Semantic redundancy-aware implicit neural compression for multidimensional biomedical image data.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
03 Sep 2024
Historique:
received: 09 02 2024
accepted: 27 08 2024
medline: 4 9 2024
pubmed: 4 9 2024
entrez: 3 9 2024
Statut: epublish

Résumé

The surge in advanced imaging techniques has generated vast biomedical image data with diverse dimensions in space, time and spectrum, posing big challenges to conventional compression techniques in image storage, transmission, and sharing. Here, we propose an intelligent image compression approach with the first-proved semantic redundancy of biomedical data in the implicit neural function domain. This Semantic redundancy based Implicit Neural Compression guided with Saliency map (SINCS) can notably improve the compression efficiency for arbitrary-dimensional image data in terms of compression ratio and fidelity. Moreover, with weight transfer and residual entropy coding strategies, it shows improved compression speed while maintaining high quality. SINCS yields high quality compression with over 2000-fold compression ratio on 2D, 2D-T, 3D, 4D biomedical images of diverse targets ranging from single virus to entire human organs, and ensures reliable downstream tasks, such as object segmentation and quantitative analyses, to be conducted at high efficiency.

Identifiants

pubmed: 39227646
doi: 10.1038/s42003-024-06788-0
pii: 10.1038/s42003-024-06788-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1081

Informations de copyright

© 2024. The Author(s).

Références

Dekkers, J. F. et al. Uncovering the mode of action of engineered T cells in patient cancer organoids. Nat. Biotechnol. 41, 60–69 (2023).
doi: 10.1038/s41587-022-01397-w pubmed: 35879361
Han, Y., Li, M., Qiu, F., Zhang, M. & Zhang, Y.-H. Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions. Nat. Commun. 8, 1307 (2017).
doi: 10.1038/s41467-017-01503-6 pubmed: 29101340 pmcid: 5670236
Li, A. et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330, 1404–1408 (2010).
doi: 10.1126/science.1191776 pubmed: 21051596
Guo, S. et al. Smart imaging to empower brain-wide neuroscience at single-cell levels. Brain Inform. 9, 10 (2022).
doi: 10.1186/s40708-022-00158-4 pubmed: 35543774 pmcid: 9095808
Khayam, S. A. The discrete cosine transform (DCT): theory and application. Mich. State Univ. 114, 31 (2003).
Sze, V. & Budagavi, M. High throughput CABAC entropy coding in HEVC. IEEE Trans. Circuits Syst. Video Technol. 22, 1778–1791 (2012).
doi: 10.1109/TCSVT.2012.2221526
Knuth, D. E. Dynamic huffman coding. J. Algorithms 6, 163–180 (1985).
doi: 10.1016/0196-6774(85)90036-7
Pesquita, C., Faria, D., Falcao, A. O., Lord, P. & Couto, F. M. Semantic similarity in biomedical ontologies. PLoS Comput. Biol. 5, e1000443 (2009).
doi: 10.1371/journal.pcbi.1000443 pubmed: 19649320 pmcid: 2712090
Chandrasekaran, D. & Mago, V. Evolution of semantic similarity—a survey. ACM Comput. Surv. (CSUR) 54, 1–37 (2021).
doi: 10.1145/3440755
Wallace, G.K.J.I.t.o.c.e. The JPEG still picture compression standard. 38, xviii-xxxiv (1992).
Wiegand, T., Sullivan, G. J., Bjontegaard, G. & Luthra, A. Overview of the H. 264/AVC video coding standard. IEEE Trans. circuits Syst. video Technol. 13, 560–576 (2003).
doi: 10.1109/TCSVT.2003.815165
Sullivan, G. J., Ohm, J.-R., Han, W.-J. & Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. circuits Syst. video Technol. 22, 1649–1668 (2012).
doi: 10.1109/TCSVT.2012.2221191
Dong, C., Deng, Y., Loy, C. C. & Tang, X. in Proceedings of the IEEE international conference on computer vision 576-584 (2015).
Theis, L., Shi, W., Cunningham, A. & Huszár, F. Lossy image compression with compressive autoencoders. Preprint at arXiv https://arxiv.org/abs/1703.00395 (2017).
Duan, X., Liu, J. & Zhang, E. Efficient image encryption and compression based on a VAE generative model. J. Real.-Time Image Process. 16, 765–773 (2019).
doi: 10.1007/s11554-018-0826-4
Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R. & Gool, L. V. in Proceedings of the IEEE/CVF International Conference on Computer Vision 221-231 (2019).
Sitzmann, V., Martel, J., Bergman, A., Lindell, D. & Wetzstein, G. Implicit neural representations with periodic activation functions. Adv. neural Inf. Process. Syst. 33, 7462–7473 (2020).
Mildenhall, B. et al. Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 65, 99–106 (2021).
doi: 10.1145/3503250
Dupont, E., Goliński, A., Alizadeh, M., Teh, Y. W. & Doucet, A. Coin: compression with implicit neural representations. Preprint at arXiv https://arxiv.org/abs/2103.03123 (2021).
Chen, H. et al. Nerv: Neural representations for videos. Adv. Neural Inf. Process. Syst. 34, 21557–21568 (2021).
Gallant in IEEE 1988 International Conference on Neural Networks 657-664 vol. 651 (IEEE, 1988).
Genova, K., Cole, F., Sud, A., Sarna, A. & Funkhouser, T. Local deep implicit functions for 3D shape. Preprint at arXiv https://arxiv.org/abs/1912.06126 (2019).
Strümpler, Y., Postels, J., Yang, R., Gool, L. V. & Tombari, F. in European Conference on Computer Vision 74-91 (Springer, 2022).
Yang, R. et al. Sharing Massive Biomedical Data at Magnitudes Lower Bandwidth Using Implicit Neural Function. bioRxiv, 2022.2012. 2003.518948 (2022).
Dupont, E. et al. COIN++: Neural compression across modalities. Preprint at arXiv https://arxiv.org/abs/2201.12904 (2022).
Sheibanifard, A. & Yu, H. A Novel Implicit Neural Representation for Volume Data. Appl. Sci. 13, 3242 (2023).
doi: 10.3390/app13053242
Liang, R., Sun, H. & Vijaykumar, N. Coordx: Accelerating implicit neural representation with a split mlp architecture. Preprint at arXiv https://arxiv.org/abs/2201.12425 (2022).
Xu, J. et al. NeSVoR: Implicit Neural Representation for Slice-to-Volume Reconstruction in MRI. IEEE Transactions on Medical Imaging (2023).
Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 11 (2008).
Peng, W.-J., Chen, C.-W., Lin, Y.-H. & Chen, M.-F. in 2022 IEEE International Conference on Imaging Systems and Techniques (IST) 1-6 (IEEE, 2022).
Chilamkurthy, S. et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. 392, 2388-2396 [Dataset]. https://doi.org/10.48550/arXiv.1803.05854 (2018).
Fonseca, C. G. et al. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27, 2288-2295 [Dataset]. https://doi.org/10.1093/bioinformatics/btr360 (2011).
Matuszewski, D. & Sintorn, I.-M. TEM virus dataset. Mendeley Data 3, x4dwwfwtw3[Dataset]. https://doi.org/10.17632/x4dwwfwtw3.1 (2021).
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).
doi: 10.1038/s41592-020-01018-x pubmed: 33318659
Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).
doi: 10.1126/science.aat4422 pubmed: 29853555 pmcid: 6287765
Yasuda, R. Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy. Curr. Opin. Neurobiol. 16, 551–561 (2006).
doi: 10.1016/j.conb.2006.08.012 pubmed: 16971112
Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: A survey. IEEE Trans. pattern Anal. Mach. Intell. 44, 5149–5169 (2021).
Chen, Y. & Wang, X. in European Conference on Computer Vision 170-187 (Springer, 2022).
Selvaraju, R. R. et al. in Proceedings of the IEEE international conference on computer vision 618-626 (2017).
Prakash, A., Moran, N., Garber, S., DiLillo, A. & Storer, J. in 2017 Data Compression Conference (DCC) 250-259 (IEEE, 2017).
Griffin, G., Holub, A. & Perona, P. Caltech-256 object category dataset. (2007).
Boergens, K. M. et al. webKnossos: efficient online 3D data annotation for connectomics. Nat. Methods 14, 691–694 (2017).
doi: 10.1038/nmeth.4331 pubmed: 28604722
Wolny, A. et al. Accurate and versatile 3D segmentation of plant tissues at cellular resolution. Elife 9, e57613 (2020).
doi: 10.7554/eLife.57613 pubmed: 32723478 pmcid: 7447435
Gustafsson, N. et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat. Commun. 7, 12471 (2016).
doi: 10.1038/ncomms12471 pubmed: 27514992 pmcid: 4990649
Wang, Z. et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nat. Methods 18, 551–556 (2021).
doi: 10.1038/s41592-021-01058-x pubmed: 33574612 pmcid: 8107123
Zhao, Y. et al. Isotropic super-resolution light-sheet microscopy of dynamic intracellular structures at subsecond timescales. Nat. Methods 19, 359–369 (2022).
doi: 10.1038/s41592-022-01395-5 pubmed: 35277709
Ma, Y. & Yi, C. FMM Code. Zenodo https://doi.org/10.5281/zenodo.13328988 (2024).

Auteurs

Yifan Ma (Y)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Chengqiang Yi (C)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Yao Zhou (Y)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Zhaofei Wang (Z)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Yuxuan Zhao (Y)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Lanxin Zhu (L)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Jie Wang (J)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Shimeng Gao (S)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Jianchao Liu (J)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Xinyue Yuan (X)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Zhaoqiang Wang (Z)

Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, 90095, USA.

Binbing Liu (B)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China. liubinbing@hust.edu.cn.

Peng Fei (P)

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China. feipeng@hust.edu.cn.
Advanced Biomedical Imaging Facility Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. feipeng@hust.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH