Minimum inhibitory and bactericidal/fungicidal concentration of commercially available products containing essential oils, zinc gluconate, or 4% chlorhexidine for Malassezia pachydermatis, Pseudomonas aeruginosa, and multi-drug resistant Staphylococcus pseudintermedius canine clinical isolates.

Malassezia pachydermatis Pseudomonas aeruginosa Staphylococcus pseudintermedius Essential oils Multi-drug resistant Zinc gluconate

Journal

Veterinary research communications
ISSN: 1573-7446
Titre abrégé: Vet Res Commun
Pays: Switzerland
ID NLM: 8100520

Informations de publication

Date de publication:
03 Sep 2024
Historique:
received: 02 07 2024
accepted: 30 08 2024
medline: 3 9 2024
pubmed: 3 9 2024
entrez: 3 9 2024
Statut: aheadofprint

Résumé

Skin infections are common complications in both humans and animals. Because of the increased incidence of multi-drug resistant (MDR) skin infections, essential oils have been suggested as potential alternatives to the classic antimicrobials. The goal of this study was to evaluate the minimum inhibitory and bactericidal/fungicidal concentrations (MIC and MBC/MFC) of commercially available products containing essential oils, zinc gluconate, or 4% chlorhexidine. Microbroth dilution technique was performed on clinical isolates of MDR Staphylococcus pseudintermedius (MDR-SP; n = 10), Pseudomonas aeruginosa (PA; n = 10), and Malassezia pachydermatis (MP; n = 10). For MDR-SP, essential oil-containing products showed median MICs of 1:240 and 1:320. The chlorhexidine shampoo had a MIC of 1:128,000 (0.312 µg/mL), whereas zinc gluconate products had median MICs of 1:320 and 1:160. Three essential oil-containing shampoos (MBC 1:40), the zinc gluconate (MBC 1:40), and the chlorhexidine (MBC 1:64,000 [0.625 µg/mL]) reached an MBC. For PA, essential oil-containing products showed median MICs of 1:30 and 1:80. The zinc-gluconate products had a median MIC of 1:160, whereas the chlorhexidine shampoo had a median MIC of 1:4,000 (10 µg/mL). Only the zinc-gluconate products (MBC 1:80) and the chlorhexidine shampoo (MBC 1:2,000 [20 µg/mL]) reached an MBC. For MP, essential oil-containing and zinc-gluconate products showed lower median MICs (1:4,800 and 7,200) for shampoos compared with other formulations (1:160 and 1:320), whereas the chlorhexidine shampoo had a median MIC of 1:80,000 (0.5 µg/mL). These results suggest that natural topical compounds can be an effective alternative to treat skin infections in companion animals. Further in vivo studies are needed to clinically confirm this study's results.

Identifiants

pubmed: 39225973
doi: 10.1007/s11259-024-10528-4
pii: 10.1007/s11259-024-10528-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Abendrot M, Kalinowska-Lis U (2018) Zinc-containing compounds for personal care applications. Int J Cosmet Sci 40:319–327. https://doi.org/10.1111/ics.12463
doi: 10.1111/ics.12463 pubmed: 29734525
Almuhayawi MS (2020) Propolis as a novel antibacterial agent. Saudi J Biol Sci 27:3079–3086. https://doi.org/10.1016/j.sjbs.2020.09.016
doi: 10.1016/j.sjbs.2020.09.016 pubmed: 33100868 pmcid: 7569119
Alnaimat S, Wainwright M, Jaber S, Amasha R (2015) Mechanism of the antibacterial action of (Leptospermum scoparium) oil on methicillin-resistant Staphylococcus aureus (MRSA) and E. coli. The 2nd Mediterranean Symposium on Medicinal and Aromatic Plants (MESMAP-2)
Bajer T, Šilha D, Ventura K, Bajerová P (2017) Composition and antimicrobial activity of the essential oil, distilled aromatic water and herbal infusion from Epilobium parviflorum Schreb. Ind Crops Prod 100:95–105. https://doi.org/10.1016/j.indcrop.2017.02.016
doi: 10.1016/j.indcrop.2017.02.016
Bannoehr J, Guardabassi L (2012) Staphylococcus pseudintermedius in the dog: taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet Dermatol 23:253–266. https://doi.org/10.1111/j.1365-3164.2012.01046.x
doi: 10.1111/j.1365-3164.2012.01046.x pubmed: 22515504
Bartfay WJ, Bartfay E, Johnson JG (2012) Gram-negative and gram-positive antibacterial properties of the whole plant extract of willow herb (Epilobium angustifolium). Biol Res Nurs 14:85–89. https://doi.org/10.1177/1099800410393947
doi: 10.1177/1099800410393947 pubmed: 21208973
Beck KM, Waisglass SE, Dick HLN, Weese JS (2012) Prevalence of meticillin-resistant Staphylococcus pseudintermedius (MRSP) from skin and carriage sites of dogs after treatment of their meticillin-resistant or meticillin-sensitive Staphylococcal pyoderma. Vet Dermatol 23:369–e67. https://doi.org/10.1111/J.1365-3164.2012.01035.X
doi: 10.1111/J.1365-3164.2012.01035.X pubmed: 22364707
Bensignor E, Fabriès L, Bailleux L (2016) A split-body, randomized, blinded study to evaluate the efficacy of a topical spray composed of essential oils and essential fatty acids from plant extracts with antimicrobial properties. Vet Dermatol 27:464–e123. https://doi.org/10.1111/VDE.12374
doi: 10.1111/VDE.12374 pubmed: 27597636
Bismarck D, Dusold A, Heusinger A, Müller E (2020) Antifungal in vitro activity of essential oils against clinical isolates of Malassezia pachydermatis from canine ears: a report from a practice laboratory. Complement Med Res 27:143–154. https://doi.org/10.1159/000504316
doi: 10.1159/000504316 pubmed: 31775141
Bond R, Morris DO, Guillot J, Bensignor EJ, Robson D, Mason KV, Kano R, Hill PB (2020) Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats clinical consensus guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 31:28–74. https://doi.org/10.1111/vde.12809
doi: 10.1111/vde.12809 pubmed: 31957204
Bouhdid S, Abrini J, Zhiri A, Espuny MJ, Manresa A (2009) Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by origanum compactum essential oil. J Appl Microbiol 106:1558–1568. https://doi.org/10.1111/j.1365-2672.2008.04124.x
doi: 10.1111/j.1365-2672.2008.04124.x pubmed: 19226402
Bourguignon E, Viçosa GN, Corsini CMM, Moreira MAS, Nero LA, Conceição LG (2016) Description of methicillin-resistant Staphylococcus pseudintermedius from canine pyoderma in Minas Gerais state, Brazil. Arq Bras Med Vet Zootec 68:299–306. https://doi.org/10.1590/1678-4162-8150
doi: 10.1590/1678-4162-8150
Boyd M, Santoro D, Gram D (2019) In vitro antimicrobial activity of topical otological antimicrobials and Tris-EDTA against resistant Staphylococcus pseudintermedius and Pseudomonas aeruginosa isolates from dogs. Vet Dermatol 30:139–e40. https://doi.org/10.1111/vde.12717
doi: 10.1111/vde.12717 pubmed: 30672043
Burke M, Santoro D (2023) Prevalence of multidrug-resistant coagulase-positive Staphylococci in canine and feline dermatological patients over a 10-year period: a retrospective study. Microbiol (United Kingdom) 169:001300. https://doi.org/10.1099/MIC.0.001300/cite/refworks
doi: 10.1099/MIC.0.001300/cite/refworks
Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods - a review. Int J Food Microbiol 94:223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
doi: 10.1016/j.ijfoodmicro.2004.03.022 pubmed: 15246235
Cardoso RL, Maboni F, Machado G, Alves SH, de Vargas AC (2010) Antimicrobial activity of propolis extract against Staphylococcus coagulase positive and Malassezia pachydermatis of canine otitis. Vet Microbiol 142:432–434. https://doi.org/10.1016/j.vetmic.2009.09.070
doi: 10.1016/j.vetmic.2009.09.070 pubmed: 19913365
Carrillo-Muñoz AJ, Rojas F, Tur-Tur C, de Los Ángeles Sosa M, Diez GO, Espada CM, Payá MJ, Giusiano G (2013) In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species. Mycoses 56:571–575. https://doi.org/10.1111/myc.12076
doi: 10.1111/myc.12076 pubmed: 23496653
Chen CC, Yan SH, Yen MY, Wu PF, Liao WT, Huang TS, Wen ZH, David Wang HM (2016) Investigations of kanuka and manuka essential oils for in vitro treatment of disease and cellular inflammation caused by infectious microorganisms. J Microbiol Immunol Infect 49:104–1011. https://doi.org/10.1016/j.jmii.2013.12.009
doi: 10.1016/j.jmii.2013.12.009 pubmed: 24582465
Cutillas AB, Carrasco A, Martinez-Gutierrez R, Tomas V, Tudela J (2017) Salvia officinalis L. essential oils from Spain: determination of composition, antioxidant capacity, antienzymatic, and antimicrobial bioactivities. Chem Biodivers 14. https://doi.org/10.1002/CBDV.201700102
de Oliveira JR, Vilela PGDF, Almeida RBA, de Oliveira FE, Carvalho CAT, Camargo SEA, Jorge AOC, de Oliveira LD (2019) Antimicrobial activity of noncytotoxic concentrations of Salvia officinalis extract against bacterial and fungal species from the oral cavity. Gen Dent 67:22–26
pubmed: 30644826
Deegan KR, Fonseca MS, Oliveira DCP, Santos LM, Fernandez CC, Hanna SA, Machado BAS, Umsza-Guez MA, Meyer R, Portela RW (2019) Susceptibility of Malassezia pachydermatis clinical isolates to allopathic antifungals and Brazilian red, green, and brown propolis extracts. Front Vet Sci 6:460. https://doi.org/10.3389/fvets.2019.00460
doi: 10.3389/fvets.2019.00460 pubmed: 31921917 pmcid: 6923270
Dégi J, Herman V, Igna V, Dégi DM, Hulea A, Muselin F, Cristina RT (2022) Antibacterial activity of Romanian propolis against Staphylococcus aureus isolated from dogs with superficial pyoderma: in vitro test. Vet Sci 9:299. https://doi.org/10.3390/vetsci9060299
doi: 10.3390/vetsci9060299 pubmed: 35737351 pmcid: 9231063
Donato R, Sacco C, Pini G, Bilia AR (2020) Antifungal activity of different essential oils against Malassezia pathogenic species. J Ethnopharmacol 249:112376. https://doi.org/10.1016/j.jep.2019.112376
doi: 10.1016/j.jep.2019.112376 pubmed: 31704415
Dreno B, Moyse D, Alirezai M, Amblard P, Auffret N, Beylot C, Bodokh I, Chivot M, Daniel F, Humbert P, Meynadier J, Poli F (2001) Multicenter randomized comparative double-blind controlled clinical trial of the safety and efficacy of zinc gluconate versus minocycline hydrochloride in the treatment of inflammatory acne vulgaris. Dermatology 203:135–140. https://doi.org/10.1159/000051728
doi: 10.1159/000051728 pubmed: 11586012
Duangkaew L (2017) Effect of a mixture of essential oils and a plant-based extract for the management of localized superficial pyoderma in dogs: an open-label clinical trial. Thai J Vet Med 47:513–522
doi: 10.56808/2985-1130.2864
Ebani VV, Mancianti F (2020) Use of essential oils in veterinary medicine to combat bacterial and fungal infections. Vet Sci 7:193. https://doi.org/10.3390/vetsci7040193
doi: 10.3390/vetsci7040193 pubmed: 33266079 pmcid: 7712454
Ebani VV, Bertelloni F, Najar B, Nardoni S, Pistelli L, Mancianti F (2020) Antimicrobial activity of essential oils against Staphylococcus and Malassezia strains isolated from canine dermatitis. Microorganisms 8:252. https://doi.org/10.3390/microorganisms8020252
doi: 10.3390/microorganisms8020252 pubmed: 32069976 pmcid: 7074795
Ebani VV, Pieracci Y, Cagnoli G, Bertelloni F, Munafò C, Nardoni S, Pistelli L, Mancianti F (2023) In vitro antimicrobial activity of Thymus vulgaris, Origanum vulgare, Satureja montana and their mixture against clinical isolates responsible for canine otitis externa. Vet Sci 10:30. https://doi.org/10.3390/vetsci10010030
doi: 10.3390/vetsci10010030 pubmed: 36669031 pmcid: 9864906
Fadok V, Seckerdieck F, Bensignor E, Noli C, Oliveria A, Mueller R (2020) Topical application of a proprietary blend of essential oils and plant extracts is associated with fewer relapses of pyoderma. Vet Dermatol 31:75
Farahpour MR, Pirkhezr E, Ashrafian A, Sonboli A (2020) Accelerated healing by topical administration of Salvia officinalis essential oil on Pseudomonas aeruginosa and Staphylococcus aureus infected wound model. Biomed Pharmacother 128:110120. https://doi.org/10.1016/J.BIOPHA.2020.110120
Fernandes A, Balestrin EC, Betoni JEC, De Oliveira Orsi R, De Cunha SD, Montelli MDLR AC (2005) Propolis: anti-Staphylococcus aureus activity and synergism with antimicrobial drugs. Mem Inst Oswaldo Cruz 100:563–566. https://doi.org/10.1590/S0074-02762005000500018
doi: 10.1590/S0074-02762005000500018
Fuentes Esquivel DB, Pérez BR, Betancourt NT, García Tovar CG, Penieres Carrillo JG, Galindo FH, Flores JP, Sánchez TAC (2024) In vitro antimycotic activity and structural damage against canine Malassezia pachydermatis strains caused by Mexican stingless bee propolis. Vet Sci 11:106. https://doi.org/10.3390/vetsci11030106
doi: 10.3390/vetsci11030106 pubmed: 38535840 pmcid: 10975792
Gonsales GZ, Orsi RO, Fernandes A, Rodrigues P, Funari SRC (2006) Antibacterial activity of propolis collected in different regions of Brazil. J Venom Anim Toxins Including Trop Dis 12:276–284. https://doi.org/10.1590/S1678-91992006000200009
doi: 10.1590/S1678-91992006000200009
Gupta M, Mahajan VK, Mehta KS, Chauhan PS (2014) Zinc therapy in dermatology: a review. Dermatol Res Pract 2014:709152. https://doi.org/10.1155/2014/709152
doi: 10.1155/2014/709152 pubmed: 25120566 pmcid: 4120804
Hill PB, Lo A, Eden CAN, Huntley S, Morey V, Ramsey S, Richardson C, Smith DJ, Sutton C, Taylor MD, Thorpe E, Tidmarsh R, Williams V (2006) Survey of the prevalence, diagnosis and treatment of dermatological conditions in small animals in general practice. Vet Rec 158:533–538. https://doi.org/10.1136/vr.158.16.533
doi: 10.1136/vr.158.16.533 pubmed: 16632525
Hillier A, Lloyd DH, Weese JS, Blondeau JM, Boothe D, Breitschwerdt E, Guardabassi L, Papich MG, Rankin S, Turnidge JD, Sykes JE (2014) Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases). Vet Dermatol 25:163–e43. https://doi.org/10.1111/VDE.12118
doi: 10.1111/VDE.12118 pubmed: 24720433
Kano R, Yokoi S, Kariya N, Oshimo K, Kamata H (2019) Multi-azole-resistant strain of Malassezia pachydermatis isolated from a canine Malassezia dermatitis. Med Mycol 57:346–350. https://doi.org/10.1093/mmy/myy035
doi: 10.1093/mmy/myy035 pubmed: 29800467
Kaufman KL, Mann FA, Kim DY, Lee S, Yoon HY (2014) Evaluation of the effects of topical zinc gluconate in wound healing. Vet Surg 43:972–982. https://doi.org/10.1111/J.1532-950X.2014.12243.X
doi: 10.1111/J.1532-950X.2014.12243.X pubmed: 25077551
Khosravi AR, Shokri H, Fahimirad S (2016) Efficacy of medicinal essential oils against pathogenic Malassezia sp. isolates. J Mycol Med 26:28–34. https://doi.org/10.1016/j.mycmed.2015.10.012
doi: 10.1016/j.mycmed.2015.10.012 pubmed: 26597143
Loeffler A, Lloyd DH (2018) What has changed in canine pyoderma? A narrative review. Vet J 235:73–82. https://doi.org/10.1016/j.tvjl.2018.04.002
doi: 10.1016/j.tvjl.2018.04.002 pubmed: 29704943
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microb Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
doi: 10.1111/j.1469-0691.2011.03570.x
Manilal A, Sabu KR, Woldemariam M, Aklilu A, Biresaw G, Yohanes T, Seid M, Merdekios B (2021) Antibacterial activity of rosmarinus officinalis against multidrug-resistant clinical isolates and meat-borne pathogens. Evid Based Complement Alternat Med 2021:6677420. https://doi.org/10.1155/2021/6677420
doi: 10.1155/2021/6677420 pubmed: 34007297 pmcid: 8102098
Mathew C, Tesfaye W, Rasmussen P, Peterson GM, Bartholomaeus A, Sharma M, Thomas J (2020) Manuka oil—a review of antimicrobial and other medicinal properties. Pharmaceuticals 13:1–26. https://doi.org/10.3390/PH13110343
doi: 10.3390/PH13110343
Morris DO, Loeffler A, Davis MF, Guardabassi L, Weese JS (2017) Recommendations for approaches to meticillin-resistant Staphylococcal infections of small animals: diagnosis, therapeutic considerations and preventative measures.: clinical Consensus guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 28:304–e69. https://doi.org/10.1111/vde.12444
doi: 10.1111/vde.12444 pubmed: 28516494
Mueller RS, Bergvall K, Bensignor E, Bond R (2012) A review of topical therapy for skin infections with bacteria and yeast. Vet Dermatol 23:330–e62. https://doi.org/10.1111/J.1365-3164.2012.01057.X
doi: 10.1111/J.1365-3164.2012.01057.X pubmed: 22731400
Murayama N, Terada Y, Okuaki M, Nagata M (2011) Dose assessment of 2% chlorhexidine acetate for canine superficial pyoderma. Vet Dermatol 22:449–453. https://doi.org/10.1111/J.1365-3164.2011.00968.X
doi: 10.1111/J.1365-3164.2011.00968.X pubmed: 21392140
Nardoni S, Mugnaini L, Pistelli L, Leonardi M, Sanna V, Perrucci S, Pisseri F, Mancianti F (2014) Clinical and mycological evaluation of an herbal antifungal formulation in canine Malassezia dermatitis. J Mycol Med 24:234–240. https://doi.org/10.1016/j.mycmed.2014.02.005
doi: 10.1016/j.mycmed.2014.02.005 pubmed: 24746728
Nardoni S, Pistelli L, Baronti I, Najar B, Pisseri F, Bandeira Reidel RV, Papini R, Perrucci S, Mancianti F (2017) Traditional Mediterranean plants: characterization and use of an essential oils mixture to treat Malassezia otitis externa in atopic dogs. Nat Prod Res 31:1891–1894. https://doi.org/10.1080/14786419.2016.1263853
doi: 10.1080/14786419.2016.1263853 pubmed: 27917678
Nocera FP, Mancini S, Najar B, Bertelloni F, Pistelli L, Filippis A, De Fiorito F, De Martino L, Fratini F (2020) Antimicrobial activity of some essential oils against methicillin-susceptible and methicillin-resistant Staphylococcus pseudintermedius-associated pyoderma in dogs. Animals 10:1–12. https://doi.org/10.3390/ani10101782
doi: 10.3390/ani10101782
Petersen AD, Robert Walker DD, Bowman MM, Harold Schott IIMC, Rosser EJ Jr (2002) Frequency of isolation and antimicrobial susceptibility patterns of Staphylococcus intermedius and Pseudomonas aeruginosa isolates from canine skin and ear samples over a 6-year period (1992–1997). J Am Anim Hosp Assoc 38:407–413. https://doi.org/10.5326/0380407
doi: 10.5326/0380407 pubmed: 12220023
Porter NG, Wilkins AL (1999) Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry 50:407–415. https://doi.org/10.1016/S0031-9422(98)00548-2
doi: 10.1016/S0031-9422(98)00548-2 pubmed: 9933953
Przybyłek I, Karpiński TM (2019) Antibacterial properties of propolis. Molecules 24:2047. https://doi.org/10.3390/molecules24112047
Romero C, Sheinberg G, Cordero A, Heredia R (2020) Efficacy of proprietary formulations containing essential oils and plant extracts compared to chlorhexidine plus miconazole shampoo in canine superficial pyoderma. Vet Dermatol 31:44
Santoro D (2019) Therapies in canine atopic dermatitis: an update. Vet Clin North Am Small Anim Pract 49:9–26. https://doi.org/10.1016/J.CVSM.2018.08.002
doi: 10.1016/J.CVSM.2018.08.002 pubmed: 30262146
Santoro D (2023) Topical therapy for canine pyoderma: what is new? J Am Vet Med Assoc 261(S1):S140–S148. https://doi.org/10.2460/JAVMA.23.01.0001
doi: 10.2460/JAVMA.23.01.0001 pubmed: 36921021
Santoro D, Kher L, Chala V, Navarro C (2022) Evaluation of the effects of chlorhexidine digluconate with and without cBD103 or cCath against multidrug-resistant clinical isolates of Staphylococcus pseudintermedius. Vet Dermatol 33:17–e6. https://doi.org/10.1111/VDE.13018
doi: 10.1111/VDE.13018 pubmed: 34490674
Sedaghat Doost A, Devlieghere F, Dirckx A, Van der Meeren P (2018) Fabrication of Origanum compactum essential oil nanoemulsions stabilized using Quillaja Saponin biosurfactant. J Food Process Preserv 42. https://doi.org/10.1111/JFPP.13668
Sim JXF, Khazandi M, Chan WY, Trott DJ, Deo P (2019) Antimicrobial activity of thyme oil, oregano oil, thymol and carvacrol against sensitive and resistant microbial isolates from dogs with otitis externa. Vet Dermatol 30:524–e159. https://doi.org/10.1111/vde.12794
Söderberg T, Hallmans G, Ågren M, Tengrup I, Banck G (1989) The effects of an occlusive zinc medicated dressing on the bacterial flora in excised wounds in the rat. Infection 17:81–85. https://doi.org/10.1007/BF01646881
doi: 10.1007/BF01646881 pubmed: 2714861
Song SY, Hyun JE, Kang JH, Hwang CY (20200 in vitro antibacterial activity of the manuka essential oil from Leptospermum scoparium combined with Tris-EDTA against Gram-negative bacterial isolates from dogs with otitis externa. Vet Dermatol 31:81–e6. https://doi.org/10.1111/VDE.12807
Tag ElDein MA, Yassin AS, El-Tayeb O, Kashef MT (2021) Chlorhexidine leads to the evolution of antibiotic-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 40:2349–2361. https://doi.org/10.1007/S10096-021-04292-5/FIGURES/6
Tresch M, Mevissen M, Ayrle H, Melzig M, Roosje P, Walkenhorst M (2019) Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review. BMC Vet Res 15. https://doi.org/10.1186/S12917-019-1854-4
Váczi P, Čonková E, Malinovská Z (2023) Efficacy of manuka honey with conventional antifungals on Malassezia Pachydermatis. Pol J Vet Sci 26:257–263. https://doi.org/10.24425/pjvs.2023.145037
doi: 10.24425/pjvs.2023.145037 pubmed: 37389413
Videla R, Solyman SM, Brahmbhatt A, Sadeghi L, Bemis DA, Kania SA (2018) Clonal complexes and antimicrobial susceptibility profiles of Staphylococcus pseudintermedius isolates from dogs in the United States. Microb Drug Resist 24:83–88. https://doi.org/10.1089/MDR.2016.0250/ASSET/IMAGES/LARGE/FIGURE1.JPEG
doi: 10.1089/MDR.2016.0250/ASSET pubmed: 28504897
Viegas FM, Santana JA, Silva BA, Xavier RGC, Bonisson CT, Câmara JLS, Rennó MC, Cunha JLR, Figueiredo HCP, Lobato FCF, Silva ROS (2022) Occurrence and characterization of methicillin-resistant Staphylococcus spp. in diseased dogs in Brazil. PLoS ONE 17. https://doi.org/10.1371/JOURNAL.PONE.0269422
Weckesser S, Engel K, Simon-Haarhaus B, Wittmer A, Pelz K, Schempp CM (2007) Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine 14:508–516. https://doi.org/10.1016/j.phymed.2006.12.013
Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A (2019) Essential oils as antimicrobial agents—myth or real alternative? Molecules 24:2130. https://doi.org/10.3390/molecules24112130
Wojtyczka RD, Dziedzic A, Idzik D, Kepa M, Kubina R, Kabała-Dzik A, Smoleń-Dzirba J, Stojko J, Sajewicz M, Wasik TJ (2013) Susceptibility of Staphylococcus aureus clinical isolates to propolis extract alone or in combination with antimicrobial drugs. Molecules 18:9623–9640. https://doi.org/10.3390/molecules18089623
doi: 10.3390/molecules18089623 pubmed: 23941882 pmcid: 6269688

Auteurs

Alexandra Bergen (A)

Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32610, USA.

Savannah Roemhild (S)

Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32610, USA.

Domenico Santoro (D)

Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32610, USA. dsantoro@ufl.edu.

Classifications MeSH