The draft genomes of Crassostrea gasar and Crassostrea rhizophorae: key resources for leveraging oyster cultivation in the Southwest Atlantic.


Journal

BMC genomic data
ISSN: 2730-6844
Titre abrégé: BMC Genom Data
Pays: England
ID NLM: 101775394

Informations de publication

Date de publication:
03 Sep 2024
Historique:
received: 20 06 2024
accepted: 21 08 2024
medline: 4 9 2024
pubmed: 4 9 2024
entrez: 3 9 2024
Statut: epublish

Résumé

The two oyster species studied hold considerable economic importance for artisanal harvest (Crassostrea rhizophorae) and aquaculture (Crassostrea gasar). Their draft genomes will play an important role in the application of genomic methods such as RNAseq, population-based genomic scans aiming at addressing expression responses to pollution stress, adaptation to salinity and temperature variation, and will also permit investigating the genetic bases and enable marker-assisted selection of economically important traits like shell and mantle coloration and resistance to temperature and disease. The draft assembly size of Crassostrea gasar is 506 Mbp, and of Crassostrea rhizophorae is 584 Mbp with scaffolds N50 of 11,3 Mbp and 4,9 Mbp, respectively. The general masked bases by RepeatMasker in both genomes were highly similar using different datasets. The masked bases varied from 9.41% in C. gasar to 10.05% in C. rhizophorae and 42.85% in C. gasar to 44.44% in C. rhizophorae using Dfam and RepeatModeler datasets, respectively. Functional annotation with eggNog resulted in 34,693 annotated proteins in C. rhizophorae and 26,328 in C. gasar. BUSCO analysis shows that almost 99% of genes (5,295) are complete in relation to the mollusk orthologous genes dataset (mollusca_odb10).

Identifiants

pubmed: 39227788
doi: 10.1186/s12863-024-01262-6
pii: 10.1186/s12863-024-01262-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

81

Informations de copyright

© 2024. The Author(s).

Références

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18:170–5.
doi: 10.1038/s41592-020-01056-5 pubmed: 33526886 pmcid: 7961889
Cheng H, Jarvis ED, Fedrigo O, Koepfli K-P, Urban L, Gemmell NJ, et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat Biotechnol. 2022;40:1332–5.
doi: 10.1038/s41587-022-01261-x pubmed: 35332338
Coombe L, Warren RL, Wong J, Nikolic V, Birol I. ntLink: A Toolkit for De Novo Genome Assembly Scaffolding and Mapping Using Long Reads. Curr Protoc. 2023;3:e733.
doi: 10.1002/cpz1.733 pubmed: 37039735 pmcid: 10091225
Coombe L, Li JX, Lo T, Wong J, Nikolic V, Warren RL, et al. LongStitch: high-quality genome assembly correction and scaffolding using long reads. BMC Bioinformatics. 2021;22:534.
doi: 10.1186/s12859-021-04451-7 pubmed: 34717540 pmcid: 8557608
Nadalin F, Vezzi F, Policriti A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics. 2012;13 Suppl 14(Suppl 14):S8.
doi: 10.1186/1471-2105-13-S14-S8 pubmed: 23095524
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol. 2021;38:4647–54.
doi: 10.1093/molbev/msab199 pubmed: 34320186 pmcid: 8476166
Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018;34:i142–50.
doi: 10.1093/bioinformatics/bty266 pubmed: 29949969 pmcid: 6022658
Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013--2015. 2015. http://www.repeatmasker.org .
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci USA. 2020;117:9451–7.
doi: 10.1073/pnas.1921046117 pubmed: 32300014 pmcid: 7196820
Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA. 2021;12:2.
doi: 10.1186/s13100-020-00230-y pubmed: 33436076 pmcid: 7805219
Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. Whole-Genome Annotation with BRAKER. Methods Mol Biol. 2019;1962:65–95.
doi: 10.1007/978-1-4939-9173-0_5 pubmed: 31020555 pmcid: 6635606
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol. 2021;38:5825–9.
doi: 10.1093/molbev/msab293 pubmed: 34597405 pmcid: 8662613
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.
doi: 10.1038/s41592-021-01101-x pubmed: 33828273 pmcid: 8026399
Peñaloza C, Gutierrez AP, Eöry L, Wang S, Guo X, Archibald AL, et al. A chromosome-level genome assembly for the Pacific oyster Crassostrea gigas. Gigascience. 2021;10:giab020.
doi: 10.1093/gigascience/giab020 pubmed: 33764468 pmcid: 7992393
Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490:49–54.
doi: 10.1038/nature11413 pubmed: 22992520
Qi H, Cong R, Wang Y, Li L, Zhang G. Construction and analysis of the chromosome-level haplotype-resolved genomes of two Crassostrea oyster congeners: Crassostrea angulata and Crassostrea gigas. Gigascience. 2022;12:giad077.
doi: 10.1093/gigascience/giad077 pubmed: 37787064
Puritz JB, Guo X, Hare M, He Y, Hillier LW, Jin S, et al. A second unveiling: Haplotig masking of the eastern oyster genome improves population-level inference. Mol Ecol Resour. 2024;24:e13801.
doi: 10.1111/1755-0998.13801 pubmed: 37186213
Genbank. Crassostrea gasar draft genome. NCBI. 2024. https://identifiers.org/ncbi/nucleotide:JBEEQF000000000.1 . Accessed 15 Jul 2024.
Genbank. Crassostrea rhizophorae draft genome. NCBI. 2024. https://identifiers.org/ncbi/nucleotide:JBEOLP000000000.1 . Accessed 15 Jul 2024.
Lima N, Almeida L, Gerber A, Guimarães A, Solé-Cava A, Melo C, et al. The draft genomes of Crassostrea gasar and Crassostrea rhizophorae: key resources for leveraging oyster cultivation in the Southwest Atlantic. Zenodo; 2024.

Auteurs

Nicholas Costa Barroso Lima (NCB)

Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, 60020-181, Brasil.

Luiz Gonzaga Paula de Almeida (LGP)

Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Av. Getúlio Vargas, 333 - Quitandinha, Petrópolis, RJ, 25651-076, Brasil.

Afonso Celso Dias Bainy (ACD)

Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88037-000, Brasil.

Alexandra Lehmkuhl Gerber (AL)

Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Av. Getúlio Vargas, 333 - Quitandinha, Petrópolis, RJ, 25651-076, Brasil.

Ana Paula de Campos Guimarães (AP)

Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Av. Getúlio Vargas, 333 - Quitandinha, Petrópolis, RJ, 25651-076, Brasil.

Antonio Mateo Solé-Cava (AM)

Centro Nacional para a Identificação Molecular do Pescado (CENIMP), Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil.

Claudio Manoel Rodrigues de Melo (CMR)

Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Av. Getúlio Vargas, 333 - Quitandinha, Petrópolis, RJ, 25651-076, Brasil.

Cristiano Lazoski (C)

Laboratório de Biodiversidade Genômica (LABIG), Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-902, Brasil.

Flávia Lucena Zacchi (FL)

Laboratório de Moluscos Marinhos (LMM), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88061-600, Brasil.

Frederico Henning (F)

Centro Nacional para a Identificação Molecular do Pescado (CENIMP), Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil.

Leticia Maria Monteiro Soares (LMM)

Centro Nacional para a Identificação Molecular do Pescado (CENIMP), Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil.

Rafaela Guilherme Soares (RG)

Centro Nacional para a Identificação Molecular do Pescado (CENIMP), Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brasil.

Ana Tereza Ribeiro Vasconcelos (AT)

Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Av. Getúlio Vargas, 333 - Quitandinha, Petrópolis, RJ, 25651-076, Brasil. atrv@lncc.br.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH