Pseudodominance in RFC1-Spectrum Disorder.

CANVAS High carrier frequency Pseudodominance RFC1-spectrum disorder Sensory ataxia

Journal

Cerebellum (London, England)
ISSN: 1473-4230
Titre abrégé: Cerebellum
Pays: United States
ID NLM: 101089443

Informations de publication

Date de publication:
04 Sep 2024
Historique:
accepted: 14 08 2024
medline: 4 9 2024
pubmed: 4 9 2024
entrez: 4 9 2024
Statut: aheadofprint

Résumé

Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) and disease spectrum is an autosomal recessive disorder associated with biallelic repeat expansion (RE) in the RFC1 gene. A high carrier frequency in the healthy population determines the possibility of having affected members in two consecutive generations. We describe pseudodominance in two families affected with RFC1 disorder (10 affected, 5 oligo/asymptomatic individuals). In Family A, after the 75-year-old index case was diagnosed with CANVAS, the 73-year-old wife decided to undergo screening for carrier testing. Although she did not report any symptoms, she resulted positive for the biallelic AAGGG RE thus leading to a diagnosis in the asymptomatic offspring as well and revealing a pseudodominant pattern of inheritance. In Family B pseudodominance was suspected after the identification of the RFC1 RE in the proband affected by sensitive neuropathy because of a positive family history for undetermined polyneuropathy in the mother. The post-mortem identification of the RFC1 RE in a sample specimen from the deceased mother, who had been under our care, allowed the solution of a "cold case". Our report suggests that pseudodominance is a confounding phenomenon to consider in RFC1-spectrum disorder and genetic counselling is instrumental in families with affected individuals.

