The draft genomes of Crassostrea gasar and Crassostrea rhizophorae: key resources for leveraging oyster cultivation in the Southwest Atlantic.
Crassostrea
Gasar
Mollusca
Rhizophorae
Genome
Journal
BMC genomic data
ISSN: 2730-6844
Titre abrégé: BMC Genom Data
Pays: England
ID NLM: 101775394
Informations de publication
Date de publication:
03 Sep 2024
03 Sep 2024
Historique:
received:
20
06
2024
accepted:
21
08
2024
medline:
4
9
2024
pubmed:
4
9
2024
entrez:
3
9
2024
Statut:
epublish
Résumé
The two oyster species studied hold considerable economic importance for artisanal harvest (Crassostrea rhizophorae) and aquaculture (Crassostrea gasar). Their draft genomes will play an important role in the application of genomic methods such as RNAseq, population-based genomic scans aiming at addressing expression responses to pollution stress, adaptation to salinity and temperature variation, and will also permit investigating the genetic bases and enable marker-assisted selection of economically important traits like shell and mantle coloration and resistance to temperature and disease. The draft assembly size of Crassostrea gasar is 506 Mbp, and of Crassostrea rhizophorae is 584 Mbp with scaffolds N50 of 11,3 Mbp and 4,9 Mbp, respectively. The general masked bases by RepeatMasker in both genomes were highly similar using different datasets. The masked bases varied from 9.41% in C. gasar to 10.05% in C. rhizophorae and 42.85% in C. gasar to 44.44% in C. rhizophorae using Dfam and RepeatModeler datasets, respectively. Functional annotation with eggNog resulted in 34,693 annotated proteins in C. rhizophorae and 26,328 in C. gasar. BUSCO analysis shows that almost 99% of genes (5,295) are complete in relation to the mollusk orthologous genes dataset (mollusca_odb10).
Identifiants
pubmed: 39227788
doi: 10.1186/s12863-024-01262-6
pii: 10.1186/s12863-024-01262-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
81Informations de copyright
© 2024. The Author(s).
Références
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18:170–5.
doi: 10.1038/s41592-020-01056-5
pubmed: 33526886
pmcid: 7961889
Cheng H, Jarvis ED, Fedrigo O, Koepfli K-P, Urban L, Gemmell NJ, et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat Biotechnol. 2022;40:1332–5.
doi: 10.1038/s41587-022-01261-x
pubmed: 35332338
Coombe L, Warren RL, Wong J, Nikolic V, Birol I. ntLink: A Toolkit for De Novo Genome Assembly Scaffolding and Mapping Using Long Reads. Curr Protoc. 2023;3:e733.
doi: 10.1002/cpz1.733
pubmed: 37039735
pmcid: 10091225
Coombe L, Li JX, Lo T, Wong J, Nikolic V, Warren RL, et al. LongStitch: high-quality genome assembly correction and scaffolding using long reads. BMC Bioinformatics. 2021;22:534.
doi: 10.1186/s12859-021-04451-7
pubmed: 34717540
pmcid: 8557608
Nadalin F, Vezzi F, Policriti A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics. 2012;13 Suppl 14(Suppl 14):S8.
doi: 10.1186/1471-2105-13-S14-S8
pubmed: 23095524
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol. 2021;38:4647–54.
doi: 10.1093/molbev/msab199
pubmed: 34320186
pmcid: 8476166
Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018;34:i142–50.
doi: 10.1093/bioinformatics/bty266
pubmed: 29949969
pmcid: 6022658
Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013--2015. 2015. http://www.repeatmasker.org .
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci USA. 2020;117:9451–7.
doi: 10.1073/pnas.1921046117
pubmed: 32300014
pmcid: 7196820
Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA. 2021;12:2.
doi: 10.1186/s13100-020-00230-y
pubmed: 33436076
pmcid: 7805219
Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. Whole-Genome Annotation with BRAKER. Methods Mol Biol. 2019;1962:65–95.
doi: 10.1007/978-1-4939-9173-0_5
pubmed: 31020555
pmcid: 6635606
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol. 2021;38:5825–9.
doi: 10.1093/molbev/msab293
pubmed: 34597405
pmcid: 8662613
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.
doi: 10.1038/s41592-021-01101-x
pubmed: 33828273
pmcid: 8026399
Peñaloza C, Gutierrez AP, Eöry L, Wang S, Guo X, Archibald AL, et al. A chromosome-level genome assembly for the Pacific oyster Crassostrea gigas. Gigascience. 2021;10:giab020.
doi: 10.1093/gigascience/giab020
pubmed: 33764468
pmcid: 7992393
Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490:49–54.
doi: 10.1038/nature11413
pubmed: 22992520
Qi H, Cong R, Wang Y, Li L, Zhang G. Construction and analysis of the chromosome-level haplotype-resolved genomes of two Crassostrea oyster congeners: Crassostrea angulata and Crassostrea gigas. Gigascience. 2022;12:giad077.
doi: 10.1093/gigascience/giad077
pubmed: 37787064
Puritz JB, Guo X, Hare M, He Y, Hillier LW, Jin S, et al. A second unveiling: Haplotig masking of the eastern oyster genome improves population-level inference. Mol Ecol Resour. 2024;24:e13801.
doi: 10.1111/1755-0998.13801
pubmed: 37186213
Genbank. Crassostrea gasar draft genome. NCBI. 2024. https://identifiers.org/ncbi/nucleotide:JBEEQF000000000.1 . Accessed 15 Jul 2024.
Genbank. Crassostrea rhizophorae draft genome. NCBI. 2024. https://identifiers.org/ncbi/nucleotide:JBEOLP000000000.1 . Accessed 15 Jul 2024.
Lima N, Almeida L, Gerber A, Guimarães A, Solé-Cava A, Melo C, et al. The draft genomes of Crassostrea gasar and Crassostrea rhizophorae: key resources for leveraging oyster cultivation in the Southwest Atlantic. Zenodo; 2024.