Macular vascular and photoreceptor changes for diabetic macular edema at early stage.
Adaptive optics scanning laser ophthalmoscope
Diabetic macular edema
Foveal avascular zone
Optical coherence tomography angiography
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 09 2024
04 09 2024
Historique:
received:
03
06
2024
accepted:
27
08
2024
medline:
5
9
2024
pubmed:
5
9
2024
entrez:
4
9
2024
Statut:
epublish
Résumé
This study was intended to investigate the macular vascular and photoreceptor changes for diabetic macular edema (DME) at the early stage. A total of 255 eyes of 134 diabetes mellitus patients were enrolled and underwent an ophthalmological and systemic evaluation in this cross-sectional study. Early DME was characterized by central subfoveal thickness (CST) value between 250 and 325 μm, intact ellipsoid zone, and an external limiting membrane. While non-DME was characterized by CST < 250 μm with normal retinal morphology and structure. Foveal avascular zone (FAZ) area ≤ 0.3 mm
Identifiants
pubmed: 39232012
doi: 10.1038/s41598-024-71286-6
pii: 10.1038/s41598-024-71286-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
20544Subventions
Organisme : National Natural Science Foundation of China
ID : 82271100
Organisme : National Natural Science Foundation of China
ID : 82101151
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20210972
Informations de copyright
© 2024. The Author(s).
Références
Teo, Z. et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis. Ophthalmology 128, 1580–1591 (2021).
pubmed: 33940045
doi: 10.1016/j.ophtha.2021.04.027
Yau, J. et al. Global prevalence and major risk factors of diabetic retinopathy. Diabet. Care 35, 556–564 (2012).
doi: 10.2337/dc11-1909
Bourne, R. et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob. Health 1, e339-349 (2013).
pubmed: 25104599
doi: 10.1016/S2214-109X(13)70113-X
Leasher, J. et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: A meta-analysis from 1990 to 2010. Diabet. Care 39, 1643–1649 (2016).
doi: 10.2337/dc15-2171
Cheung, N., Mitchell, P. & Wong, T. Diabetic retinopathy. Lancet (London, England). 376, 124–136 (2010).
pubmed: 20580421
doi: 10.1016/S0140-6736(09)62124-3
Sen, S., Ramasamy, K. & Sivaprasad, S. Indicators of visual prognosis in diabetic macular oedema. J. Pers. Med. 11, 449 (2021).
pubmed: 34067442
pmcid: 8224579
doi: 10.3390/jpm11060449
Panozzo, G. et al. An optical coherence tomography-based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification. Eur. J. Ophthalmol. 30, 8–18 (2020).
pubmed: 31718271
doi: 10.1177/1120672119880394
Hanumunthadu, D. et al. Agreement between spectral-domain and swept-source optical coherence tomography retinal thickness measurements in macular and retinal disease. Ophthalmol. Ther. 10, 913–922 (2021).
pubmed: 34324166
pmcid: 8589877
doi: 10.1007/s40123-021-00377-8
Friedman, S. et al. Topical nepafenec in eyes with noncentral diabetic macular edema. Retina. 35, 944–956 (2015).
pubmed: 25602634
pmcid: 4408212
doi: 10.1097/IAE.0000000000000403
Bressler, N. et al. Retinal thickness on Stratus optical coherence tomography in people with diabetes and minimal or no diabetic retinopathy. Am. J. Ophthalmol. 145, 894–901 (2008).
pubmed: 18294608
pmcid: 2408892
doi: 10.1016/j.ajo.2007.12.025
Mahajan, V. et al. Management of sympathetic ophthalmia with the fluocinolone acetonide implant. Ophthalmology. 116, 552-557.e551 (2009).
pubmed: 19147232
doi: 10.1016/j.ophtha.2008.10.024
Konstantina, S. et al. Comparison of SDOCT scan types for grading disorganization of retinal inner layers and other morphologic features of diabetic macular edema. Transl. Vis. Sci. Technol. 9, 45 (2020).
doi: 10.1167/tvst.9.8.45
Chalam, K. et al. Retinal thickness in people with diabetes and minimal or no diabetic retinopathy: Heidelberg Spectralis optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 53, 8154–8161 (2012).
doi: 10.1167/iovs.12-10290
Sampani, K. et al. Comparison of SDOCT scan types for grading disorganization of retinal inner layers and other morphologic features of diabetic macular edema. Transl. Vis. Sci. Technol. 9, 45 (2020).
pubmed: 32855891
pmcid: 7422902
doi: 10.1167/tvst.9.8.45
Dimitrova, G., Chihara, E., Takahashi, H., Amano, H. & Okazaki, K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 58, 190–196 (2017).
doi: 10.1167/iovs.16-20531
Sun, Z. et al. OCT angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: A prospective study. Ophthalmology. 126, 1675–1684 (2019).
pubmed: 31358386
doi: 10.1016/j.ophtha.2019.06.016
Han, R., Gong, R. & Liu, WXu. G. Optical coherence tomography angiography metrics in different stages of diabetic macular edema. Eye Vis. 9, 14 (2022).
doi: 10.1186/s40662-022-00286-2
Fernández-Espinosa, G. et al. Retinal vascularization abnormalities studied by optical coherence tomography angiography (OCTA) in type 2 diabetic patients with moderate diabetic retinopathy. Diagnostics 12, 379 (2022).
pubmed: 35204470
pmcid: 8871460
doi: 10.3390/diagnostics12020379
Mirshahi, R. et al. Differentiating features of OCT angiography in diabetic macular edema. Sci. Rep. 11, 23398 (2021).
pubmed: 34862410
pmcid: 8642537
doi: 10.1038/s41598-021-02859-y
Ayman, G. E., Alia, M. N., Ahmed, A.A.-K., Osama, A. S. & David, J. R. Optical coherence tomography angiography biomarkers predict anatomical response to bevacizumab in diabetic macular edema. Diabet. Metab. Syndr. Obes. 15, 395–405 (2022).
doi: 10.2147/DMSO.S351618
Wei, L. et al. Microvascular changes after conbercept intravitreal injection of PDR with or without center-involved diabetic macular edema analyzed by OCTA. Front. Med. 9, 797087 (2022).
doi: 10.3389/fmed.2022.797087
Neelakshi, B., Ruben, A. G., Arthur, T. & Marco, A. Z. Diabetic macular edema: Pathogenesis and treatment. Surv. Ophthalmol. 54, 1–32 (2009).
doi: 10.1016/j.survophthal.2008.10.001
Kupis, M., Wawrzyniak, Z. M., Szaflik, J. P. & Zaleska-Zmijewska, A. Retinal photoreceptors and microvascular changes in the assessment of diabetic retinopathy progression: A two-year follow-up study. Diagnostics 13, 2513 (2023).
pubmed: 37568876
pmcid: 10417253
doi: 10.3390/diagnostics13152513
Zaleska-Zmijewska, A., Wawrzyniak, Z. M., Dabrowska, A. & Szaflik, J. P. Adaptive optics (rtx1) high-resolution imaging of photoreceptors and retinal arteries in patients with diabetic retinopathy. J. Diabet. Res. 2019, 9548324 (2019).
doi: 10.1155/2019/9548324
Fang, D. et al. Morphologic and functional assessment of photoreceptors in laser-induced retinopathy using adaptive optics scanning laser ophthalmoscopy and microperimetry. Am. J. Ophthalmol. 265, 61–72 (2024).
pubmed: 38555010
doi: 10.1016/j.ajo.2024.03.021
Chui, T. Y. P. et al. Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy. Int. J. Retina Vitreous 2, 11 (2016).
pubmed: 27847629
pmcid: 5088465
doi: 10.1186/s40942-016-0037-8
Karst, S. G. et al. Characterization of in vivo retinal lesions of diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy. Int. J. Endocrinol. 2018, 7492946 (2018).
pubmed: 29853882
pmcid: 5954931
doi: 10.1155/2018/7492946
Burns, S. A., Elsner, A. E., Sapoznik, K. A., Warner, R. L. & Gast, T. J. Adaptive optics imaging of the human retina. Prog. Retin. Eye Res. 68, 1–30 (2019).
pubmed: 30165239
doi: 10.1016/j.preteyeres.2018.08.002
Chui, T. Y., Gast, T. J. & Burns, S. A. Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Investig. Ophthalmol. Vis. Sci. 54, 7115–7124 (2013).
doi: 10.1167/iovs.13-13027
Nesper, P. L., Scarinci, F. & Fawzi, A. A. Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia. PLoS One. 12, e0169926 (2017).
pubmed: 28068435
pmcid: 5222506
doi: 10.1371/journal.pone.0169926
Torm, M. E. W. et al. Detection of capillary abnormalities in early diabetic retinopathy using scanning laser ophthalmoscopy and optical coherence tomography combined with adaptive optics. Sci. Rep. 14, 13450 (2024).
pubmed: 38862584
pmcid: 11166634
doi: 10.1038/s41598-024-63749-7
Giacomo, P. et al. An optical coherence tomography-based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification. Eur. J. Ophthalmol. 30, 8–18 (2019).
Richard, A. A. Statistical guidelines for the analysis of data obtained from one or both eyes. Ophthalmic Physiol. Opt. 33, 7–14 (2012).
Ying, G., Maguire, M., Glynn, R. & Rosner, B. Tutorial on biostatistics: Longitudinal analysis of correlated continuous eye data. Ophthalmic Epidemiol. 28, 3–20 (2021).
pubmed: 32744149
doi: 10.1080/09286586.2020.1786590
Samara, W. et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology. 124, 235–244 (2017).
pubmed: 27887743
doi: 10.1016/j.ophtha.2016.10.008
Anna, Z. -Ż, Zbigniew, M. W., Anna, D. & Jacek, P. S. Adaptive optics (rtx1) high-resolution imaging of photoreceptors and retinal arteries in patients with diabetic retinopathy. J Diabetes Res. 2019, 9548324 (2019).
Anna, Z. -Ż et al. Retinal photoreceptors and microvascular changes in prediabetes measured with adaptive optics (rtx1™): A case-control study. J. Diabet. Res. 2017, 4174292 (2017).
Serena, F. et al. Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: Characterization and clinical implications. J. Ophthalmol. 2021, 6096017 (2021).
Bhanushali, D. et al. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 57, OCT519–OCT525 (2016).
doi: 10.1167/iovs.15-18901
AttaAllah, H., Mohamed, A. & Ali, M. Macular vessels density in diabetic retinopathy: Quantitative assessment using optical coherence tomography angiography. Int. Ophthalmol. 39, 1845–1859 (2019).
pubmed: 30194547
doi: 10.1007/s10792-018-1013-0
Hsieh, Y. et al. OCT angiography biomarkers for predicting visual outcomes after ranibizumab treatment for diabetic macular edema. Ophthalmol. Retina 3, 826–834 (2019).
pubmed: 31227330
pmcid: 6921516
doi: 10.1016/j.oret.2019.04.027
Durbin, M. et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 135, 370–376 (2017).
pubmed: 28301651
pmcid: 5470403
doi: 10.1001/jamaophthalmol.2017.0080
Iafe, N., Phasukkijwatana, N., Chen, X. & Sarraf, D. Retinal capillary density and foveal avascular zone area are age-dependent: Quantitative analysis using optical coherence tomography angiography. Investig Ophthalmol. Vis. Sci. 57, 5780–5787 (2016).
doi: 10.1167/iovs.16-20045
Tan, G., Cheung, N., Simó, R., Cheung, G. & Wong, T. Diabetic macular oedema. Lancet. Diabet. Endocrinol. 5, 143–155 (2017).
doi: 10.1016/S2213-8587(16)30052-3
Lachin, J. et al. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes. 64, 631–642 (2015).
pubmed: 25204977
doi: 10.2337/db14-0930
Klein, R., Klein, B., Moss, S. & Cruickshanks, K. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XVII. The 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes. Ophthalmology. 105, 1801–1815 (1998).
pubmed: 9787347
doi: 10.1016/S0161-6420(98)91020-X
Marco, L., Sebastiano, S., Nicholas, D., Mariacristina, P. & Giuseppe, L. Adaptive optics technology for high-resolution retinal imaging. Sensors 13, 334–366 (2012).
doi: 10.3390/s130100334
Marco, L. et al. Analysis of retinal capillaries in patients with type 1 diabetes and nonproliferative diabetic retinopathy using adaptive optics imaging. Retina. 33, 1630–1639 (2013).
doi: 10.1097/IAE.0b013e3182899326
Mohamed Kamel, S. et al. High-resolution imaging of parafoveal cones in different stages of diabetic retinopathy using adaptive optics fundus camera. PLoS One 11, e0152788 (2016).
doi: 10.1371/journal.pone.0152788
Marco, L. et al. Investigation of adaptive optics imaging biomarkers for detecting pathological changes of the cone mosaic in patients with type 1 diabetes mellitus. PLoS One. 11, e0151380 (2016).
doi: 10.1371/journal.pone.0151380
Marco, L. et al. Adaptive optics imaging of parafoveal cones in type 1 diabetes. Retina. 34, 546–557 (2013).
Wylie, T. et al. Cone-photoreceptor density in adolescents with type 1 diabetes. Investig. Ophthalmol. Vis. Sci. 56, 6339–6343 (2015).
doi: 10.1167/iovs.15-16817
Arichika, S. et al. Correlation of retinal arterial wall thickness with atherosclerosis predictors in type 2 diabetes without clinical retinopathy. Br. J. Ophthalmol. 101, 69–74 (2017).
pubmed: 27913444
doi: 10.1136/bjophthalmol-2016-309612
Wojciech, M., Katarzyna, G.-N., Joanna, M. H. & Elżbieta, B.-S. Evaluation of morphological changes in retinal vessels in type 1 diabetes mellitus patients with the use of adaptive optics. Biomedicines. 10, 1926 (2022).
doi: 10.3390/biomedicines10081926
Allen, C. C. & Sven-Erik, B. Retinal blood flow in diabetes. Microcirculation. 14, 49–61 (2007).
doi: 10.1080/10739680601072164
Otero-Marquez, O. et al. Retinal blood flow biomarkers in healthy human subjects measured with clinical doppler optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 63, 3323-F0132 (2022).
Tomomi, M., Masamitsu, S. & Hideaki, H. Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (Edaravone). Oxid. Med. Cell Longev. 2017, 9208489 (2017).
doi: 10.1155/2017/9208489
Stefan, S., Janna, K. & Albert, J. A. Pathophysiology of macular edema. Ophthalmologica 224, 8–15 (2010).
doi: 10.1159/000315155
Devarajan, K. et al. Optical coherence tomography angiography for the assessment of choroidal vasculature in high myopia. Br. J. Ophthalmol. 104, 917–923 (2020).
pubmed: 31585963
doi: 10.1136/bjophthalmol-2019-314769
Ang, M. et al. Imaging in myopia: Potential biomarkers, current challenges and future developments. Br. J. Ophthalmol. 103, 855–862 (2019).
pubmed: 30636210
doi: 10.1136/bjophthalmol-2018-312866
Zhang, L. et al. Automated segmentation of the choroid from clinical SD-OCT. Investig. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012).
doi: 10.1167/iovs.12-10311
Shen, H., Gu, Q., Cheng, R., Cheng, P. & Liu, Q. Associated factors and macular vascular perfusion change for diabetic macular edema at early stage: A cross-sectional observational study. (2023).