Identifiants

pubmed: 39230846
doi: 10.1007/s12311-024-01735-5
pii: 10.1007/s12311-024-01735-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Cortese A, Simone R, Sullivan R, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet. 2019;51:649–58.
doi: 10.1038/s41588-019-0372-4 pubmed: 30926972 pmcid: 6709527
Rafehi H, Szmulewicz DJ, Bennett MF, et al. Bioinformatics-based identification of expanded repeats: a non-reference intronic pentamer expansion in RFC1 causes CANVAS. Am J Hum Genet. 2019;105:151–65.
doi: 10.1016/j.ajhg.2019.05.016 pubmed: 31230722 pmcid: 6612533
Schaub A, Erdmann H, Scholz V et al. Analysis and occurrence of biallelic pathogenic repeat expansions in RFC1 in a German cohort of patients with a main clinical phenotype of motor neuron disease. J Neurol. 2024. Epub ahead of print.
Kumar KR, Cortese A, Tomlinson SE, et al. RFC1 expansions can mimic hereditary sensory neuropathy with cough and Sjögren syndrome. Brain. 2020;143:e82.
doi: 10.1093/brain/awaa244 pubmed: 32949124 pmcid: 7586083
Miyatake S, Yoshida K, Koshimizu E, et al. Repeat conformation heterogeneity in cerebellar ataxia, neuropathy, vestibular areflexia syndrome. Brain. 2022;145:1139–50.
doi: 10.1093/brain/awab363 pubmed: 35355059
Votsi C, Tomazou M, Nicolaou P, Pantzaris MC, Pitsas G, Adamou A, Kleopa KA, Zamba-Papanicolaou E, Christodoulou K. RFC1 Repeat Distribution in the Cypriot Population: Study of a Large Cohort of Patients With Undiagnosed Ataxia and Non-Disease Controls. Neurol Genet. 2024;10:e200149.
Akçimen F, Ross JP, Bourassa CV, et al. Investigation of the RFC1 repeat expansion in a Canadian and a Brazilian Ataxia cohort: identification of Novel conformations. Front Genet. 2019;10:1219.
doi: 10.3389/fgene.2019.01219 pubmed: 31824583 pmcid: 6884024
Fan Y, Zhang S, Yang J, et al. No biallelic intronic AAGGG repeat expansion in RFC1 was found in patients with late-onset ataxia and MSA. Parkinsonism Relat Disord. 2020;73:1–2.
doi: 10.1016/j.parkreldis.2020.02.017 pubmed: 32151945
Wan L, Chen Z, Wan N, et al. Biallelic intronic AAGGG expansion of RFC1 is related to multiple system atrophy. Ann Neurol. 2020;88:1132–43.
doi: 10.1002/ana.25902 pubmed: 32939785
Scriba CK, Stevanovski I, Chintalaphani SR, et al. RFC1 in an Australasian neurological disease cohort: extending the genetic heterogeneity and implications for diagnostics. Brain Commun. 2023;5:fcad208.
doi: 10.1093/braincomms/fcad208 pubmed: 37621409 pmcid: 10445415
Currò R, Dominik N, Facchini S, et al. Role of the repeat expansion size in predicting age of onset and severity in RFC1 disease. Brain. 2024 Jan;9:awad436.
Scriba CK, Beecroft SJ, Clayton JS, et al. A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families. Brain. 2020;143:2904–10.
doi: 10.1093/brain/awaa263 pubmed: 33103729 pmcid: 7780484
Dominik N, Magri S, Currò R et al. Normal and pathogenic variation of RFC1 repeat expansions: implications for clinical diagnosis. Brain. 2023:awad240.
Watanabe K, Nakashima M, Wakatsuki R, et al. Cognitive impairment in a Complex Family with AAGGG and ACAGG repeat expansions in RFC1 detected by ExpansionHunter Denovo. Neurol Genet. 2022;8:e682.
doi: 10.1212/NXG.0000000000000682 pubmed: 36381255 pmcid: 9641967
van de Pol M, O’Gorman L, Corominas-Galbany J, et al. Detection of the ACAGG repeat motif in RFC1 in two Dutch Ataxia families. Mov Disord. 2023;38:1555–6.
doi: 10.1002/mds.29441 pubmed: 37165958
Beecroft SJ, Cortese A, Sullivan R, et al. A Māori specific RFC1 pathogenic repeat configuration in CANVAS, likely due to a founder allele. Brain. 2020;143:2673–80.
doi: 10.1093/brain/awaa203 pubmed: 32851396 pmcid: 7526724
Ando M, Higuchi Y, Yuan J, et al. Comprehensive Genetic Analyses of Inherited Peripheral Neuropathies in Japan: making early diagnosis possible. Biomedicines. 2022;10:1546.
doi: 10.3390/biomedicines10071546 pubmed: 35884855 pmcid: 9312503
Ronco R, Perini C, Currò R, et al. Truncating variants in RFC1 in cerebellar Ataxia, Neuropathy, and vestibular Areflexia Syndrome. Neurology. 2023;100:e543–54.
doi: 10.1212/WNL.0000000000201486 pubmed: 36289003 pmcid: 9931080
Benkirane M, Da Cunha D, Marelli C, et al. RFC1 nonsense and frameshift variants cause CANVAS: clues for an unsolved pathophysiology. Brain. 2022;145:3770–5.
doi: 10.1093/brain/awac280 pubmed: 35883251
Weber S, Coarelli G, Heinzmann A, et al. Two RFC1 splicing variants in CANVAS. Brain. 2023;146:e14–6.
doi: 10.1093/brain/awac466 pubmed: 36478048
King KA, Wegner DJ, Bucelli RC, Shapiro J, Paul AJ, Dickson PI, Wambach JA. Undiagnosed Disease Network (UDN). Whole-genome and long-read sequencing identify a Novel mechanism in RFC1 resulting in CANVAS Syndrome. Neurol Genet. 2022;8:e200036.
doi: 10.1212/NXG.0000000000200036 pubmed: 36524104 pmcid: 9747150
Arteche-López A, Avila-Fernandez A, Damian A, et al. New Cerebellar Ataxia, Neuropathy, vestibular Areflexia syndrome cases are caused by the presence of a nonsense variant in compound heterozygosity with the pathogenic repeat expansion in the RFC1 gene. Clin Genet. 2023;103:236–41.
doi: 10.1111/cge.14249 pubmed: 36250766
Malaquias MJ, Braz L, Santos Silva C, et al. Multisystemic RFC1-Related disorder: expanding the phenotype beyond cerebellar Ataxia, Neuropathy, and vestibular Areflexia Syndrome. Neurol Clin Pract. 2023;13:e200190.
doi: 10.1212/CPJ.0000000000200190 pubmed: 37674869
Malaquias MJ, Oliveira J, Santos M, et al. Pseudodominance in Friedreich Ataxia-Impact of High Prevalence of Carriers and Intrafamilial Clinical Variation. Mov Disord Clin Pract. 2023;10:670–6.
doi: 10.1002/mdc3.13694 pubmed: 37070055 pmcid: 10105111
Tagliapietra M, Incensi A, Ferrarini M, et al. Clinical and pathology characterization of small nerve fiber neuro(no)pathy in cerebellar ataxia with neuropathy and vestibular areflexia syndrome. Eur J Neurol. 2023;30:3834–384.
doi: 10.1111/ene.16018 pubmed: 37531261

Auteurs

Grazia Maria Igea Falcone (GMI)

Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, 98125, Italy.

Alessandra Tessa (A)

Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.

Ignazio Giuseppe Arena (IG)

Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, 98125, Italy.

Melissa Barghigiani (M)

Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.

Alba Migliorato (A)

Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Messina, Italy.

Alex Incensi (A)

IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.

Carmelo Rodolico (C)

Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, 98125, Italy.

Vincenzo Donadio (V)

IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.

Filippo Maria Santorelli (FM)

Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.

Olimpia Musumeci (O)

Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, 98125, Italy. omusumeci@unime.it.

Classifications MeSH