1594–608.
pubmed: 32986864
doi: 10.1002/hep.31582
Kiefer FW, Neschen S, Pfau B, Legerer B, Neuhofer A, Kahle M, et al. Osteopontin deficiency protects against obesity-induced hepatic steatosis and attenuates glucose production in mice. Diabetologia. 2011;54:2132–42.
pubmed: 21562757
pmcid: 3131508
doi: 10.1007/s00125-011-2170-0
Kiefer FW, Zeyda M, Gollinger K, Pfau B, Neuhofer A, Weichhart T, et al. Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance. Diabetes. 2010;59:935–46.
pubmed: 20107108
pmcid: 2844841
doi: 10.2337/db09-0404
Honda M, Kimura C, Uede T, Kon S. Neutralizing antibody against osteopontin attenuates non-alcoholic steatohepatitis in mice. J Cell Commun Signal. 2020;14:223–32.
pubmed: 32062834
pmcid: 7272532
doi: 10.1007/s12079-020-00554-7
Bertola A, Deveaux V, Bonnafous S, Rousseau D, Anty R, Wakkach A, et al. Elevated expression of osteopontin may be related to adipose tissue macrophage accumulation and liver steatosis in morbid obesity. Diabetes. 2009;58:125–33.
pubmed: 18952835
pmcid: 2606860
doi: 10.2337/db08-0400
Nuñez-Garcia M, Gomez-Santos B, Buqué X, García-Rodriguez JL, Romero MR, Marin JJG, et al. Osteopontin regulates the cross-talk between phosphatidylcholine and cholesterol metabolism in mouse liver. J Lipid Res. 2017;58:1903–15.
pubmed: 28754826
pmcid: 5580904
doi: 10.1194/jlr.M078980
Fiorucci S, Biagioli M, Sepe V, Zampella A, Distrutti E. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs. 2020;29:623–32.
pubmed: 32552182
doi: 10.1080/13543784.2020.1763302
Horn CL, Morales AL, Savard C, Farrell GC, Ioannou GN. Role of cholesterol-associated steatohepatitis in the development of NASH. Hepatol Commun. 2022;6:12–35.
pubmed: 34558856
doi: 10.1002/hep4.1801
Tang M, Jiang Y, Jia H, Patpur BK, Yang B, Li J, et al. Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease. Artif Cells Nanomed Biotechnol. 2020;48:159–68.
pubmed: 31852298
doi: 10.1080/21691401.2019.1699822
Lancha A, Rodríguez A, Catalán V, Becerril S, Sáinz N, Ramírez B, et al. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice. PLoS ONE. 2014;9: e98398.
pubmed: 24871103
pmcid: 4037189
doi: 10.1371/journal.pone.0098398
Nagoshi S. Osteopontin: Versatile modulator of liver diseases. Hepatol Res. 2014;44:22–30.
pubmed: 23701387
doi: 10.1111/hepr.12166
Xu Z, Xi F, Deng X, Ni Y, Pu C, Wang D, et al. Osteopontin Promotes Macrophage M1 Polarization by Activation of the JAK1/STAT1/HMGB1 Signaling Pathway in Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol. 2023;11:273–83.
pubmed: 36643029
Kahles F, Findeisen HM, Bruemmer D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab. 2014;3:384–93.
pubmed: 24944898
pmcid: 4060362
doi: 10.1016/j.molmet.2014.03.004
Jiang X, Zhang F, Ji X, Dong F, Yu H, Xue M, et al. Lipid-injured hepatocytes release sOPN to improve macrophage migration via CD44 engagement and pFak-NFκB signaling. Cytokine. 2021;142: 155474.
pubmed: 33647584
doi: 10.1016/j.cyto.2021.155474
Han H, Ge X, Komakula SSB, Desert R, Das S, Song Z, et al. Macrophage-derived Osteopontin (SPP1) Protects From Nonalcoholic Steatohepatitis. Gastroenterology. 2023;165:201–17.
pubmed: 37028770
doi: 10.1053/j.gastro.2023.03.228
Remmerie A, Martens L, Thoné T, Castoldi A, Seurinck R, Pavie B, et al. Osteopontin expression identifies a subset of recruited macrophages distinct from kupffer cells in the fatty liver. Immunity. 2020;53:641-657.e14.
pubmed: 32888418
pmcid: 7501731
doi: 10.1016/j.immuni.2020.08.004
Cui G, Chen J, He J, Lu C, Wei Y, Wang L, et al. Osteopontin promotes dendritic cell maturation and function in response to HBV antigens. Drug Des Devel Ther. 2015;9:3003–16.
pubmed: 26109844
pmcid: 4472071
Chung JW, Kim MS, Piao Z-H, Jeong M, Yoon SR, Shin N, et al. Osteopontin promotes the development of natural killer cells from hematopoietic stem cells. Stem Cells. 2008;26:2114–23.
pubmed: 18535152
doi: 10.1634/stemcells.2008-0370
Koh A, da Silva APB, Bansal AK, Bansal M, Sun C, Lee H, et al. Role of osteopontin in neutrophil function. Immunology. 2007;122:466–75.
pubmed: 17680800
pmcid: 2266047
doi: 10.1111/j.1365-2567.2007.02682.x
Soysouvanh F, Rousseau D, Bonnafous S, Bourinet M, Strazzulla A, Patouraux S, et al. Osteopontin-driven T-cell accumulation and function in adipose tissue and liver promoted insulin resistance and MAFLD. Obesity. 2023;31:2568–82.
pubmed: 37724058
doi: 10.1002/oby.23868
Bruha R, Vitek L, Smid V. Osteopontin - A potential biomarker of advanced liver disease. Ann Hepatol. 2020;19:344–52.
pubmed: 32005637
doi: 10.1016/j.aohep.2020.01.001
Wen Y, Jeong S, Xia Q, Kong X. Role of Osteopontin in Liver Diseases. Int J Biol Sci. 2016;12:1121–8.
pubmed: 27570486
pmcid: 4997056
doi: 10.7150/ijbs.16445
Syn W-K, Choi SS, Liaskou E, Karaca GF, Agboola KM, Oo YH, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 2011;53:106–15.
pubmed: 20967826
doi: 10.1002/hep.23998
Syn W-K, Agboola KM, Swiderska M, Michelotti GA, Liaskou E, Pang H, et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut. 2012;61:1323–9.
pubmed: 22427237
doi: 10.1136/gutjnl-2011-301857
Urtasun R, Lopategi A, George J, Leung T-M, Lu Y, Wang X, et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin α(V)β(3) engagement and PI3K/pAkt/NFκB signaling. Hepatology. 2012;55:594–608.
pubmed: 21953216
doi: 10.1002/hep.24701
Lorena D, Darby IA, Gadeau A-P, Leen LLS, Rittling S, Porto LC, et al. Osteopontin expression in normal and fibrotic liver. altered liver healing in osteopontin-deficient mice. J Hepatol. 2006;44:383–90.
pubmed: 16221502
doi: 10.1016/j.jhep.2005.07.024
Arriazu E, Ge X, Leung T-M, Magdaleno F, Lopategi A, Lu Y, et al. Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury. Gut. 2017;66:1123–37.
pubmed: 26818617
doi: 10.1136/gutjnl-2015-310752
Xiao X, Gang Y, Gu Y, Zhao L, Chu J, Zhou J, et al. Osteopontin contributes to TGF-β1 mediated hepatic stellate cell activation. Dig Dis Sci. 2012;57:2883–91.
pubmed: 22661273
doi: 10.1007/s10620-012-2248-7
Coombes JD, Choi SS, Swiderska-Syn M, Manka P, Reid DT, Palma E, et al. Osteopontin is a proximal effector of leptin-mediated non-alcoholic steatohepatitis (NASH) fibrosis. Biochim Biophys Acta. 2016;1862:135–44.
pubmed: 26529285
doi: 10.1016/j.bbadis.2015.10.028
Glass O, Henao R, Patel K, Guy CD, Gruss HJ, Syn W-K, et al. Serum Interleukin-8, Osteopontin, and Monocyte Chemoattractant Protein 1 Are Associated With Hepatic Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Hepatol Commun. 2018;2:1344–55.
pubmed: 30411081
pmcid: 6211321
doi: 10.1002/hep4.1237
Kriss M, Golden-Mason L, Kaplan J, Mirshahi F, Setiawan VW, Sanyal AJ, et al. Increased hepatic and circulating chemokine and osteopontin expression occurs early in human NAFLD development. PLoS ONE. 2020;15: e0236353.
pubmed: 32730345
pmcid: 7392333
doi: 10.1371/journal.pone.0236353
Yilmaz Y, Ozturk O, Alahdab YO, Senates E, Colak Y, Doganay HL, et al. Serum osteopontin levels as a predictor of portal inflammation in patients with nonalcoholic fatty liver disease. Dig Liver Dis. 2013;45:58–62.
pubmed: 22995553
doi: 10.1016/j.dld.2012.08.017
Wang C, He M, Peng J, Li S, Long M, Chen W, et al. Increased plasma osteopontin levels are associated with nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Cytokine. 2020;125: 154837.
pubmed: 31514105
doi: 10.1016/j.cyto.2019.154837
Anastasilakis AD, Polyzos SA, Makras P. Therapy of endocrine disease: Denosumab vs bisphosphonates for the treatment of postmenopausal osteoporosis. Eur J Endocrinol. 2018;179:R31-45.
pubmed: 29691303
doi: 10.1530/EJE-18-0056
Gkastaris K, Goulis DG, Potoupnis M, Anastasilakis AD, Kapetanos G. Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact. 2020;20:372–81.
pubmed: 32877973
pmcid: 7493444
Tsukasaki M, Asano T, Muro R, Huynh NC-N, Komatsu N, Okamoto K, et al. OPG Production Matters Where It Happened. Cell Rep. 2020;32:108124.
pubmed: 32905763
doi: 10.1016/j.celrep.2020.108124
Polyzos SA, Makras P, Tournis S, Anastasilakis AD. Off-label uses of denosumab in metabolic bone diseases. Bone. 2019;129: 115048.
pubmed: 31454537
doi: 10.1016/j.bone.2019.115048
Vachliotis ID, Polyzos SA. Osteoprotegerin/receptor activator of nuclear factor-kappa B ligand/receptor activator of nuclear factor-kappa B axis in obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Curr Obes Rep. 2023;12:147–62.
pubmed: 37208545
pmcid: 10250495
doi: 10.1007/s13679-023-00505-4
Bernardi S, Fabris B, Thomas M, Toffoli B, Tikellis C, Candido R, et al. Osteoprotegerin increases in metabolic syndrome and promotes adipose tissue proinflammatory changes. Mol Cell Endocrinol. 2014;394:13–20.
pubmed: 24998520
doi: 10.1016/j.mce.2014.06.004
Karmakar S, Majumdar S, Maiti A, Choudhury M, Ghosh A, Das AS, et al. Protective role of black tea extract against nonalcoholic steatohepatitis-induced skeletal dysfunction. J Osteoporos. 2011;2011:426863.
pubmed: 21772972
pmcid: 3135135
doi: 10.4061/2011/426863
Zhong L, Yuan J, Huang L, Li S, Deng L. RANKL is involved in Runx2-triggered hepatic infiltration of macrophages in mice with NAFLD induced by a high-fat diet. Biomed Res Int. 2020;2020:6953421.
pubmed: 32596356
pmcid: 7273465
doi: 10.1155/2020/6953421
Kiechl S, Wittmann J, Giaccari A, Knoflach M, Willeit P, Bozec A, et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med. 2013;19:358–63.
pubmed: 23396210
doi: 10.1038/nm.3084
Rinotas V, Niti A, Dacquin R, Bonnet N, Stolina M, Han C-Y, et al. Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J Bone Miner Res. 2014;29:1158–69.
pubmed: 24127173
doi: 10.1002/jbmr.2112
Polyzos SA, Goulas A. Treatment of nonalcoholic fatty liver disease with an anti-osteoporotic medication: A hypothesis on drug repurposing. Med Hypotheses. 2021;146: 110379.
pubmed: 33208241
doi: 10.1016/j.mehy.2020.110379
Yang M, Xu D, Liu Y, Guo X, Li W, Guo C, et al. Combined Serum Biomarkers in Non-Invasive Diagnosis of Non-Alcoholic Steatohepatitis. PLoS ONE. 2015;10: e0131664.
pubmed: 26121037
pmcid: 4486729
doi: 10.1371/journal.pone.0131664
Yang M, Liu Y, Zhou G, Guo X, Zou S, Liu S, et al. Value of serum osteoprotegerin in noninvasive diagnosis of nonalcoholic steatohepatitis. Zhonghua Gan Zang Bing Za Zhi. 2016;24:96–101.
pubmed: 26983475
Habibie H, Adhyatmika A, Schaafsma D, Melgert BN. The role of osteoprotegerin (OPG) in fibrosis: its potential as a biomarker and/or biological target for the treatment of fibrotic diseases. Pharmacol Ther. 2021;228: 107941.
pubmed: 34171336
doi: 10.1016/j.pharmthera.2021.107941
Mantovani A, Sani E, Fassio A, Colecchia A, Viapiana O, Gatti D, et al. Association between non-alcoholic fatty liver disease and bone turnover biomarkers in post-menopausal women with type 2 diabetes. Diabetes Metab. 2019;45:347–55.
pubmed: 30315891
doi: 10.1016/j.diabet.2018.10.001
Nikseresht M, Azarmehr N, Arya A, Alipoor B, Fadaei R, Khalvati B, et al. Circulating mRNA and plasma levels of osteoprotegerin and receptor activator of NF-κB ligand in nonalcoholic fatty liver disease. Biotechnol Appl Biochem. 2021;68:1243–9.
pubmed: 33010062
Takeno A, Yamamoto M, Notsu M, Sugimoto T. Administration of anti-receptor activator of nuclear factor-kappa B ligand (RANKL) antibody for the treatment of osteoporosis was associated with amelioration of hepatitis in a female patient with growth hormone deficiency: a case report. BMC Endocr Disord. 2016;16:66.
pubmed: 27881164
pmcid: 5122017
doi: 10.1186/s12902-016-0148-0
Arteel GE, Naba A. The liver matrisome - looking beyond collagens. JHEP Rep. 2020;2: 100115.
pubmed: 32637906
pmcid: 7330160
doi: 10.1016/j.jhepr.2020.100115
Lu Y, Liu X, Jiao Y, Xiong X, Wang E, Wang X, et al. Periostin promotes liver steatosis and hypertriglyceridemia through downregulation of PPARα. J Clin Invest. 2014;124:3501–13.
pubmed: 25003192
pmcid: 4109546
doi: 10.1172/JCI74438
Jia Y, Zhong F, Jiang S, Guo Q, Jin H, Wang F, et al. Periostin in chronic liver diseases: Current research and future perspectives. Life Sci. 2019;226:91–7.
pubmed: 30978348
doi: 10.1016/j.lfs.2019.04.021
Polyzos SA, Anastasilakis AD. Periostin on the road to nonalcoholic fatty liver disease. Endocrine. 2016;51:4–6.
pubmed: 26585566
doi: 10.1007/s12020-015-0803-7
Zhu J-Z, Zhu H-T, Dai Y-N, Li C-X, Fang Z-Y, Zhao D-J, et al. Serum periostin is a potential biomarker for non-alcoholic fatty liver disease: a case-control study. Endocrine. 2016;51:91–100.
pubmed: 26362060
doi: 10.1007/s12020-015-0735-2
Yang Z, Zhang H, Niu Y, Zhang W, Zhu L, Li X, et al. Circulating periostin in relation to insulin resistance and nonalcoholic fatty liver disease among overweight and obese subjects. Sci Rep. 2016;6:37886.
pubmed: 27885258
pmcid: 5122856
doi: 10.1038/srep37886
Polyzos SA, Kountouras J, Anastasilakis AD, Papatheodorou A, Kokkoris P, Terpos E. Circulating periostin in patients with nonalcoholic fatty liver disease. Endocrine. 2017;56:438–41.
pubmed: 27738886
doi: 10.1007/s12020-016-1144-x
Smirne C, Mulas V, Barbaglia MN, Mallela VR, Minisini R, Barizzone N, et al. Periostin circulating levels and genetic variants in patients with non-alcoholic fatty liver disease. Diagnostics (Basel). 2020;10:1003.
pubmed: 33255560
doi: 10.3390/diagnostics10121003
Anastasilakis AD, Polyzos SA, Toulis KA. Role of wingless tail signaling pathway in osteoporosis: an update of current knowledge. Curr Opin Endocrinol Diabetes Obes. 2011;18:383–8.
pubmed: 21897222
doi: 10.1097/MED.0b013e32834afff2
Weivoda MM, Youssef SJ, Oursler MJ. Sclerostin expression and functions beyond the osteocyte. Bone. 2017;96:45–50.
pubmed: 27888056
doi: 10.1016/j.bone.2016.11.024
Magarò MS, Bertacchini J, Florio F, Zavatti M, Potì F, Cavani F, et al. Identification of sclerostin as a putative new myokine involved in the muscle-to-bone crosstalk. Biomedicines. 2021;9:71.
pubmed: 33445754
pmcid: 7828203
doi: 10.3390/biomedicines9010071
Oh H, Park SY, Cho W, Abd El-Aty AM, Hacimuftuoglu A, Kwon CH, et al. Sclerostin aggravates insulin signaling in skeletal muscle and hepatic steatosis via upregulation of ER stress by mTOR-mediated inhibition of autophagy under hyperlipidemic conditions. J Cell Physiol. 2022;237:4226–37.
pubmed: 36087347
doi: 10.1002/jcp.30873
Zhou F, Wang Y, Li Y, Tang M, Wan S, Tian H, et al. Decreased sclerostin secretion in humans and mice with nonalcoholic fatty liver disease. Front Endocrinol. 2021;12: 707505.
doi: 10.3389/fendo.2021.707505
Polyzos SA, Anastasilakis AD, Kountouras J, Makras P, Papatheodorou A, Kokkoris P, et al. Circulating sclerostin and Dickkopf-1 levels in patients with nonalcoholic fatty liver disease. J Bone Miner Metab. 2016;34:447–56.
pubmed: 26056025
doi: 10.1007/s00774-015-0687-x
Li Z, Wen X, Li N, Zhong C, Chen L, Zhang F, et al. The roles of hepatokine and osteokine in liver-bone crosstalk: Advance in basic and clinical aspects. Front Endocrinol (Lausanne). 2023;14:1149233.
pubmed: 37091847
doi: 10.3389/fendo.2023.1149233
Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-β signalling and liver disease. FEBS J. 2016;283:2219–32.
pubmed: 26807763
doi: 10.1111/febs.13665
Tarantino G, Conca P, Riccio A, Tarantino M, Di Minno MN, Chianese D, et al. Enhanced serum concentrations of transforming growth factor-beta1 in simple fatty liver: is it really benign? J Transl Med. 2008;6:72.
pubmed: 19038040
pmcid: 2611972
doi: 10.1186/1479-5876-6-72
Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, et al. Association of inflammatory cytokines with non-alcoholic fatty liver disease. Front Immunol. 2022;13: 880298.
pubmed: 35603224
pmcid: 9122097
doi: 10.3389/fimmu.2022.880298
Herrera B, Addante A, Sánchez A. BMP signalling at the crossroad of liver fibrosis and regeneration. Int J Mol Sci. 2017;19:1.
doi: 10.3390/ijms19010039
Peng Q, Chen B, Wang H, Zhu Y, Wu J, Luo Y, et al. Bone morphogenetic protein 4 (BMP4) alleviates hepatic steatosis by increasing hepatic lipid turnover and inhibiting the mTORC1 signaling axis in hepatocytes. Aging. 2019;11:11520–40.
pubmed: 31831718
pmcid: 6932923
doi: 10.18632/aging.102552
Wang X, Ma B, Wen X, You H, Sheng C, Bu L, et al. Bone morphogenetic protein 4 alleviates nonalcoholic steatohepatitis by inhibiting hepatic ferroptosis. Cell Death Discov. 2022;8:234.
pubmed: 35477568
pmcid: 9046379
doi: 10.1038/s41420-022-01011-7
Arndt S, Wacker E, Dorn C, Koch A, Saugspier M, Thasler WE, et al. Enhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease. Gut. 2015;64:973–81.
pubmed: 25011936
doi: 10.1136/gutjnl-2014-306968
Mahli A, Seitz T, Beckröge T, Freese K, Thasler WE, Benkert M, et al. Bone Morphogenetic Protein-8B Expression is Induced in Steatotic Hepatocytes and Promotes Hepatic Steatosis and Inflammation In Vitro. Cells. 2019;8:457.
pubmed: 31096638
pmcid: 6562647
doi: 10.3390/cells8050457
Vacca M, Leslie J, Virtue S, Lam BYH, Govaere O, Tiniakos D, et al. Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nat Metab. 2020;2:514–31.
pubmed: 32694734
doi: 10.1038/s42255-020-0214-9
Mounika N, Yadav A, Kamboj P, Banerjee SK, Deka UJ, Kaur S, et al. Circulatory bone morphogenetic protein (BMP) 8B is a non-invasive predictive biomarker for the diagnosis of non-alcoholic steatohepatitis (NASH). PLoS ONE. 2023;18: e0295839.
pubmed: 38127951
pmcid: 10734958
doi: 10.1371/journal.pone.0295839
Marañón P, Isaza SC, Fernández-García CE, Rey E, Gallego-Durán R, Montero-Vallejo R, et al. Circulating bone morphogenetic protein 8A is a novel biomarker to predict advanced liver fibrosis. Biomark Res. 2023;11:46.
pubmed: 37106416
pmcid: 10142503
doi: 10.1186/s40364-023-00489-2
Jiang Q-Q, Liu B-B, Xu K-S. New insights into BMP9 signaling in liver diseases. Mol Cell Biochem. 2021;476:3591–600.
pubmed: 34019202
doi: 10.1007/s11010-021-04182-6
Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016;90:985–96.
pubmed: 27457912
pmcid: 5065745
doi: 10.1016/j.kint.2016.05.019
Mattinzoli D, Ikehata M, Tsugawa K, Alfieri CM, Dongiovanni P, Trombetta E, et al. FGF23 and fetuin-A interaction in the liver and in the circulation. Int J Biol Sci. 2018;14:586–98.
pubmed: 29904273
pmcid: 6001652
doi: 10.7150/ijbs.23256
He X, Shen Y, Ma X, Ying L, Peng J, Pan X, et al. The association of serum FGF23 and non-alcoholic fatty liver disease is independent of vitamin D in type 2 diabetes patients. Clin Exp Pharmacol Physiol. 2018;45:668–74.
pubmed: 29574933
doi: 10.1111/1440-1681.12933
Cao W, Xu Y, Shen Y, Wang Y, Ma X, Bao Y. Serum fibroblast growth factor 23 level and liver fat content in MAFLD: A community-based cohort. Diabetes Metab Syndr Obes. 2021;14:4135–43.
pubmed: 34616166
pmcid: 8487847
doi: 10.2147/DMSO.S328206
Kord-Varkaneh H, Djafarian K, Khorshidi M, Shab-Bidar S. Association between serum osteocalcin and body mass index: a systematic review and meta-analysis. Endocrine. 2017;58:24–32.
pubmed: 28822067
doi: 10.1007/s12020-017-1384-4
Kiefer FW, Zeyda M, Todoric J, Huber J, Geyeregger R, Weichhart T, et al. Osteopontin expression in human and murine obesity: extensive local up-regulation in adipose tissue but minimal systemic alterations. Endocrinology. 2008;149:1350–7.
pubmed: 18048491
doi: 10.1210/en.2007-1312
Chen J, Zeng P, Gong L, Zhang X, Ling Z, Bi K, et al. Osteopontin exacerbates high-fat diet-induced metabolic disorders in a microbiome-dependent manner. MBio. 2022;13: e0253122.
pubmed: 36300928
doi: 10.1128/mbio.02531-22
Vianello E, Kalousová M, Dozio E, Tacchini L, Zima T, Corsi Romanelli MM. Osteopontin: The molecular bridge between fat and cardiac-renal disorders. Int J Mol Sci. 2020;21:5568.
pubmed: 32759639
pmcid: 7432729
doi: 10.3390/ijms21155568
Gómez-Ambrosi J, Catalán V, Ramírez B, Rodríguez A, Colina I, Silva C, et al. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metab. 2007;92:3719–27.
pubmed: 17595250
doi: 10.1210/jc.2007-0349
Ahmad R, Al-Mass A, Al-Ghawas D, Shareif N, Zghoul N, Melhem M, et al. Interaction of osteopontin with IL-18 in obese individuals: implications for insulin resistance. PLoS ONE. 2013;8: e63944.
pubmed: 23675517
pmcid: 3652828
doi: 10.1371/journal.pone.0063944
You JS, Ji H-I, Chang KJ, Yoo MC, Yang H-I, Jeong I-K, et al. Serum osteopontin concentration is decreased by exercise-induced fat loss but is not correlated with body fat percentage in obese humans. Mol Med Rep. 2013;8:579–84.
pubmed: 23764959
doi: 10.3892/mmr.2013.1522
Schaller G, Aso Y, Schernthaner G-H, Kopp H-P, Inukai T, Kriwanek S, et al. Increase of osteopontin plasma concentrations after bariatric surgery independent from inflammation and insulin resistance. Obes Surg. 2009;19:351–6.
pubmed: 18452050
doi: 10.1007/s11695-008-9532-9
Riedl M, Vila G, Maier C, Handisurya A, Shakeri-Manesch S, Prager G, et al. Plasma osteopontin increases after bariatric surgery and correlates with markers of bone turnover but not with insulin resistance. J Clin Endocrinol Metab. 2008;93:2307–12.
pubmed: 18334587
doi: 10.1210/jc.2007-2383
Nakazeki F, Nishiga M, Horie T, Nishi H, Nakashima Y, Baba O, et al. Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo. Sci Rep. 2018;8:8553.
pubmed: 29867212
pmcid: 5986813
doi: 10.1038/s41598-018-27009-9
Yang Y, Zhang Y, Zhou X, Chen D, Ouyang G, Liu Y, et al. Periostin deficiency attenuates lipopolysaccharide- and obesity-induced adipose tissue fibrosis. FEBS Lett. 2021;595:2099–112.
pubmed: 34165806
doi: 10.1002/1873-3468.14154
Luo Y, Qu H, Wang H, Wei H, Wu J, Duan Y, et al. Plasma periostin levels are increased in Chinese subjects with obesity and type 2 diabetes and are positively correlated with glucose and lipid parameters. Mediators Inflamm. 2016;2016:6423637.
pubmed: 27313402
pmcid: 4893582
doi: 10.1155/2016/6423637
Dimitri P, Wales JK, Bishop N. Adipokines, bone-derived factors and bone turnover in obese children; evidence for altered fat-bone signalling resulting in reduced bone mass. Bone. 2011;48:189–96.
pubmed: 20932948
doi: 10.1016/j.bone.2010.09.034
Ashley DT, O’Sullivan EP, Davenport C, Devlin N, Crowley RK, McCaffrey N, et al. Similar to adiponectin, serum levels of osteoprotegerin are associated with obesity in healthy subjects. Metabolism. 2011;60:994–1000.
pubmed: 21087777
doi: 10.1016/j.metabol.2010.10.001
Courtalin M, Bertheaume N, Badr S, During A, Lombardo D, Deken V, et al. Relationships between circulating sclerostin, bone marrow adiposity, other adipose deposits and lean mass in post-menopausal women. Int J Mol Sci. 2023;24:5922.
pubmed: 36982995
pmcid: 10053867
doi: 10.3390/ijms24065922
Alramah T, Cherian P, Al-Khairi I, Abu-Farha M, Thanaraj TA, Albatineh AN, et al. Evaluating the correlation of sclerostin levels with obesity and type 2 diabetes in a multiethnic population living in Kuwait. Front Endocrinol (Lausanne). 2024;15:1392675.
pubmed: 38711986
pmcid: 11070556
doi: 10.3389/fendo.2024.1392675
Hanks LJ, Casazza K, Judd SE, Jenny NS, Gutiérrez OM. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS ONE. 2015;10: e0122885.
pubmed: 25811862
pmcid: 4374938
doi: 10.1371/journal.pone.0122885
Hu X, Ma X, Luo Y, Xu Y, Xiong Q, Pan X, et al. Associations of serum fibroblast growth factor 23 levels with obesity and visceral fat accumulation. Clin Nutr. 2018;37:223–8.
pubmed: 28027796
doi: 10.1016/j.clnu.2016.12.010
Holecki M, Chudek J, Owczarek A, Olszanecka-Glinianowicz M, Bożentowicz-Wikarek M, Duława J, et al. Inflammation but not obesity or insulin resistance is associated with increased plasma fibroblast growth factor 23 concentration in the elderly. Clin Endocrinol. 2015;82:900–9.
doi: 10.1111/cen.12759
Kouvari M, Valenzuela-Vallejo L, Guatibonza-Garcia V, Polyzos SA, Deng Y, Kokkorakis M, et al. Liver biopsy-based validation, confirmation and comparison of the diagnostic performance of established and novel non-invasive steatotic liver disease indexes: Results from a large multi-center study. Metabolism. 2023;147: 155666.
pubmed: 37527759
doi: 10.1016/j.metabol.2023.155666