Pseudodominance in RFC1-Spectrum Disorder.
CANVAS
High carrier frequency
Pseudodominance
RFC1-spectrum disorder
Sensory ataxia
Journal
Cerebellum (London, England)
ISSN: 1473-4230
Titre abrégé: Cerebellum
Pays: United States
ID NLM: 101089443
Informations de publication
Date de publication:
04 Sep 2024
04 Sep 2024
Historique:
accepted:
14
08
2024
medline:
4
9
2024
pubmed:
4
9
2024
entrez:
4
9
2024
Statut:
aheadofprint
Résumé
Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) and disease spectrum is an autosomal recessive disorder associated with biallelic repeat expansion (RE) in the RFC1 gene. A high carrier frequency in the healthy population determines the possibility of having affected members in two consecutive generations. We describe pseudodominance in two families affected with RFC1 disorder (10 affected, 5 oligo/asymptomatic individuals). In Family A, after the 75-year-old index case was diagnosed with CANVAS, the 73-year-old wife decided to undergo screening for carrier testing. Although she did not report any symptoms, she resulted positive for the biallelic AAGGG RE thus leading to a diagnosis in the asymptomatic offspring as well and revealing a pseudodominant pattern of inheritance. In Family B pseudodominance was suspected after the identification of the RFC1 RE in the proband affected by sensitive neuropathy because of a positive family history for undetermined polyneuropathy in the mother. The post-mortem identification of the RFC1 RE in a sample specimen from the deceased mother, who had been under our care, allowed the solution of a "cold case". Our report suggests that pseudodominance is a confounding phenomenon to consider in RFC1-spectrum disorder and genetic counselling is instrumental in families with affected individuals.
Identifiants
pubmed: 39230846
doi: 10.1007/s12311-024-01735-5
pii: 10.1007/s12311-024-01735-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Cortese A, Simone R, Sullivan R, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet. 2019;51:649–58.
doi: 10.1038/s41588-019-0372-4
pubmed: 30926972
pmcid: 6709527
Rafehi H, Szmulewicz DJ, Bennett MF, et al. Bioinformatics-based identification of expanded repeats: a non-reference intronic pentamer expansion in RFC1 causes CANVAS. Am J Hum Genet. 2019;105:151–65.
doi: 10.1016/j.ajhg.2019.05.016
pubmed: 31230722
pmcid: 6612533
Schaub A, Erdmann H, Scholz V et al. Analysis and occurrence of biallelic pathogenic repeat expansions in RFC1 in a German cohort of patients with a main clinical phenotype of motor neuron disease. J Neurol. 2024. Epub ahead of print.
Kumar KR, Cortese A, Tomlinson SE, et al. RFC1 expansions can mimic hereditary sensory neuropathy with cough and Sjögren syndrome. Brain. 2020;143:e82.
doi: 10.1093/brain/awaa244
pubmed: 32949124
pmcid: 7586083
Miyatake S, Yoshida K, Koshimizu E, et al. Repeat conformation heterogeneity in cerebellar ataxia, neuropathy, vestibular areflexia syndrome. Brain. 2022;145:1139–50.
doi: 10.1093/brain/awab363
pubmed: 35355059
Votsi C, Tomazou M, Nicolaou P, Pantzaris MC, Pitsas G, Adamou A, Kleopa KA, Zamba-Papanicolaou E, Christodoulou K. RFC1 Repeat Distribution in the Cypriot Population: Study of a Large Cohort of Patients With Undiagnosed Ataxia and Non-Disease Controls. Neurol Genet. 2024;10:e200149.
Akçimen F, Ross JP, Bourassa CV, et al. Investigation of the RFC1 repeat expansion in a Canadian and a Brazilian Ataxia cohort: identification of Novel conformations. Front Genet. 2019;10:1219.
doi: 10.3389/fgene.2019.01219
pubmed: 31824583
pmcid: 6884024
Fan Y, Zhang S, Yang J, et al. No biallelic intronic AAGGG repeat expansion in RFC1 was found in patients with late-onset ataxia and MSA. Parkinsonism Relat Disord. 2020;73:1–2.
doi: 10.1016/j.parkreldis.2020.02.017
pubmed: 32151945
Wan L, Chen Z, Wan N, et al. Biallelic intronic AAGGG expansion of RFC1 is related to multiple system atrophy. Ann Neurol. 2020;88:1132–43.
doi: 10.1002/ana.25902
pubmed: 32939785
Scriba CK, Stevanovski I, Chintalaphani SR, et al. RFC1 in an Australasian neurological disease cohort: extending the genetic heterogeneity and implications for diagnostics. Brain Commun. 2023;5:fcad208.
doi: 10.1093/braincomms/fcad208
pubmed: 37621409
pmcid: 10445415
Currò R, Dominik N, Facchini S, et al. Role of the repeat expansion size in predicting age of onset and severity in RFC1 disease. Brain. 2024 Jan;9:awad436.
Scriba CK, Beecroft SJ, Clayton JS, et al. A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families. Brain. 2020;143:2904–10.
doi: 10.1093/brain/awaa263
pubmed: 33103729
pmcid: 7780484
Dominik N, Magri S, Currò R et al. Normal and pathogenic variation of RFC1 repeat expansions: implications for clinical diagnosis. Brain. 2023:awad240.
Watanabe K, Nakashima M, Wakatsuki R, et al. Cognitive impairment in a Complex Family with AAGGG and ACAGG repeat expansions in RFC1 detected by ExpansionHunter Denovo. Neurol Genet. 2022;8:e682.
doi: 10.1212/NXG.0000000000000682
pubmed: 36381255
pmcid: 9641967
van de Pol M, O’Gorman L, Corominas-Galbany J, et al. Detection of the ACAGG repeat motif in RFC1 in two Dutch Ataxia families. Mov Disord. 2023;38:1555–6.
doi: 10.1002/mds.29441
pubmed: 37165958
Beecroft SJ, Cortese A, Sullivan R, et al. A Māori specific RFC1 pathogenic repeat configuration in CANVAS, likely due to a founder allele. Brain. 2020;143:2673–80.
doi: 10.1093/brain/awaa203
pubmed: 32851396
pmcid: 7526724
Ando M, Higuchi Y, Yuan J, et al. Comprehensive Genetic Analyses of Inherited Peripheral Neuropathies in Japan: making early diagnosis possible. Biomedicines. 2022;10:1546.
doi: 10.3390/biomedicines10071546
pubmed: 35884855
pmcid: 9312503
Ronco R, Perini C, Currò R, et al. Truncating variants in RFC1 in cerebellar Ataxia, Neuropathy, and vestibular Areflexia Syndrome. Neurology. 2023;100:e543–54.
doi: 10.1212/WNL.0000000000201486
pubmed: 36289003
pmcid: 9931080
Benkirane M, Da Cunha D, Marelli C, et al. RFC1 nonsense and frameshift variants cause CANVAS: clues for an unsolved pathophysiology. Brain. 2022;145:3770–5.
doi: 10.1093/brain/awac280
pubmed: 35883251
Weber S, Coarelli G, Heinzmann A, et al. Two RFC1 splicing variants in CANVAS. Brain. 2023;146:e14–6.
doi: 10.1093/brain/awac466
pubmed: 36478048
King KA, Wegner DJ, Bucelli RC, Shapiro J, Paul AJ, Dickson PI, Wambach JA. Undiagnosed Disease Network (UDN). Whole-genome and long-read sequencing identify a Novel mechanism in RFC1 resulting in CANVAS Syndrome. Neurol Genet. 2022;8:e200036.
doi: 10.1212/NXG.0000000000200036
pubmed: 36524104
pmcid: 9747150
Arteche-López A, Avila-Fernandez A, Damian A, et al. New Cerebellar Ataxia, Neuropathy, vestibular Areflexia syndrome cases are caused by the presence of a nonsense variant in compound heterozygosity with the pathogenic repeat expansion in the RFC1 gene. Clin Genet. 2023;103:236–41.
doi: 10.1111/cge.14249
pubmed: 36250766
Malaquias MJ, Braz L, Santos Silva C, et al. Multisystemic RFC1-Related disorder: expanding the phenotype beyond cerebellar Ataxia, Neuropathy, and vestibular Areflexia Syndrome. Neurol Clin Pract. 2023;13:e200190.
doi: 10.1212/CPJ.0000000000200190
pubmed: 37674869
Malaquias MJ, Oliveira J, Santos M, et al. Pseudodominance in Friedreich Ataxia-Impact of High Prevalence of Carriers and Intrafamilial Clinical Variation. Mov Disord Clin Pract. 2023;10:670–6.
doi: 10.1002/mdc3.13694
pubmed: 37070055
pmcid: 10105111
Tagliapietra M, Incensi A, Ferrarini M, et al. Clinical and pathology characterization of small nerve fiber neuro(no)pathy in cerebellar ataxia with neuropathy and vestibular areflexia syndrome. Eur J Neurol. 2023;30:3834–384.
doi: 10.1111/ene.16018
pubmed: 37531261