Macular vascular and photoreceptor changes for diabetic macular edema at early stage.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 09 2024
Historique:
received: 03 06 2024
accepted: 27 08 2024
medline: 5 9 2024
pubmed: 5 9 2024
entrez: 4 9 2024
Statut: epublish

Résumé

This study was intended to investigate the macular vascular and photoreceptor changes for diabetic macular edema (DME) at the early stage. A total of 255 eyes of 134 diabetes mellitus patients were enrolled and underwent an ophthalmological and systemic evaluation in this cross-sectional study. Early DME was characterized by central subfoveal thickness (CST) value between 250 and 325 μm, intact ellipsoid zone, and an external limiting membrane. While non-DME was characterized by CST < 250 μm with normal retinal morphology and structure. Foveal avascular zone (FAZ) area ≤ 0.3 mm

Identifiants

pubmed: 39232012
doi: 10.1038/s41598-024-71286-6
pii: 10.1038/s41598-024-71286-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

20544

Subventions

Organisme : National Natural Science Foundation of China
ID : 82271100
Organisme : National Natural Science Foundation of China
ID : 82101151
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20210972

Informations de copyright

© 2024. The Author(s).

Références

Teo, Z. et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis. Ophthalmology 128, 1580–1591 (2021).
pubmed: 33940045 doi: 10.1016/j.ophtha.2021.04.027
Yau, J. et al. Global prevalence and major risk factors of diabetic retinopathy. Diabet. Care 35, 556–564 (2012).
doi: 10.2337/dc11-1909
Bourne, R. et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob. Health 1, e339-349 (2013).
pubmed: 25104599 doi: 10.1016/S2214-109X(13)70113-X
Leasher, J. et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: A meta-analysis from 1990 to 2010. Diabet. Care 39, 1643–1649 (2016).
doi: 10.2337/dc15-2171
Cheung, N., Mitchell, P. & Wong, T. Diabetic retinopathy. Lancet (London, England). 376, 124–136 (2010).
pubmed: 20580421 doi: 10.1016/S0140-6736(09)62124-3
Sen, S., Ramasamy, K. & Sivaprasad, S. Indicators of visual prognosis in diabetic macular oedema. J. Pers. Med. 11, 449 (2021).
pubmed: 34067442 pmcid: 8224579 doi: 10.3390/jpm11060449
Panozzo, G. et al. An optical coherence tomography-based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification. Eur. J. Ophthalmol. 30, 8–18 (2020).
pubmed: 31718271 doi: 10.1177/1120672119880394
Hanumunthadu, D. et al. Agreement between spectral-domain and swept-source optical coherence tomography retinal thickness measurements in macular and retinal disease. Ophthalmol. Ther. 10, 913–922 (2021).
pubmed: 34324166 pmcid: 8589877 doi: 10.1007/s40123-021-00377-8
Friedman, S. et al. Topical nepafenec in eyes with noncentral diabetic macular edema. Retina. 35, 944–956 (2015).
pubmed: 25602634 pmcid: 4408212 doi: 10.1097/IAE.0000000000000403
Bressler, N. et al. Retinal thickness on Stratus optical coherence tomography in people with diabetes and minimal or no diabetic retinopathy. Am. J. Ophthalmol. 145, 894–901 (2008).
pubmed: 18294608 pmcid: 2408892 doi: 10.1016/j.ajo.2007.12.025
Mahajan, V. et al. Management of sympathetic ophthalmia with the fluocinolone acetonide implant. Ophthalmology. 116, 552-557.e551 (2009).
pubmed: 19147232 doi: 10.1016/j.ophtha.2008.10.024
Konstantina, S. et al. Comparison of SDOCT scan types for grading disorganization of retinal inner layers and other morphologic features of diabetic macular edema. Transl. Vis. Sci. Technol. 9, 45 (2020).
doi: 10.1167/tvst.9.8.45
Chalam, K. et al. Retinal thickness in people with diabetes and minimal or no diabetic retinopathy: Heidelberg Spectralis optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 53, 8154–8161 (2012).
doi: 10.1167/iovs.12-10290
Sampani, K. et al. Comparison of SDOCT scan types for grading disorganization of retinal inner layers and other morphologic features of diabetic macular edema. Transl. Vis. Sci. Technol. 9, 45 (2020).
pubmed: 32855891 pmcid: 7422902 doi: 10.1167/tvst.9.8.45
Dimitrova, G., Chihara, E., Takahashi, H., Amano, H. & Okazaki, K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 58, 190–196 (2017).
doi: 10.1167/iovs.16-20531
Sun, Z. et al. OCT angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: A prospective study. Ophthalmology. 126, 1675–1684 (2019).
pubmed: 31358386 doi: 10.1016/j.ophtha.2019.06.016
Han, R., Gong, R. & Liu, WXu. G. Optical coherence tomography angiography metrics in different stages of diabetic macular edema. Eye Vis. 9, 14 (2022).
doi: 10.1186/s40662-022-00286-2
Fernández-Espinosa, G. et al. Retinal vascularization abnormalities studied by optical coherence tomography angiography (OCTA) in type 2 diabetic patients with moderate diabetic retinopathy. Diagnostics 12, 379 (2022).
pubmed: 35204470 pmcid: 8871460 doi: 10.3390/diagnostics12020379
Mirshahi, R. et al. Differentiating features of OCT angiography in diabetic macular edema. Sci. Rep. 11, 23398 (2021).
pubmed: 34862410 pmcid: 8642537 doi: 10.1038/s41598-021-02859-y
Ayman, G. E., Alia, M. N., Ahmed, A.A.-K., Osama, A. S. & David, J. R. Optical coherence tomography angiography biomarkers predict anatomical response to bevacizumab in diabetic macular edema. Diabet. Metab. Syndr. Obes. 15, 395–405 (2022).
doi: 10.2147/DMSO.S351618
Wei, L. et al. Microvascular changes after conbercept intravitreal injection of PDR with or without center-involved diabetic macular edema analyzed by OCTA. Front. Med. 9, 797087 (2022).
doi: 10.3389/fmed.2022.797087
Neelakshi, B., Ruben, A. G., Arthur, T. & Marco, A. Z. Diabetic macular edema: Pathogenesis and treatment. Surv. Ophthalmol. 54, 1–32 (2009).
doi: 10.1016/j.survophthal.2008.10.001
Kupis, M., Wawrzyniak, Z. M., Szaflik, J. P. & Zaleska-Zmijewska, A. Retinal photoreceptors and microvascular changes in the assessment of diabetic retinopathy progression: A two-year follow-up study. Diagnostics 13, 2513 (2023).
pubmed: 37568876 pmcid: 10417253 doi: 10.3390/diagnostics13152513
Zaleska-Zmijewska, A., Wawrzyniak, Z. M., Dabrowska, A. & Szaflik, J. P. Adaptive optics (rtx1) high-resolution imaging of photoreceptors and retinal arteries in patients with diabetic retinopathy. J. Diabet. Res. 2019, 9548324 (2019).
doi: 10.1155/2019/9548324
Fang, D. et al. Morphologic and functional assessment of photoreceptors in laser-induced retinopathy using adaptive optics scanning laser ophthalmoscopy and microperimetry. Am. J. Ophthalmol. 265, 61–72 (2024).
pubmed: 38555010 doi: 10.1016/j.ajo.2024.03.021
Chui, T. Y. P. et al. Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy. Int. J. Retina Vitreous 2, 11 (2016).
pubmed: 27847629 pmcid: 5088465 doi: 10.1186/s40942-016-0037-8
Karst, S. G. et al. Characterization of in vivo retinal lesions of diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy. Int. J. Endocrinol. 2018, 7492946 (2018).
pubmed: 29853882 pmcid: 5954931 doi: 10.1155/2018/7492946
Burns, S. A., Elsner, A. E., Sapoznik, K. A., Warner, R. L. & Gast, T. J. Adaptive optics imaging of the human retina. Prog. Retin. Eye Res. 68, 1–30 (2019).
pubmed: 30165239 doi: 10.1016/j.preteyeres.2018.08.002
Chui, T. Y., Gast, T. J. & Burns, S. A. Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Investig. Ophthalmol. Vis. Sci. 54, 7115–7124 (2013).
doi: 10.1167/iovs.13-13027
Nesper, P. L., Scarinci, F. & Fawzi, A. A. Adaptive optics reveals photoreceptor abnormalities in diabetic macular ischemia. PLoS One. 12, e0169926 (2017).
pubmed: 28068435 pmcid: 5222506 doi: 10.1371/journal.pone.0169926
Torm, M. E. W. et al. Detection of capillary abnormalities in early diabetic retinopathy using scanning laser ophthalmoscopy and optical coherence tomography combined with adaptive optics. Sci. Rep. 14, 13450 (2024).
pubmed: 38862584 pmcid: 11166634 doi: 10.1038/s41598-024-63749-7
Giacomo, P. et al. An optical coherence tomography-based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification. Eur. J. Ophthalmol. 30, 8–18 (2019).
Richard, A. A. Statistical guidelines for the analysis of data obtained from one or both eyes. Ophthalmic Physiol. Opt. 33, 7–14 (2012).
Ying, G., Maguire, M., Glynn, R. & Rosner, B. Tutorial on biostatistics: Longitudinal analysis of correlated continuous eye data. Ophthalmic Epidemiol. 28, 3–20 (2021).
pubmed: 32744149 doi: 10.1080/09286586.2020.1786590
Samara, W. et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology. 124, 235–244 (2017).
pubmed: 27887743 doi: 10.1016/j.ophtha.2016.10.008
Anna, Z. -Ż, Zbigniew, M. W., Anna, D. & Jacek, P. S. Adaptive optics (rtx1) high-resolution imaging of photoreceptors and retinal arteries in patients with diabetic retinopathy. J Diabetes Res. 2019, 9548324 (2019).
Anna, Z. -Ż et al. Retinal photoreceptors and microvascular changes in prediabetes measured with adaptive optics (rtx1™): A case-control study. J. Diabet. Res. 2017, 4174292 (2017).
Serena, F. et al. Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: Characterization and clinical implications. J. Ophthalmol. 2021, 6096017 (2021).
Bhanushali, D. et al. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 57, OCT519–OCT525 (2016).
doi: 10.1167/iovs.15-18901
AttaAllah, H., Mohamed, A. & Ali, M. Macular vessels density in diabetic retinopathy: Quantitative assessment using optical coherence tomography angiography. Int. Ophthalmol. 39, 1845–1859 (2019).
pubmed: 30194547 doi: 10.1007/s10792-018-1013-0
Hsieh, Y. et al. OCT angiography biomarkers for predicting visual outcomes after ranibizumab treatment for diabetic macular edema. Ophthalmol. Retina 3, 826–834 (2019).
pubmed: 31227330 pmcid: 6921516 doi: 10.1016/j.oret.2019.04.027
Durbin, M. et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 135, 370–376 (2017).
pubmed: 28301651 pmcid: 5470403 doi: 10.1001/jamaophthalmol.2017.0080
Iafe, N., Phasukkijwatana, N., Chen, X. & Sarraf, D. Retinal capillary density and foveal avascular zone area are age-dependent: Quantitative analysis using optical coherence tomography angiography. Investig Ophthalmol. Vis. Sci. 57, 5780–5787 (2016).
doi: 10.1167/iovs.16-20045
Tan, G., Cheung, N., Simó, R., Cheung, G. & Wong, T. Diabetic macular oedema. Lancet. Diabet. Endocrinol. 5, 143–155 (2017).
doi: 10.1016/S2213-8587(16)30052-3
Lachin, J. et al. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes. 64, 631–642 (2015).
pubmed: 25204977 doi: 10.2337/db14-0930
Klein, R., Klein, B., Moss, S. & Cruickshanks, K. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XVII. The 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes. Ophthalmology. 105, 1801–1815 (1998).
pubmed: 9787347 doi: 10.1016/S0161-6420(98)91020-X
Marco, L., Sebastiano, S., Nicholas, D., Mariacristina, P. & Giuseppe, L. Adaptive optics technology for high-resolution retinal imaging. Sensors 13, 334–366 (2012).
doi: 10.3390/s130100334
Marco, L. et al. Analysis of retinal capillaries in patients with type 1 diabetes and nonproliferative diabetic retinopathy using adaptive optics imaging. Retina. 33, 1630–1639 (2013).
doi: 10.1097/IAE.0b013e3182899326
Mohamed Kamel, S. et al. High-resolution imaging of parafoveal cones in different stages of diabetic retinopathy using adaptive optics fundus camera. PLoS One 11, e0152788 (2016).
doi: 10.1371/journal.pone.0152788
Marco, L. et al. Investigation of adaptive optics imaging biomarkers for detecting pathological changes of the cone mosaic in patients with type 1 diabetes mellitus. PLoS One. 11, e0151380 (2016).
doi: 10.1371/journal.pone.0151380
Marco, L. et al. Adaptive optics imaging of parafoveal cones in type 1 diabetes. Retina. 34, 546–557 (2013).
Wylie, T. et al. Cone-photoreceptor density in adolescents with type 1 diabetes. Investig. Ophthalmol. Vis. Sci. 56, 6339–6343 (2015).
doi: 10.1167/iovs.15-16817
Arichika, S. et al. Correlation of retinal arterial wall thickness with atherosclerosis predictors in type 2 diabetes without clinical retinopathy. Br. J. Ophthalmol. 101, 69–74 (2017).
pubmed: 27913444 doi: 10.1136/bjophthalmol-2016-309612
Wojciech, M., Katarzyna, G.-N., Joanna, M. H. & Elżbieta, B.-S. Evaluation of morphological changes in retinal vessels in type 1 diabetes mellitus patients with the use of adaptive optics. Biomedicines. 10, 1926 (2022).
doi: 10.3390/biomedicines10081926
Allen, C. C. & Sven-Erik, B. Retinal blood flow in diabetes. Microcirculation. 14, 49–61 (2007).
doi: 10.1080/10739680601072164
Otero-Marquez, O. et al. Retinal blood flow biomarkers in healthy human subjects measured with clinical doppler optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 63, 3323-F0132 (2022).
Tomomi, M., Masamitsu, S. & Hideaki, H. Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (Edaravone). Oxid. Med. Cell Longev. 2017, 9208489 (2017).
doi: 10.1155/2017/9208489
Stefan, S., Janna, K. & Albert, J. A. Pathophysiology of macular edema. Ophthalmologica 224, 8–15 (2010).
doi: 10.1159/000315155
Devarajan, K. et al. Optical coherence tomography angiography for the assessment of choroidal vasculature in high myopia. Br. J. Ophthalmol. 104, 917–923 (2020).
pubmed: 31585963 doi: 10.1136/bjophthalmol-2019-314769
Ang, M. et al. Imaging in myopia: Potential biomarkers, current challenges and future developments. Br. J. Ophthalmol. 103, 855–862 (2019).
pubmed: 30636210 doi: 10.1136/bjophthalmol-2018-312866
Zhang, L. et al. Automated segmentation of the choroid from clinical SD-OCT. Investig. Ophthalmol. Vis. Sci. 53, 7510–7519 (2012).
doi: 10.1167/iovs.12-10311
Shen, H., Gu, Q., Cheng, R., Cheng, P. & Liu, Q. Associated factors and macular vascular perfusion change for diabetic macular edema at early stage: A cross-sectional observational study. (2023).

Auteurs

Qinyuan Gu (Q)

Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.

Ting Pan (T)

Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.

Ruiwen Cheng (R)

Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.

Junlong Huang (J)

Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.

Kang Zhang (K)

Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.

Junyan Zhang (J)

Department of Clinical Epidemiology and Evidence-Based Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.

Yang Yang (Y)

Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China. carlayangyang@whu.edu.cn.

Peng Cheng (P)

Department of Gerontology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China. cphh@sohu.com.

Qinghuai Liu (Q)

Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China. liuqh@njmu.edu.cn.

Han Shen (H)

Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China. shenhan@njmu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH