Biosolid as an alternative source of nutrients in chrysanthemum cultivation.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 09 2024
Historique:
received: 30 08 2023
accepted: 26 06 2024
medline: 5 9 2024
pubmed: 5 9 2024
entrez: 4 9 2024
Statut: epublish

Résumé

The objective was to evaluate the biosolids as an alternative source of nutrients in the production of chrysanthemums by adding increasing doses to the cultivation substrate. The experimental design was in blocks with 6 treatments and 5 replications. The treatments consisted of the mixture (commercial substrate + biosolid) at the concentrations: 20%, 40%, 60% and 80% of biosolid + two controls (100% of biosolid and 100% of substrate). The experiment was conducted in a greenhouse for 90 days. Physiological parameters, number of flower buds, dry biomass and nutrient accumulation were evaluated. Physiological parameters were evaluated using the Infrared Gas Analyzer. The number of flower buds was evaluated by counting. Biomass was determined after drying the structures and then calculated the accumulation of nutrients. A total of 90 plants were evaluated. Concentrations of up to 40% of biosolid promoted a greater number of flower buds, dry biomass and nutrient accumulation. Concentrations above 60% lower number of buds, biomass increment and nutrient accumulation. It is concluded that the biosolid has potential as an alternative source of nutrients in the cultivation of chrysanthemums, indicating concentrations of up to 40% and the nutrient content of each batch generated must be verified.

Identifiants

pubmed: 39232009
doi: 10.1038/s41598-024-66040-x
pii: 10.1038/s41598-024-66040-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

20539

Informations de copyright

© 2024. The Author(s).

Références

Awasthi, M. K. et al. Biotechnological strategies for bio-transforming biosolid into resources toward circular bioeconomy: A review. Renew. Sustain. Energy Rev. 156, 111987. https://doi.org/10.1016/j.rser.2021.111987 (2022).
doi: 10.1016/j.rser.2021.111987
Gherghel, A., Teodosiu, C. & De Gisi, S. A review on wastewater sludge valorization and its challenges in the context of circular economy. J. Clean. Prod. 228, 244e263. https://doi.org/10.1016/j.jclepro.2019.04.240 (2019).
doi: 10.1016/j.jclepro.2019.04.240
Dimkpa, C. O., Fugice, J., Singh, U. & Lewis, T. D. Development of fertilizers for enhanced nitrogen use efficiency—Trends and perspectives. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139113 (2020).
doi: 10.1016/j.scitotenv.2020.139113 pubmed: 32438083
Organização das Nacões Unidas-ONU: 2019—Department of Economic and Social Affairs. https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html , acessado em 08 November 2022.
Pan, M. et al. Nutrient accumulation and environmental risks of biosolids and different fertilizers on horticultural plants. Water Air Soil Pollut. 232, 480. https://doi.org/10.1007/s11270-021-05424-5 (2021).
doi: 10.1007/s11270-021-05424-5
Chow, H. Y. & Pan, M. Fertilization value of biosolids on nutrient accumulation and environmental risks to agricultural plants. Water Air Soil Pollut. 231, 578 (2020).
doi: 10.1007/s11270-020-04946-8
Santos, F. E. V., Kunz, S. H., Caldeira, M. V. W., Azevedo, C. H. S. & Rangel, O. J. P. Características químicas de substratos formulados com lodo de esgoto para produção de mudas florestais. Rev. Bras. Eng. Agríc. Ambient. 18, 971–979. https://doi.org/10.1590/1807-1929/agriambi.v18n09p971-979 (2014).
doi: 10.1590/1807-1929/agriambi.v18n09p971-979
Collivignarelli, M. C., Canato, M., Abba, A. & Miino, M. C. Biosolids: What are the different types of reuse?. J. Clean. Prod. 238, 117844. https://doi.org/10.1016/j.jclepro.2019.117844 (2019).
doi: 10.1016/j.jclepro.2019.117844
Lombard, K. et al. Fly ash and composted biosolids as a source of Fe for hybrid poplar: A greenhouse study. Appl. Environ. Soil Sci. 2011, 1–11. https://doi.org/10.1155/2011/475185 (2011).
doi: 10.1155/2011/475185
Souza, A. M. B. Initial growth of Syagrus romanzoffiana seedlings in biosolid-based substrate. Pesq. Agropc. Trop. Goiânia 52, e70577 (2022).
doi: 10.1590/1983-40632022v5270577
Mota, P. R. D. A. et al. Condutividade elétrica da solução nutritiva e acúmulo de macro e micronutrientes no cultivo de crisântemo. Bragantia 72, 81–89. https://doi.org/10.1590/S0006-87052013005000015 (2013).
doi: 10.1590/S0006-87052013005000015
Roude, N., Nell, T. A. & Barrett, J. E. Nitrogen source and concentration, growing medium, and cultivar affect longevity of potted chrysanthemums. HortScience 26, 49–52. https://doi.org/10.21273/HORTSCI.26.1.49 (1991).
doi: 10.21273/HORTSCI.26.1.49
Zhang, W., Li, X., Chen, F. & Lu, J. Accumulation and distribution characteristics for nitrogen, phosphorus, and potassium in different cultivars of Petunia hybrida Vlim. Sci. Hortic. (Amsterdam) 141, 83–90. https://doi.org/10.1016/J.SCIENTA.2012.04.010 (2012).
doi: 10.1016/J.SCIENTA.2012.04.010
Paiva, P. D. O. & Almeida, E. F. A. Produção de Flores de Corte (UFLA, 2012).
Barbosa, J. G., Grossi, J. A. S. & Borém, A. Crisântemo: Do Plantio à Colheita. Livro Eletrônico, Conhecimento ISSN 2179–1732, nº 39, UFV—CEAD, Viçosa/MG (2019).
Fernandes, E. P., de Souza, E. R. B., Leandro, W. M. & Vera, R. Marcha de acúmulo de fósforo em crisântemo (Dendranthema grandiflorum T, var. Salmon Reagan) no inverno. Pesquisa Agropecu. Trop. 38, 27–31 (2008).
Malavolta, E. Manual de Nutrição Mineral de Plantas (Agronômica Ceres, 2006).
Mota, P. R. D. A., Villas Boas, R. L. & de Sousa, V. F. Concentração de sais da solução avaliada pela condutividade elétrica na zona radicular do crisântemo sob irrigação por gotejamento. IRRIGA 11, 532–542. https://doi.org/10.15809/IRRIGA.2006V11N4P532-542 (2006).
doi: 10.15809/IRRIGA.2006V11N4P532-542
Lima, A. M. L. P. & Haag, P. H. Nutrição mineral de plantas: XIII—Absorção de macronutrientes pelo em crisântemo (Chrysanthemum morifolium cv. Golden Polaris). In Nutrição Mineral de Algumas Espécies Ornamentais (eds Haag, P. H. et al.) 64–10 (Fundação Cargil, 1989).
Ferreira, L. B., Fernandes, E. P., Ferreira, M. D. & Leandro, W. M. Acúmulo de macronutrientes em cultivares de crisântemo para vaso, em Goianira—GO. Rev. Bras. Ciênc. Agrár. 7, 9–16. https://doi.org/10.5039/agraria.v7i1a1057 (2012).
doi: 10.5039/agraria.v7i1a1057
Ahmed, R., Hussain, M. J., Ahmed, S., Karim, M. R. & Siddiky, M. A. Effect of N, P and K fertilizer on the flower yield of chrysanthemum. The Agriculturists 15, 58–67. https://doi.org/10.3329/AGRIC.V15I1.33429 (2017).
doi: 10.3329/AGRIC.V15I1.33429
Yoon, H. S., Goto, T. & Kageyama, Y. Mineral uptake as influenced by growing seasons and developmental stages in spray chrysanthemums grown under a hydroponic system. J. Jpn. Soc. Hortic. Sci. 69, 255–260. https://doi.org/10.2503/JJSHS.69.255 (2000).
doi: 10.2503/JJSHS.69.255
Li, B. & Brett, M. T. The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability. Environ. Pollut. 182, 37–44. https://doi.org/10.1016/J.ENVPOL.2013.06.024 (2013).
doi: 10.1016/J.ENVPOL.2013.06.024 pubmed: 23892136
Tapia, Y. et al. Accumulation of Mn in leaves of Rosmarinus officinalis cultivated in substrates of pine bark. Commun. Soil Sci. Plant Anal. 45, 1961–1973. https://doi.org/10.1080/00103624.2014.909838 (2014).
doi: 10.1080/00103624.2014.909838
Vanek, V. et al. The Nutrition of Horticultural Plants 2nd edn. (Academic Press, 2012).
Dias, S. S. H. Lodo de Esgoto na Produção de Mudas de Bracatinga (Mimosa scabrella), Crisântemo (Dendranthema grandiflora) e Petúnia (Petunia x Hybrida) (Universidade Federal de Santa Catarina, 2015).
Rodrigues, M. A. Crescimento e Marcha de Absorção de Nutrientes de Crisântemo (Dendranthema grandiflora, Tzvelev) Cultivado em Vaso (Universidade de São Paulo, 2013).
doi: 10.11606/T.11.2013.tde-17122013-125254
Gruszinski, C. Produção Comercial de Crisântemo: Vaso, Corte e Jardim (Agropecuária, 2001).
Stringheta, A. C. O. Crisântemo para flor de corte (Dendranthema grandiflorum Tzelev). In Cultivo Comercial de Plantas Ornamentais (ed. Tombolato, A. F. C.) 95–135 (Instituto Agronômico de Campinas, 2004).
Boodley, J. W. Plant nutrition and flower crop quality. HortScience 10, 41–42 (1975).
doi: 10.21273/HORTSCI.10.1.41
Vidalie, H. Produccion de Flores y Plantas Ornamentales 2nd edn. (Mundi-Prensa, 2001).
Gómez-Pérez, L. et al. Calcium ameliorates the tolerance of lisianthus [Eustoma grandiflorum (Raf.) Shinn.] to alkalinity in irrigation water. HortScience 49, 807–811. https://doi.org/10.21273/HORTSCI.49.6.807 (2014).
doi: 10.21273/HORTSCI.49.6.807
Hassan, Z. & Aarts, M. G. M. Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ. Exp. Bot. 72, 53–63. https://doi.org/10.1016/J.ENVEXPBOT.2010.04.003 (2011).
doi: 10.1016/J.ENVEXPBOT.2010.04.003
Siddiqui, M. H. et al. Calcium-induced amelioration of boron toxicity in radish. J. Plant Growth Regul. 32, 61–71. https://doi.org/10.1007/S00344-012-9276-6/FIGURES/4 (2013).
doi: 10.1007/S00344-012-9276-6/FIGURES/4
Taiz, L. & Zeiger, E. Fisiologia e Desenvolvimento Vegetal 6th edn. (Artmed, 2017).
Dutt, M. & Sonawane, P. Nutrient uptake in chrysanthemum grown on various substrates. Indian J. Hortic. 63, 66–69 (2006).
Dechen, A. R. & Nachtigall, G. R. Micronutrientes. In Nutrição de Mineral de Plantas (ed. Fernandes, M. S.) 327–354 (Sociedade Brasileira de Ciência do Solo, 2006).
Malavolta, E., Vitti, G. C. & Oliveira, S. A. D. E. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações 2nd edn. (Associação Brasileira Para Pesquisa da Potassa e do Fosfato, 1997).
Trazzi, P. A., Caldeira, M. V. W., dos Reis, E. F. & da Silva, A. G. Produção de mudas de Tectona grandis em substratos formulados com biossólido. CERNE 20, 293–302. https://doi.org/10.1590/01047760.201420021134 (2014).
doi: 10.1590/01047760.201420021134
Chang, C. Y. et al. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ. Monit. Assess. 186, 1547–1560. https://doi.org/10.1007/s10661-013-3472-0 (2014).
doi: 10.1007/s10661-013-3472-0 pubmed: 24185814
Farahat, E. & Linderholm, H. W. The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils. Sci. Total Environ. 512–513, 1–7. https://doi.org/10.1016/J.SCITOTENV.2015.01.032 (2015).
doi: 10.1016/J.SCITOTENV.2015.01.032 pubmed: 25613764
Halecki, W. & Klatka, S. Long term growth of crop plants on experimental plots created among slag heaps. Ecotoxicol. Environ. Saf. 147, 86–92. https://doi.org/10.1016/J.ECOENV.2017.08.025 (2018).
doi: 10.1016/J.ECOENV.2017.08.025 pubmed: 28837874
Menegaes, J. F., Backes, F. A. A. L., Bellé, R. A., Swarowsky, A. & Salazar, R. F. D. S. Avaliação do potencial fitorremediador de crisântemo em solo com excesso de cobre. Ornam. Hortic. 23, 63–71. https://doi.org/10.14295/oh.v23i1.915 (2017).
doi: 10.14295/oh.v23i1.915
Riaz, M. et al. Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury. J. Environ. Manag. 208, 149–158. https://doi.org/10.1016/J.JENVMAN.2017.12.008 (2018).
doi: 10.1016/J.JENVMAN.2017.12.008
Raij, B. van, Andrade, J. C., Cantarella, H. & Quaggio, J. A. Análise química para avaliação da fertilidade de solos tropicais. Campinas, Instituto Agronômico, 285 (2001).
Ferreira, D. F. SISVAR: A computer analysis system to fixed effects split plot type designs. J. Braz. Biom. 37, 529–535. https://doi.org/10.28951/RBB.V37I4.450 (2019).
doi: 10.28951/RBB.V37I4.450

Auteurs

Frederico Luiz Pereira (FL)

Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, 37130-000, Brazil. frederico.pereira@usp.br.

Ursuléia Aparecida de Oliveira (UA)

Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, 37130-000, Brazil.

Márcio Donizetti de Andrade (MD)

Laboratório de Solos e Tecido Vegetal, Cooperativa Regional de Cafeicultores em Guaxupé, Guaxupé, MG, 37800-000, Brazil.

Felipe Campos Figueiredo (FC)

Laboratório de Biotecnologia e Cultura de Tecidos, Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais - Campus Muzambinho, Muzambinho, MG, 37890-000, Brazil.

Breno Régis Santos (BR)

Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, 37130-000, Brazil.

Marília Carvalho (M)

Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, 37130-000, Brazil.

Sandro Barbosa (S)

Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, 37130-000, Brazil.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Fragaria Light Plant Leaves Osmosis Stress, Physiological
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant

Classifications MeSH