Current understanding and management of cardiovascular involvement in rheumatic immune-mediated inflammatory diseases.


Journal

Nature reviews. Rheumatology
ISSN: 1759-4804
Titre abrégé: Nat Rev Rheumatol
Pays: United States
ID NLM: 101500080

Informations de publication

Date de publication:
02 Sep 2024
Historique:
accepted: 22 07 2024
medline: 5 9 2024
pubmed: 5 9 2024
entrez: 4 9 2024
Statut: aheadofprint

Résumé

Immune-mediated inflammatory diseases (IMIDs) are a spectrum of disorders of overlapping immunopathogenesis, with a prevalence of up to 10% in Western populations and increasing incidence in developing countries. Although targeted treatments have revolutionized the management of rheumatic IMIDs, cardiovascular involvement confers an increased risk of mortality and remains clinically under-recognized. Cardiovascular pathology is diverse across rheumatic IMIDs, ranging from premature atherosclerotic cardiovascular disease (ASCVD) to inflammatory cardiomyopathy, which comprises myocardial microvascular dysfunction, vasculitis, myocarditis and pericarditis, and heart failure. Epidemiological and clinical data imply that rheumatic IMIDs and associated cardiovascular disease share common inflammatory mechanisms. This concept is strengthened by emergent trials that indicate improved cardiovascular outcomes with immune modulators in the general population with ASCVD. However, not all disease-modifying therapies that reduce inflammation in IMIDs such as rheumatoid arthritis demonstrate equally beneficial cardiovascular effects, and the evidence base for treatment of inflammatory cardiomyopathy in patients with rheumatic IMIDs is lacking. Specific diagnostic protocols for the early detection and monitoring of cardiovascular involvement in patients with IMIDs are emerging but are in need of ongoing development. This Review summarizes current concepts on the potentially targetable inflammatory mechanisms of cardiovascular pathology in rheumatic IMIDs and discusses how these concepts can be considered for the diagnosis and management of cardiovascular involvement across rheumatic IMIDs, with an emphasis on the potential of cardiovascular imaging for risk stratification, early detection and prognostication.

Identifiants

pubmed: 39232242
doi: 10.1038/s41584-024-01149-x
pii: 10.1038/s41584-024-01149-x
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. Springer Nature Limited.

Références

Conrad, N. et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet 401, 1878–1890 (2023).
pubmed: 37156255 doi: 10.1016/S0140-6736(23)00457-9
Agrawal, M. et al. Changing epidemiology of immune-mediated inflammatory diseases in immigrants: a systematic review of population-based studies. J. Autoimmun. 105, 102303 (2019).
pubmed: 31351784 pmcid: 7382899 doi: 10.1016/j.jaut.2019.07.002
Conrad, N. et al. Autoimmune diseases and cardiovascular risk: a population-based study on 19 autoimmune diseases and 12 cardiovascular diseases in 22 million individuals in the UK. Lancet 400, 733–743 (2022).
pubmed: 36041475 doi: 10.1016/S0140-6736(22)01349-6
Tyndall, A. J. et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann. Rheum. Dis. 69, 1809–1815 (2010).
pubmed: 20551155 doi: 10.1136/ard.2009.114264
Libby, P. & Weyand, C. Immune and inflammatory mechanisms mediate cardiovascular diseases from head to toe. Cardiovasc. Res. 117, 2503–2505 (2021).
pubmed: 34698765 pmcid: 8783384
Tschöpe, C., Cooper, L. T., Torre-Amione, G. & Van Linthout, S. Management of myocarditis-related cardiomyopathy in adults. Circ. Res. 124, 1568–1583 (2019).
pubmed: 31120823 doi: 10.1161/CIRCRESAHA.118.313578
Goodson, N. J. et al. Baseline levels of C-reactive protein and prediction of death from cardiovascular disease in patients with inflammatory polyarthritis: a ten-year followup study of a primary care-based inception cohort. Arthritis Rheum. 52, 2293–2299 (2005).
pubmed: 16052597 doi: 10.1002/art.21204
Solomon, D. H. et al. Disease activity in rheumatoid arthritis and the risk of cardiovascular events. Arthritis Rheumatol. 67, 1449–1455 (2015).
pubmed: 25776112 pmcid: 4446181 doi: 10.1002/art.39098
Arts, E. E. A., Fransen, J., Den Broeder, A. A., Van Riel, P. L. C. M. & Popa, C. D. Low disease activity (DAS28≤3.2) reduces the risk of first cardiovascular event in rheumatoid arthritis: a time-dependent Cox regression analysis in a large cohort study. Ann. Rheum. Dis. 76, 1693–1699 (2017).
pubmed: 28606965 doi: 10.1136/annrheumdis-2016-210997
Myasoedova, E. et al. The role of rheumatoid arthritis (RA) flare and cumulative burden of RA severity in the risk of cardiovascular disease. Ann. Rheum. Dis. 75, 560–565 (2016).
pubmed: 25637001 doi: 10.1136/annrheumdis-2014-206411
Provan, S. A. et al. Remission is the goal for cardiovascular risk management in patients with rheumatoid arthritis: a cross-sectional comparative study. Ann. Rheum. Dis. 70, 812–817 (2011).
pubmed: 21288959 doi: 10.1136/ard.2010.141523
Crowson, C. S. et al. Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis. Ann. Rheum. Dis. 77, 48–54 (2018).
pubmed: 28877868 doi: 10.1136/annrheumdis-2017-211735
Roy, P., Orecchioni, M. & Ley, K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat. Rev. Immunol. 22, 251–265 (2022).
pubmed: 34389841 doi: 10.1038/s41577-021-00584-1
Mallat, Z. & Binder, C. J. The why and how of adaptive immune responses in ischemic cardiovascular disease. Nat. Cardiovasc. Res. 1, 431–444 (2022).
pubmed: 36382200 pmcid: 7613798 doi: 10.1038/s44161-022-00049-1
Panahi, M. et al. Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition. Cardiovasc. Res. 114, 1445–1461 (2018).
pubmed: 30010800 pmcid: 6106100 doi: 10.1093/cvr/cvy145
Sarwar, N. et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).
pubmed: 22421339 doi: 10.1016/S0140-6736(11)61931-4
IL6R MR Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).
doi: 10.1016/S0140-6736(12)60110-X
Weber, B. N., Giles, J. T. & Liao, K. P. Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. Nat. Rev. Rheumatol. 19, 417–428 (2023).
pubmed: 37231248 pmcid: 10330911 doi: 10.1038/s41584-023-00969-7
Choy, E. H. et al. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 16, 335–345 (2020).
pubmed: 32327746 pmcid: 7178926 doi: 10.1038/s41584-020-0419-z
Stone, J. H. et al. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 377, 317–328 (2017).
pubmed: 28745999 doi: 10.1056/NEJMoa1613849
Akita, K., Isoda, K., Sato-okabayashi, Y., Kadoguchi, T. & Kitamura, K. An interleukin-6 receptor antibody suppresses atherosclerosis in atherogenic mice. Front. Cardiovasc. Med. 4, 84 (2017).
pubmed: 29312959 pmcid: 5743912 doi: 10.3389/fcvm.2017.00084
Cai, T. et al. Association of interleukin 6 receptor variant with cardiovascular disease effects of interleukin 6 receptor blocking therapy a phenome-wide association study. JAMA Cardiol. 3, 849–857 (2018).
pubmed: 30090940 pmcid: 6233652 doi: 10.1001/jamacardio.2018.2287
Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).
pubmed: 34015342 doi: 10.1016/S0140-6736(21)00520-1
Brock, K. et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 77, 1845–1855 (2021).
doi: 10.1016/j.jacc.2021.02.049
Ridker, P. M. From RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc. Res. 117, e138–e140 (2021).
pubmed: 34352102 pmcid: 8861265 doi: 10.1093/cvr/cvab231
Del Buono, M. G. et al. Pathogenic pathways and therapeutic targets of inflammation in heart diseases: a focus on Interleukin-1. Eur. J. Clin. Invest. 54, e14110 (2024).
pubmed: 37837616 doi: 10.1111/eci.14110
Broderick, L. & Hoffman, H. M. IL-1 and autoinflammatory disease: biology, pathogenesis and therapeutic targeting. Nat. Rev. Rheumatol. 18, 448–463 (2022).
pubmed: 35729334 pmcid: 9210802 doi: 10.1038/s41584-022-00797-1
Schiff, M. H. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann. Rheum. Dis. 59, 103–108 (2000).
doi: 10.1136/ard.59.suppl_1.i103
Abbate, A. et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 117, 2670–2683 (2008).
pubmed: 18474815 doi: 10.1161/CIRCULATIONAHA.107.740233
Abbate, A. et al. Interleukin-1 blockade inhibits the acute inflammatory response in patients with ST-segment–elevation myocardial infarction. J. Am. Heart Assoc. 9, e014941 (2020).
pubmed: 32122219 pmcid: 7335541 doi: 10.1161/JAHA.119.014941
Abbate, A. et al. Interleukin-1 blockade with anakinra and heart failure following ST-segment elevation myocardial infarction: results from a pooled analysis of the VCUART clinical trials. Eur. Heart J. Cardiovasc. Pharmacother. 8, 503–510 (2022).
pubmed: 34617567 doi: 10.1093/ehjcvp/pvab075
Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).
pubmed: 28845751 doi: 10.1056/NEJMoa1707914
Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).
pubmed: 31733140 doi: 10.1056/NEJMoa1912388
Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).
pubmed: 32865380 doi: 10.1056/NEJMoa2021372
FDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/215727s000lbl.pdf (2023).
Brånén, L. et al. Inhibition of tumor necrosis factor-α reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 24, 2137–2142 (2004).
pubmed: 15345516 doi: 10.1161/01.ATV.0000143933.20616.1b
Yuan, S. et al. Effects of tumour necrosis factor on cardiovascular disease and cancer: a two-sample Mendelian randomization study. EBioMedicine 59, 102956 (2020).
pubmed: 32805626 pmcid: 7452586 doi: 10.1016/j.ebiom.2020.102956
Muskardin, T. L. W. & Niewold, T. B. Type I interferon in rheumatic diseases. Nat. Rev. Rheumatol. 14, 214–228 (2018).
pubmed: 29559718 pmcid: 6625751 doi: 10.1038/nrrheum.2018.31
Chen, H., Tas, S. W. & De Winther, M. P. J. Type-I interferons in atherosclerosis. J. Exp. Med. 217, e20190459 (2020).
pubmed: 31821440 doi: 10.1084/jem.20190459
Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).
pubmed: 35948637 pmcid: 9364862 doi: 10.1038/s41586-022-05060-x
Tanaka, Y., Luo, Y., Shea, J. J. O. & Nakayamada, S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat. Rev. Rheumatol. 18, 133–145 (2022).
pubmed: 34987201 pmcid: 8730299 doi: 10.1038/s41584-021-00726-8
Xu, Y. et al. An atlas of genetic scores to predict multi-omic traits. Nature 616, 123–131 (2023).
pubmed: 36991119 pmcid: 10323211 doi: 10.1038/s41586-023-05844-9
Ytterberg, S. R. et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N. Engl. J. Med. 386, 316–326 (2022).
pubmed: 35081280 doi: 10.1056/NEJMoa2109927
Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592, 296–301 (2021).
pubmed: 33731931 pmcid: 8038646 doi: 10.1038/s41586-021-03341-5
Dotan, I. et al. Macrophage Jak2 deficiency accelerates atherosclerosis through defects in cholesterol efflux. Commun. Biol. 5, 132 (2022).
pubmed: 35169231 pmcid: 8847578 doi: 10.1038/s42003-022-03078-5
Li, N. et al. Effect of JAK inhibitors on high- and low -density lipoprotein in patients with rheumatoid arthritis: a systematic review and network meta-analysis. Clin. Rheumatol. 41, 677–688 (2022).
pubmed: 34993729 doi: 10.1007/s10067-021-06003-z
Kar, S. P. et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat. Genet. 54, 1155–1166 (2022).
pubmed: 35835912 pmcid: 9355874 doi: 10.1038/s41588-022-01121-z
Meyer, S. C. et al. Genetic studies reveal an unexpected negative regulatory role for Jak2 in thrombopoiesis. Blood 124, 2280–2284 (2014).
pubmed: 25115888 pmcid: 4183987 doi: 10.1182/blood-2014-03-560441
Lu, W. et al. Role of a Janus kinase 2-dependent signaling pathway in platelet activation. Thromb. Res. 133, 1088–1096 (2014).
pubmed: 24731555 doi: 10.1016/j.thromres.2014.03.042
Kristjansdottir, G. et al. Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Hum. Mol. Genet. 17, 872–881 (2008).
pubmed: 18063667 doi: 10.1093/hmg/ddm359
Postal, M. et al. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr. Opin. Immunol. 67, 87–94 (2020).
pubmed: 33246136 pmcid: 8054829 doi: 10.1016/j.coi.2020.10.014
Dall’era, M. C., Cardarelli, P. M., Preston, B. T., Witte, A. & Davis, J. C.Jr Type I interferon correlates with serological and clinical manifestations of SLE. Ann. Rheum. Dis. 64, 1692–1697 (2005).
pubmed: 15843451 pmcid: 1755300 doi: 10.1136/ard.2004.033753
King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 23, 1481–1487 (2017).
pubmed: 29106401 pmcid: 6477926 doi: 10.1038/nm.4428
Nelson, C. P., Schunkert, H., Samani, N. J. & Erridge, C. Genetic analysis of leukocyte type-I interferon production and risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 35, 1456–1462 (2015).
pubmed: 25882064 doi: 10.1161/ATVBAHA.114.304925
Calcagno, D. M. et al. The myeloid type I interferon response to myocardial infarction begins in bone marrow and is regulated by Nrf2-activated macrophages. Sci. Immunol. 5, eaaz1974 (2020).
pubmed: 32978242 pmcid: 7808338 doi: 10.1126/sciimmunol.aaz1974
Zernecke, A. et al. Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis. Cardiovasc. Res. 119, 1676–1689 (2023).
pubmed: 36190844 doi: 10.1093/cvr/cvac161
Lin, J. et al. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI insight 4, e124574 (2019).
pubmed: 30830865 pmcid: 6478411 doi: 10.1172/jci.insight.124574
Goossens, P. et al. Myeloid type i interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metab. 12, 142–153 (2010).
pubmed: 20674859 doi: 10.1016/j.cmet.2010.06.008
Niessner, A. et al. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque. Circulation 114, 2482–2489 (2006).
pubmed: 17116765 doi: 10.1161/CIRCULATIONAHA.106.642801
Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).
pubmed: 31851795 doi: 10.1056/NEJMoa1912196
Wang, L., Luqmani, R. & Udalova, I. A. The role of neutrophils in rheumatic disease-associated vascular inflammation. Nat. Rev. Rheumatol. 18, 158–170 (2022).
pubmed: 35039664 doi: 10.1038/s41584-021-00738-4
Silvestre-roig, C., Braster, Q., Ortega-Gomez, A. & Soehnlein, O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 17, 327–340 (2020).
pubmed: 31996800 doi: 10.1038/s41569-019-0326-7
Fraccarollo, D. et al. Expansion of CD10 neg neutrophils and proinflammatory responses in patients with acute myocardial infarction. eLife 19, e66808 (2021).
doi: 10.7554/eLife.66808
Horckmans, M. et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 38, 187–197 (2017).
pubmed: 28158426
Jayne, D. R. W., Merkel, P. A., Schall, T. J. & Bekker, P. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).
pubmed: 33596356 doi: 10.1056/NEJMoa2023386
Manthey, H. D. et al. Complement C5a inhibition reduces atherosclerosis in ApoE
pubmed: 21490292 doi: 10.1096/fj.10-174284
Hoog, V. C. De et al. Leucocyte expression of complement C5a receptors exacerbates infarct size after myocardial reperfusion injury. Cardiovasc. Res. 103, 521–529 (2014).
pubmed: 24935433 doi: 10.1093/cvr/cvu153
Henes, J. K. et al. C5 variant rs10985126 is associated with mortality in patients with symptomatic coronary artery disease. Pharmgenomics Pers. Med. 14, 893–903 (2021).
pubmed: 34321906 pmcid: 8312322
APEX AMI Investigators. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA 297, 43–51 (2007).
doi: 10.1001/jama.297.1.43
Dörner, T. & Lipsky, P. E. Beyond pan-B-cell-directed therapy — new avenues and insights into the pathogenesis of SLE. Nat. Rev. Rheumatol. 12, 645–657 (2016).
pubmed: 27733759 doi: 10.1038/nrrheum.2016.158
Sage, A. P., Tsiantoulas, D., Binder, C. J. & Mallat, Z. The role of B cells in atherosclerosis. Nat. Rev. Cardiol. 16, 180–196 (2019).
pubmed: 30410107 doi: 10.1038/s41569-018-0106-9
Porsch, F., Mallat, Z. & Binder, C. J. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc. Res. 117, 2544–2562 (2021).
pubmed: 34450620
Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–1587 (2010).
pubmed: 20603314 pmcid: 2916123 doi: 10.1084/jem.20100155
Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 19, 1273–1280 (2013).
pubmed: 24037091 pmcid: 4042928 doi: 10.1038/nm.3284
Zhao, T. X. et al. Rituximab in patients with acute ST myocardial infarction: an experimental medicine safety study. Cardiovasc. Res. 118, 872–882 (2021).
pmcid: 8859640 doi: 10.1093/cvr/cvab113
Pattarabanjird, T., Li, C. & McNamara, C. B cells in atherosclerosis. mechanisms and potential clinical applications. JACC Basic Transl. Sci. 6, 546–563 (2021).
pubmed: 34222726 pmcid: 8246059 doi: 10.1016/j.jacbts.2021.01.006
Tsiantoulas, D. et al. B cell-activating factor neutralization. Circulation 138, 2263–2273 (2018).
pubmed: 29858401 pmcid: 6181204 doi: 10.1161/CIRCULATIONAHA.117.032790
Saidoune, F. et al. Effects of BAFF neutralization on atherosclerosis associated with systemic lupus erythematosus. Arthritis Rheumatol. 73, 255–264 (2021).
pubmed: 32783382 doi: 10.1002/art.41485
Rosetti, F., Madera-Salcedo, I. K., Rodriguez-Rodriguez, N. & Crispín, J. C. Regulation of activated T cell survival in rheumatic autoimmune diseases. Nat. Rev. Rheumatol. 18, 232–244 (2022).
pubmed: 35075294 doi: 10.1038/s41584-021-00741-9
Kolios, A. G. A., Tsokos, G. C. & Klatzmann, D. Interleukin-2 and regulatory T cells. Nat. Rev. Rheumatol. 17, 749–766 (2021).
pubmed: 34728817 doi: 10.1038/s41584-021-00707-x
Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).
pubmed: 16462800 doi: 10.1038/nm1343
Graßhoff, H. et al. Low-dose IL-2 therapy in autoimmune and rheumatic diseases. Front. Immunol. 12, 648408 (2021).
pubmed: 33868284 pmcid: 8047324 doi: 10.3389/fimmu.2021.648408
Sriranjan, R. et al. Low-dose interleukin 2 for the reduction of vascular inflammation in acute coronary syndromes (IVORY): protocol and study rationale for a randomised, controlled, phase II clinical trial. BMJ Open 12, e062602 (2022).
pubmed: 36207050 pmcid: 9558794 doi: 10.1136/bmjopen-2022-062602
Roubille, C. et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 480–489 (2015).
pubmed: 25561362 doi: 10.1136/annrheumdis-2014-206624
Sidiropoulos, P. I. et al. Sustained improvement of vascular endothelial function during anti‐TNFα treatment in rheumatoid arthritis patients. Scand. J. Immunol. 38, 6–10 (2009).
Singh, S. et al. Comparative risk of cardiovascular events with biologic and synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res. 72, 561–576 (2020).
doi: 10.1002/acr.23875
Kang, E. H. et al. Comparative cardiovascular risk of abatacept and tumor necrosis factor inhibitors in patients with rheumatoid arthritis with and without diabetes mellitus: a multidatabase cohort study. J. Am. Heart Assoc. 7, e007393 (2018).
pubmed: 29367417 pmcid: 5850244 doi: 10.1161/JAHA.117.007393
Poizeau, F. et al. Association between early severe cardiovascular events and the initiation of treatment with the anti-interleukin 12/23p40 antibody ustekinumab. JAMA Dermatol. 156, 1208–1215 (2024).
doi: 10.1001/jamadermatol.2020.2977
Taleb, S., Tedgui, A. & Mallat, Z. IL-17 and Th17 cells in atherosclerosis subtle and contextual roles. Arterioscler. Thromb. Vasc. Biol. 35, 258–264 (2015).
pubmed: 25234818 doi: 10.1161/ATVBAHA.114.303567
Taleb, S. et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J. Exp. Med. 206, 2067–2077 (2009).
pubmed: 19737863 pmcid: 2757872 doi: 10.1084/jem.20090545
Gisterå, A. et al. Transforming growth factor–b signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17–dependent pathway. Sci. Transl. Med. 5, 18–23 (2013).
doi: 10.1126/scitranslmed.3006133
Giles, J. T. et al. Cardiovascular safety of tocilizumab versus etanercept in rheumatoid arthritis: a randomized controlled trial. Arthritis Rheumatol. 72, 31–40 (2020).
pubmed: 31469238 doi: 10.1002/art.41095
Schoeman, C. C. et al. Risk of major adverse cardiovascular events with tofacitinib versus tumour necrosis factor inhibitors in patients with rheumatoid arthritis with or without a history of atherosclerotic cardiovascular disease: a post hoc analysis from ORAL Surveillance. Ann. Rheum. Dis. 82, 119–129 (2022).
doi: 10.1136/ard-2022-222259
Kristensen, L. E. et al. Identification of two tofacitinib subpopulations with different relative risk versus TNF inhibitors: an analysis of the open label, randomised controlled study ORAL Surveillance. Ann. Rheum. Dis. 83, e11 (2023).
Myasoedova, E. et al. Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann. Rheum. Dis. 70, 482–487 (2011).
pubmed: 21216812 doi: 10.1136/ard.2010.135871
McInnes, I. B. et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann. Rheum. Dis. 74, 694–702 (2013).
pubmed: 24368514 doi: 10.1136/annrheumdis-2013-204345
Buch, M. H. What is Surveillance teaching us (and what it is not?). Semin. Arthritis Rheum. 64, 152334 (2023).
doi: 10.1016/j.semarthrit.2023.152334
Elnabawi, Y. A. et al. Coronary artery plaque characteristics and treatment with biologic therapy in severe psoriasis: results from a prospective observational study. Cardiovasc. Res. 115, 721–728 (2019).
pubmed: 30721933 pmcid: 6432047 doi: 10.1093/cvr/cvz009
Elnabawi, Y. A. et al. Association of biologic therapy with coronary inflammation in patients with psoriasis as assessed by perivascular fat attenuation index. JAMA Cardiol. 4, 885–891 (2019).
pubmed: 31365032 pmcid: 6669789 doi: 10.1001/jamacardio.2019.2589
Karpouzas, G. A., Ormseth, S. R., Hernandez, E. & Budoff, M. J. Biologics may prevent cardiovascular events in rheumatoid arthritis by inhibiting coronary plaque formation and stabilizing high-risk lesions. Arthritis Rheumatol. 72, 1467–1475 (2020).
pubmed: 32319221 doi: 10.1002/art.41293
Plein, S. et al. Cardiovascular effects of biological versus conventional synthetic disease-modifying antirheumatic drug therapy in treatment-naïve, early rheumatoid arthritis. Ann. Rheum. 79, 1414–1422 (2020).
doi: 10.1136/annrheumdis-2020-217653
Tschope, C. et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat. Rev. Cardiol. 18, 169–173 (2021).
pubmed: 33046850 doi: 10.1038/s41569-020-00435-x
Caforio, A. L. P. et al. Diagnosis and management of myocardial involvement in systemic immune-mediated diseases: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Disease. Eur. Heart J. 38, 2649–2662 (2017).
pubmed: 28655210 doi: 10.1093/eurheartj/ehx321
Caforio, A. L. P. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 34, 2636–2648 (2013).
pubmed: 23824828 doi: 10.1093/eurheartj/eht210
Moslehi, J. & Salem, J. Immune checkpoint inhibitor myocarditis treatment strategies and future directions. JACC CardioOncol. 4, 704–707 (2022).
pubmed: 36636442 pmcid: 9830216 doi: 10.1016/j.jaccao.2022.11.005
Medsger, T. A. & Masi, A. T. Survival with scleroderma-II: a life-table analysis of clinical and demographic factors in 358 male U.S. veteran patients. J. Chronic Dis. 26, 647–660 (1973).
pubmed: 4587746 doi: 10.1016/0021-9681(73)90054-4
Elhai, M. et al. Mapping and predicting mortality from systemic sclerosis. Ann. Rheum. Dis. 76, 1897–1905 (2017).
pubmed: 28835464 doi: 10.1136/annrheumdis-2017-211448
Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).
pubmed: 30228378 doi: 10.1038/s41577-018-0065-8
Cihakova, D. & Rose, N. R. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv. Immunol. 99, 95–114 (2008).
pubmed: 19117533 doi: 10.1016/S0065-2776(08)00604-4
Fairweather, D. et al. Mast cells and innate cytokines are associated with susceptibility to autoimmune heart disease following Coxsackievirus B3 infection. Autoimmunity 37, 131–145 (2009).
doi: 10.1080/0891693042000196200
De Luca, G., Cavalli, G., Campochiaro, C., Tresoldi, M. & Dagna, L. Myocarditis: an interleukin-1-mediated disease? Front. Immunol. 9, 31–35 (2018).
Fairweather, D. et al. IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-gamma and macrophage and neutrophil populations in the heart. J. Immunol. 174, 261–269 (2005).
pubmed: 15611248 doi: 10.4049/jimmunol.174.1.261
Tanaka, T. et al. Overexpression of interleukin-6 aggravates viral myocarditis: impaired increase in tumor necrosis factor-alpha. J. Mol. Cell Cardiol. 33, 1627–1635 (2001).
pubmed: 11549342 doi: 10.1006/jmcc.2001.1428
Savvatis, K. et al. Interleukin-6 receptor inhibition modulates the immune reaction and restores titin phosphorylation in experimental myocarditis. Basic Res. Cardiol. 109, 449 (2014).
pubmed: 25344085 doi: 10.1007/s00395-014-0449-2
Amioka, N. & Nakamura, K. Pathological and clinical effects of interleukin-6 on human myocarditis. J. Cardiol. 78, 157–165 (2021).
pubmed: 33814251 doi: 10.1016/j.jjcc.2021.03.003
Anzai, A. et al. Self-reactive CD4
pubmed: 30670465 pmcid: 6363430 doi: 10.1084/jem.20180722
Lasrado, N., Starr, T. K. & Reddy, J. Dissecting the cellular landscape and transcriptome network in viral myocarditis by single-cell RNA sequencing. iScience 25, 103865 (2022).
pubmed: 35243228 pmcid: 8861636 doi: 10.1016/j.isci.2022.103865
Hua, X. et al. Single-cell RNA sequencing to dissect the immunological network of autoimmune myocarditis. Circulation 142, 384–400 (2020).
pubmed: 32431172 doi: 10.1161/CIRCULATIONAHA.119.043545
Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor–deficient mice. Science 291, 319–322 (2001).
pubmed: 11209085 doi: 10.1126/science.291.5502.319
Axelrod, M. L. et al. T cells specific for α-myosin drive immunotherapy related myocarditis. Nature 611, 818–826 (2022).
pubmed: 36385524 pmcid: 9930174 doi: 10.1038/s41586-022-05432-3
Calhoun, P. J. et al. Adenovirus targets transcriptional and post-translational mechanisms to limit gap junction function. FASEB J. 34, 9694–9712 (2021).
doi: 10.1096/fj.202000667R
Murphy, S. P., Kakkar, R., McCarthy, C. P. & Januzzi, J. L. Inflammation in heart failure. JACC state-of-the-art review. J. Am. Coll. Cardiol. 75, 1324–1339 (2020).
pubmed: 32192660 doi: 10.1016/j.jacc.2020.01.014
Daou, D., Gillette, T. G. & Hill, J. A. Inflammatory mechanisms in heart failure with preserved ejection fraction. Physiology 38, 217–230 (2024).
doi: 10.1152/physiol.00004.2023
Lewis, G. A. et al. Pirfenidone in heart failure with preserved ejection fraction: a randomized phase 2 trial. Nat. Med. 27, 1477–1482 (2021).
pubmed: 34385704 doi: 10.1038/s41591-021-01452-0
Shah, S. J. et al. Heart failure phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131, 269–279 (2015).
pubmed: 25398313 doi: 10.1161/CIRCULATIONAHA.114.010637
Segar, M. W. et al. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur. J. Heart Fail. 22, 148–158 (2020).
pubmed: 31637815 doi: 10.1002/ejhf.1621
Nicola, P. J. et al. The risk of congestive heart failure in rheumatoid arthritis: a population-based study over 46 years. Arthritis Rheum. 52, 412–420 (2005).
pubmed: 15692992 doi: 10.1002/art.20855
Myasoedova, E. et al. The influence of rheumatoid arthritis disease characteristics on heart failure. J. Rheumatol. 38, 1601–1606 (2011).
pubmed: 21572155 pmcid: 3337549 doi: 10.3899/jrheum.100979
Meng, X. et al. Regulatory T cells in cardiovascular diseases. Nat. Rev. Cardiol. 13, 167–179 (2016).
pubmed: 26525543 doi: 10.1038/nrcardio.2015.169
Mantel, Ä., Holmqvist, M., Andersson, D. C., Lund, L. H. & Askling, J. Association between rheumatoid arthritis and risk of ischemic and nonischemic heart failure. J. Am. Coll. Cardiol. 69, 1275–1285 (2017).
pubmed: 28279294 doi: 10.1016/j.jacc.2016.12.033
Schattner, A. Patients with new-onset rheumatoid arthritis had increased risk for ischemic and nonischemic heart failure. Ann. Intern. Med. 167, JC8 (2017).
pubmed: 28715830 doi: 10.7326/ACPJC-2017-167-2-008
Wright, K., Crowson, C. S. & Gabriel, S. E. Cardiovascular comorbidity in rheumatic diseases: a focus on heart failure. Heart Fail. Clin. 10, 339–352 (2014).
pubmed: 24656110 pmcid: 3964373 doi: 10.1016/j.hfc.2013.10.003
Kim, C. H. et al. Incidence and risk of heart failure in systemic lupus erythematosus. Heart 103, 227–233 (2017).
pubmed: 27613169 doi: 10.1136/heartjnl-2016-309561
Ahlers, M. J. et al. Heart failure risk associated with rheumatoid arthritis–related chronic inflammation. J. Am. Heart Assoc. 9, e014661 (2020).
pubmed: 32378457 pmcid: 7660862 doi: 10.1161/JAHA.119.014661
Amigues, I. et al. Myocardial microvascular dysfunction in rheumatoid arthritis quantitation by 13N-ammonia positron emission tomography/computed tomography. Circ. Cardiovasc. Imaging 12, e007495 (2019).
pubmed: 30636512 pmcid: 6361523 doi: 10.1161/CIRCIMAGING.117.007495
Sandhu, V. K. et al. A five-year follow up of coronary microvascular dysfunction and coronary artery disease in SLE: results from a community-based lupus cohort. Arthritis Care Res. 72, 882–887 (2020).
doi: 10.1002/acr.23920
Galea, N. et al. Early myocardial damage and microvascular dysfunction in asymptomatic patients with systemic sclerosis: a cardiovascular magnetic resonance study with cold pressor test. PLoS ONE 2, e0244282 (2020).
doi: 10.1371/journal.pone.0244282
Tennøe, A. H. et al. Left ventricular diastolic dysfunction predicts mortality in patients with systemic sclerosis. J. Am. Coll. Cardiol. 72, 1804–1813 (2018).
pubmed: 30286924 doi: 10.1016/j.jacc.2018.07.068
Hinze, A. M. et al. Diastolic dysfunction in systemic sclerosis: risk factors and impact on mortality. Arthritis Rheumatol. 74, 849–859 (2022).
pubmed: 34927390 pmcid: 9050815 doi: 10.1002/art.42054
Levine, B., Kalman, J., Mayer, L., Fillit, H. & Packer, M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323, 236–241 (1990).
pubmed: 2195340 doi: 10.1056/NEJM199007263230405
Pugliese, N. R. et al. Inflammatory pathways in heart failure with preserved left ventricular ejection fraction: implications for future interventions. Cardiovasc. Res. 118, 3536–3555 (2022).
pmcid: 9897694 doi: 10.1093/cvr/cvac133
Markousis-Mavrogenis, G. et al. Immunomodulation and immunopharmacology in heart failure. Nat. Rev. Cardiol. 21, 119–149 (2024).
pubmed: 37709934 doi: 10.1038/s41569-023-00919-6
Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).
pubmed: 15023878 doi: 10.1161/01.CIR.0000124490.27666.B2
Chung, E. S. et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha in patients with moderate-to-severe heart failure. Circulation 107, 3133–3140 (2003).
pubmed: 12796126 doi: 10.1161/01.CIR.0000077913.60364.D2
Kwon, H. J., Cot, T. R., Cuffe, M., Kramer, J. M. & Braun, M. M. Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann. Intern. Med. 138, 807–811 (2003).
pubmed: 12755552 doi: 10.7326/0003-4819-138-10-200305200-00008
Setoguchi, S., Schneeweiss, S., Avorn, J. & Katz, J. N. Tumor necrosis factor- α antagonist use and heart failure in elderly patients with rheumatoid arthritis. Am. Heart J. 156, 336–341 (2008).
pubmed: 18657665 pmcid: 3257055 doi: 10.1016/j.ahj.2008.02.025
Curtis, J. R. et al. Heart failure among younger rheumatoid arthritis and Crohn’s patients exposed to TNF-alpha antagonists. Rheumatology 46, 1688–1693 (2008).
doi: 10.1093/rheumatology/kem212
Carmona, L. et al. All-cause and cause-specific mortality in rheumatoid arthritis are not greater than expected when treated with tumour necrosis factor antagonists. Ann. Rheum. Dis. 66, 880–885 (2007).
pubmed: 17324968 pmcid: 1955107 doi: 10.1136/ard.2006.067660
Wolfe, F. & Michaud, K. Heart failure in rheumatoid arthritis: rates, predictors, and the effect of anti–tumor necrosis factor therapy. Am. J. Med. 116, 305–311 (2004).
pubmed: 14984815 doi: 10.1016/j.amjmed.2003.09.039
Listing, J. et al. Does tumor necrosis factor α inhibition promote or prevent heart failure in patients with rheumatoid arthritis? Arthritis Rheum. 58, 667–677 (2008).
pubmed: 18311816 doi: 10.1002/art.23281
Solomon, D. H. et al. Heart failure risk among patients with rheumatoid arthritis starting a TNF antagonist. Ann. Rheum. Dis. 72, 1813–1818 (2013).
pubmed: 23155221 doi: 10.1136/annrheumdis-2012-202136
Khalid, U. et al. Incident heart failure in patients with rheumatoid arthritis: a nationwide cohort study. J. Am. Heart Assoc. 7, e007227 (2018).
pubmed: 29352092 pmcid: 5850154 doi: 10.1161/JAHA.117.007227
Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).
pubmed: 30586730 doi: 10.1161/CIRCULATIONAHA.118.038010
Van Tassell, B. W. et al. Interleukin-1 blockade in recently decompensated systolic heart failure: results from the recently decompensated heart failure anakinra response trial (REDHART). Circ. Heart Fail. 10, e004373 (2017).
pubmed: 29141858 pmcid: 5699505 doi: 10.1161/CIRCHEARTFAILURE.117.004373
Van Tassell, B. W. et al. IL-1 blockade in patients with heart failure with preserved ejection fraction. Circ. Heart Fail. 11, e005036 (2018).
pubmed: 30354558 pmcid: 6545106 doi: 10.1161/CIRCHEARTFAILURE.118.005036
Prevention, C. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 37, 2315–2381 (2016).
doi: 10.1093/eurheartj/ehw106
Bruni, C. et al. Consensus on the assessment of systemic sclerosis–associated primary heart involvement: world Scleroderma Foundation/Heart Failure Association guidance on screening, diagnosis, and follow-up assessment. J. Scleroderma Relat. Disord. 8, 169–182 (2023).
pubmed: 37744047 doi: 10.1177/23971983231163413
Weber, B. N. et al. Novel imaging approaches to cardiac manifestations of systemic inflammatory diseases. J. Am. Coll. Cardiol. 82, 2128–2151 (2023).
pubmed: 37993205 pmcid: 11238243 doi: 10.1016/j.jacc.2023.09.819
Knuuti, J. et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 41, 407–477 (2020).
pubmed: 31504439 doi: 10.1093/eurheartj/ehz425
SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur. Heart J. 42, 2439–2454 (2021).
doi: 10.1093/eurheartj/ehab309
Hippisley-Cox, J., Coupland, C., Brindle, P. & West, N. C. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. Br. Med. J. 357, j2099 (2017).
doi: 10.1136/bmj.j2099
Byrne, R. A. et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 44, 3720–3826 (2023).
pubmed: 37622654 doi: 10.1093/eurheartj/ehad191
Virani, S. S. et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: a report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 148, e9–e119 (2023).
pubmed: 37471501 doi: 10.1161/CIR.0000000000001168
Agca, R. et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 76, 17–28 (2016).
pubmed: 27697765 doi: 10.1136/annrheumdis-2016-209775
Arts, E. E. A. et al. Prediction of cardiovascular risk in rheumatoid arthritis: performance of original and adapted SCORE algorithms. Ann. Rheum. Dis. 75, 674–680 (2016).
pubmed: 25691119 doi: 10.1136/annrheumdis-2014-206879
Crowson, C. S. et al. Challenges of developing a cardiovascular risk calculator for patients with rheumatoid arthritis. PLoS ONE 12, e0174656 (2017).
pubmed: 28334012 pmcid: 5363942 doi: 10.1371/journal.pone.0174656
Wahlin, B. et al. Performance of the expanded cardiovascular risk prediction score for rheumatoid arthritis is not superior to the ACC / AHA risk calculator. J. Rheumatol. 46, 130–137 (2019).
pubmed: 30275258 doi: 10.3899/jrheum.171008
Ljung, L. et al. Performance of the expanded cardiovascular risk prediction score for rheumatoid arthritis in a geographically distant National Register-based cohort: an external validation. RMD Open 4, e000771 (2018).
pubmed: 30622736 pmcid: 6307600 doi: 10.1136/rmdopen-2018-000771
Crowson, C. S. et al. Rheumatoid arthritis-specific cardiovascular risk scores are not superior to general risk scores: a validation analysis of patients from seven countries. Rheumatology 56, 1102–1110 (2017).
pubmed: 28339992 pmcid: 5850220 doi: 10.1093/rheumatology/kex038
Hindy, G. et al. Genome-wide polygenic score, clinical risk factors, and long-term trajectories of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 40, 2738–2746 (2020).
pubmed: 32957805 pmcid: 7577949 doi: 10.1161/ATVBAHA.120.314856
Klarin, D. & Natarajan, P. Clinical utility of polygenic risk scores for coronary artery disease. Nat. Rev. Cardiol. 19, 291–301 (2023).
doi: 10.1038/s41569-021-00638-w
Giles, J. T. et al. Coronary arterial calcification in rheumatoid arthritis: comparison with the Multi-Ethnic Study of Atherosclerosis. Arthritis Res. Ther. 11, R36 (2009).
pubmed: 19284547 pmcid: 2688181 doi: 10.1186/ar2641
Chung, C. P. et al. Increased coronary-artery atherosclerosis in rheumatoid arthritis relationship to disease duration and cardiovascular risk factors. Arthritis Rheum. 52, 3045–3053 (2005).
pubmed: 16200609 doi: 10.1002/art.21288
Bernardes, M. et al. Coronary artery calcium score in female rheumatoid arthritis patients: associations with apolipoproteins and disease biomarkers. Int. J. Rheum. Dis. 22, 1841–1856 (2019).
pubmed: 31468712 doi: 10.1111/1756-185X.13685
Tinggaard, A. B., Hjuler, K. F., Andersen, I. T., Winther, S. & Iversen, L. Prevalence and severity of coronary artery disease linked to prognosis in psoriasis and psoriatic arthritis patients: a multi-centre cohort study. J. Intern. 290, 693–703 (2021).
Romero-Diaz, J. et al. Systemic lupus erythematosus risk factors for coronary artery calcifications. Rheumatology 51, 110–119 (2012).
pubmed: 22039268 doi: 10.1093/rheumatology/ker307
Kiani, A. N. et al. Coronary calcification in SLE: comparison with the Multi-Ethnic Study of Atherosclerosis. Rheumatology 54, 1976–1981 (2015).
pubmed: 26106213 pmcid: 4715250 doi: 10.1093/rheumatology/kev198
Karpouzas, G. A. et al. Prevalence, extent and composition of coronary plaque in patients with rheumatoid arthritis without symptoms or prior diagnosis of coronary artery disease. Ann. Rheum. Dis. 73, 1797–1807 (2013).
pubmed: 23887286 doi: 10.1136/annrheumdis-2013-203617
Stojan, G., Li, J., Budoff, M., Arbab-, A. & Petri, M. A. High-risk coronary plaque in SLE: low- attenuation non-calcified coronary plaque and positive remodelling index. Lupus Sci. Med. 7, e000409 (2020).
pubmed: 32723810 pmcid: 7388871 doi: 10.1136/lupus-2020-000409
Lerman, J. B. et al. Coronary plaque characterization in psoriasis reveals high-risk features that improve after treatment in a prospective observational study. Circulation 136, 263–276 (2017).
pubmed: 28483812 pmcid: 5534138 doi: 10.1161/CIRCULATIONAHA.116.026859
Evangelista, A. et al. Multimodality imaging in thoracic aortic diseases: a clinical consensus statement from the European Association of Cardiovascular Imaging and the European Society of Cardiology working group on aorta and peripheral vascular diseases. Eur. Heart J. Cardiovasc. Imaging 24, 65–85 (2023).
doi: 10.1093/ehjci/jead024
Expert Panel on Vascular Imaging. ACR appropriateness criteria nontraumatic aortic disease. J. Am. Coll. Radiol. 18, S106–S118 (2021).
doi: 10.1016/j.jacr.2021.02.004
Ntusi, N. A. B. et al. Diffuse myocardial fibrosis and inflammation in rheumatoid arthritis: insights from CMR T1 mapping. JACC Cardiovasc. Imaging 8, 526–536 (2015).
pubmed: 25890584 doi: 10.1016/j.jcmg.2014.12.025
Karp, G. et al. Assessment of aortic stiffness among patients with systemic lupus erythematosus and rheumatoid arthritis by magnetic resonance imaging. Int. J. Cardiovasc. Imaging 32, 935–944 (2016).
pubmed: 26852242 doi: 10.1007/s10554-016-0851-y
Tarkin, J. M. & Gopalan, D. Multimodality imaging of large-vessel vasculitis. Heart 109, 232–240 (2023).
pubmed: 36446545 doi: 10.1136/heartjnl-2022-321113
Dejaco, C. et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice: 2023 update. Ann. Rheum. Dis. 83, 741–751 (2024).
pubmed: 37550004
Tarkin, J. M., Joshi, F. R. & Rudd, J. H. F. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 11, 443–457 (2014).
pubmed: 24913061 doi: 10.1038/nrcardio.2014.80
Solomon, D. H. et al. Reducing cardiovascular risk with immunomodulators: a randomised active comparator trial among patients with rheumatoid arthritis. Ann. Rheum. Dis. 82, 324–330 (2023).
pubmed: 36450449 doi: 10.1136/ard-2022-223302
Folco, E. J. et al. Hypoxia but not inflammation augments glucose uptake in human macrophages implications for imaging atherosclerosis with fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J. Am. Coll. Cardiol. 58, 603–614 (2011).
pubmed: 21798423 doi: 10.1016/j.jacc.2011.03.044
Joshi, N. V. et al.
pubmed: 24224999 doi: 10.1016/S0140-6736(13)61754-7
Andrej, Ć. et al. Novel positron emission tomography tracers for imaging vascular inflammation. Curr. Cardiol. Rep. 22, 119 (2020).
doi: 10.1007/s11886-020-01372-4
Corovi, A. et al. Somatostatin receptor PET/MR imaging of inflammation in patients with large vessel vasculitis and atherosclerosis. J. Am. Coll. Cardiol. 81, 386–354 (2023).
Pugliese, F. et al. Imaging of vascular inflammation with [11 C]-PK11195 and positron emission tomography/computed tomography. Angiogr. J. Am. Coll. Cardiol. 56, 653–661 (2010).
doi: 10.1016/j.jacc.2010.02.063
Brambatti, M. et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy an expert consensus document. Circ. Heart Fail. 13, 663–687 (2020).
Bruni, C. et al. Primary systemic sclerosis heart involvement: a systematic literature review and preliminary data-driven, consensus-based WSF/HFA definition. J. Scleroderma Relat. Disord. 7, 24–32 (2022).
pubmed: 35386946 doi: 10.1177/23971983211053246
Ferreira, V. M. et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J. Am. Coll. Cardiol. 72, 3158–3176 (2018).
pubmed: 30545455 doi: 10.1016/j.jacc.2018.09.072
Dumitru, R. B. et al. Predictors of subclinical systemic sclerosis primary heart involvement characterised by microvasculopathy and myocardial fibrosis. Rheumatology 60, 2934–2945 (2020).
pmcid: 8213428 doi: 10.1093/rheumatology/keaa742
Ntusi, N. A. et al. Subclinical myocardial inflammation and diffuse fibrosis are common in systemic sclerosis - a clinical study using myocardial T1-mapping and extracellular volume quantification. J. Cardiovasc. Magn. Reson. 16, 21 (2014).
pubmed: 24593856 pmcid: 3996013 doi: 10.1186/1532-429X-16-21
Winau, L. et al. High-sensitive troponin is associated with subclinical imaging biosignature of inflammatory cardiovascular involvement in systemic lupus erythematosus. Ann. Rheum. Dis. 77, 1590–1598 (2018).
pubmed: 30077990 doi: 10.1136/annrheumdis-2018-213661
Leiner, T. et al. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 22, 76 (2020).
pubmed: 33161900 pmcid: 7649060 doi: 10.1186/s12968-020-00682-4
Messroghli, D. R. et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2 and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 19, 75 (2017).
pubmed: 28992817 pmcid: 5633041 doi: 10.1186/s12968-017-0389-8
Patel, A. R. & Kramer, C. M. Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy. JACC Cardiovasc. Imaging 10, 1180–1193 (2017).
pubmed: 28982571 pmcid: 5708889 doi: 10.1016/j.jcmg.2017.08.005
Kotanidis, C. P. et al. Diagnostic accuracy of cardiovascular magnetic resonance in acute myocarditis: a systematic review and meta-analysis. JACC Cardiovasc. Imaging 11, 1583–1590 (2018).
pubmed: 29454761 doi: 10.1016/j.jcmg.2017.12.008
Ismail, T. F. et al. The role of cardiovascular magnetic resonance in the evaluation of acute myocarditis and inflammatory cardiomyopathies in clinical practice-a comprehensive review. Eur. Heart J. Cardiovasc. Imaging 23, 450–464 (2022).
pubmed: 35167664 doi: 10.1093/ehjci/jeac021
Gräni, C. et al. Prognostic value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis. J. Am. Coll. Cardiol. 70, 1964–1976 (2017).
pubmed: 29025553 pmcid: 6506846 doi: 10.1016/j.jacc.2017.08.050
Georgiopoulos, G. et al. Prognostic impact of late gadolinium enhancement by cardiovascular magnetic resonance in myocarditis: a systematic review and meta-analysis. Circ. Cardiovasc. Imaging 14, e011492 (2021).
pubmed: 33441003 doi: 10.1161/CIRCIMAGING.120.011492
O’Hanlon, R. et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 56, 867–874 (2010).
pubmed: 20688032 doi: 10.1016/j.jacc.2010.05.010
Gulati, A. et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309, 896–908 (2013).
pubmed: 23462786 doi: 10.1001/jama.2013.1363
Greulich, S. et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc. Imaging 6, 501–511 (2013).
pubmed: 23498675 doi: 10.1016/j.jcmg.2012.10.021
Grün, S. Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J. Am. Coll. Cardiol. 59, 1604–1615 (2012).
pubmed: 22365425 doi: 10.1016/j.jacc.2012.01.007
Halliday, B. P. et al. Association between midwall late gadolinium enhancement and sudden cardiac death in patients with dilated cardiomyopathy and mild and moderate left ventricular systolic dysfunction. Circulation 135, 2106–2115 (2017).
pubmed: 28351901 pmcid: 5444425 doi: 10.1161/CIRCULATIONAHA.116.026910
Schelbert, E. B. et al. Temporal relation between myocardial fibrosis and heart failure with preserved ejection fraction association with baseline disease severity and subsequent outcome. JAMA Cardiol. 2, 995–1006 (2017).
pubmed: 28768311 pmcid: 5710176 doi: 10.1001/jamacardio.2017.2511
Dumitru, R. B. et al. Cardiovascular outcomes in systemic sclerosis with abnormal cardiovascular MRI and serum cardiac biomarkers. RMD Open 7, e001689 (2021).
pubmed: 34663635 pmcid: 8524374 doi: 10.1136/rmdopen-2021-001689
Knight, D. S. et al. Distinct cardiovascular phenotypes are associated with prognosis in systemic sclerosis: a cardiovascular magnetic resonance study. Eur. Heart J. Cardiovasc. Imaging 24, 463–471 (2023).
pubmed: 35775814 doi: 10.1093/ehjci/jeac120
Mavrogeni, S. et al. Cardiac magnetic resonance predicts ventricular arrhythmias in scleroderma: the Scleroderma Arrhythmia Clinical Utility Study (SAnCtUS). Rheumatology 59, 1938–1948 (2020).
pubmed: 31764972 doi: 10.1093/rheumatology/kez494
Marmursztejn, J. et al. Churg–Strauss syndrome cardiac involvement evaluated by cardiac magnetic resonance imaging and positron-emission tomography: a prospective study on 20 patients. Rheumatology 52, 64650 (2013).
doi: 10.1093/rheumatology/kes155
Perel-winkler, A. et al. Myocarditis in systemic lupus erythematosus diagnosed by F-fluorodeoxyglucose positron emission tomography. Lupus Sci. Med. 5, e000265 (2018).
pubmed: 30094040 pmcid: 6069920 doi: 10.1136/lupus-2018-000265
Amigues, I. et al. Myocardial inflammation, measured using fluorodeoxyglucose positron emission tomography with computed tomography, is associated with disease activity in rheumatoid arthritis. Arthritis Rheumatol. 71, 496–506 (2019).
pubmed: 30407745 pmcid: 6438738 doi: 10.1002/art.40771
Biglands, J. D. et al. Myocardial perfusion values of early, pre‐treatment rheumatoid arthritis do not differ from healthy controls: a CADERA sub‐study. Arthritis Rheumatol. 75, 141–142 (2022).
pubmed: 36082459 doi: 10.1002/art.42341
Nensa, F., Kloth, J., Tezgah, E. & Poeppel, T. D. Feasibility of FDG-PET in myocarditis: comparison to CMR using integrated PET/MRI. J. Nucl. Cardiol. 25, 785–794 (2018).
pubmed: 27638745 doi: 10.1007/s12350-016-0616-y
Dalm, V. A., van Hagen, P. M. & van Koetsveld, P. M. Expression of somatostatin, cortistatin, and somatostatin receptors in human monocytes, macrophages, and dendritic cells. Am. J. Physiol. Endocrinol. Metab. 285, E344–E353 (2016).
doi: 10.1152/ajpendo.00048.2003
Boursier, C. et al. Detection of acute myocarditis by ECG- triggered PET imaging of somatostatin receptors compared to cardiac magnetic resonance: preliminary results. J. Nucl. Cardiol. 30, 1043–1049 (2023).
pubmed: 36123566 doi: 10.1007/s12350-022-03090-6
Barton, A. K. et al. Emerging molecular imaging targets and tools for myocardial fibrosis detection. Eur. Heart J. Cardiovasc. Imaging 24, 261–275 (2023).
pubmed: 36575058 doi: 10.1093/ehjci/jeac242
Cooper, L. T. et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. Eur. Heart J. 28, 3076–3093 (2007).
pubmed: 17959624 doi: 10.1093/eurheartj/ehm456
Visseren, F. L. J. et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 42, 3227–3337 (2021).
pubmed: 34458905 doi: 10.1093/eurheartj/ehab484
Kociol, R. D. et al. Recognition and initial management of fulminant myocarditis a scientific statement from the American Heart Association. Circ. J. 141, e69–e92 (2020).
McDonagh, T. A. et al. 2023 focused update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 44, 3627–3639 (2023).
pubmed: 37622666 doi: 10.1093/eurheartj/ehad195
Cohen, S. B. et al. A multicentre, double blind, randomised, placebo controlled trial of anakinra (Kineret), a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis treated with background methotrexate. Ann. Rheum. Dis. 63, 1062–1068 (2004).
pubmed: 15082469 pmcid: 1755108 doi: 10.1136/ard.2003.016014
Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 69, 964–975 (2010).
pubmed: 20444750 doi: 10.1136/ard.2009.126532
Genovese, M. C. et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum. 50, 1412–1419 (2004).
pubmed: 15146410 doi: 10.1002/art.20221
Szekanecz, Z. et al. Efficacy and safety of JAK inhibitors in rheumatoid arthritis: update for the practising clinician. Nat. Rev. Rheumatol. 20, 101–115 (2024).
pubmed: 38216757 doi: 10.1038/s41584-023-01062-9
Schett, G., Mcinnes, I. B. & Neurath, M. F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 385, 628–639 (2021).
pubmed: 34379924 doi: 10.1056/NEJMra1909094
Engelen, S. E., Robinson, A. J. B., Zurke, Y. X. & Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).
pubmed: 35102320 pmcid: 8802279 doi: 10.1038/s41569-021-00668-4
Jaeger, V. K. et al. Incidences and risk factors of organ manifestations in the early course of systemic sclerosis: a longitudinal EUSTAR study. PLoS ONE 11, e0163894 (2016).
pubmed: 27706206 pmcid: 5051961 doi: 10.1371/journal.pone.0163894
Nihtyanova, S. I. et al. Using autoantibodies and cutaneous subset to develop outcome-based disease classification in systemic sclerosis. Arthritis Rheumatol. 72, 465–476 (2020).
pubmed: 31682743 doi: 10.1002/art.41153
Fairley, J. L., Wicks, I., Peters, S. & Day, J. Defining cardiac involvement in idiopathic inflammatory myopathies: a systematic review. Rheumatology 61, 103–120 (2022).
doi: 10.1093/rheumatology/keab573
Schwartz, T., Diederichsen, L. P., Lundberg, I. E., Sjaastad, I. & Sanner, H. Cardiac involvement in adult and juvenile idiopathic inflammatory myopathies. RMD Open 2, e000291 (2016).
pubmed: 27752355 pmcid: 5051430 doi: 10.1136/rmdopen-2016-000291
Apte, M. et al. Associated factors and impact of myocarditis in patients with SLE from LUMINA, a multiethnic US cohort. Rheumatology 47, 362–367 (2008).
pubmed: 18250089 doi: 10.1093/rheumatology/kem371
Fanouriakis, A. et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann. Rheum. Dis. 83, 15–29 (2024).
pubmed: 37827694 doi: 10.1136/ard-2023-224762
Hellmich, B. et al. EULAR recommendations for the management of associated vasculitis: 2022 update. Ann. Rheum. Dis. 83, 30–47 (2024).
pubmed: 36927642 doi: 10.1136/ard-2022-223764
Steen, V. D. & Medsger, T. A. Case-control study of corticosteroids and other drugs that either precipitate or protect from the development of scleroderma renal crisis. Arthritis Rheum. 41, 1613–1619 (1998).
pubmed: 9751093 doi: 10.1002/1529-0131(199809)41:9<1613::AID-ART11>3.0.CO;2-O
Thomas, G. et al. Lupus myocarditis: initial presentation and longterm outcomes in a multicentric series of 29 patients. J. Rheumatol. 44, 24–31 (2017).
pubmed: 28042125 doi: 10.3899/jrheum.160493
Pieroni, M. et al. Recognizing and treating myocarditis in recent-onset systemic sclerosis heart disease: potential utility of immunosuppressive therapy in cardiac damage progression. Semin. Arthritis Rheum. 43, 526–535 (2014).
pubmed: 23932313 doi: 10.1016/j.semarthrit.2013.07.006
Allanore, Y. et al. Effects of corticosteroids and immunosuppressors on idiopathic inflammatory myopathy related myocarditis evaluated by magnetic resonance imaging. Ann. Rheum. Dis. 65, 249–252 (2006).
pubmed: 16410529 pmcid: 1798005 doi: 10.1136/ard.2005.038679
Khanna, D. et al. Systemic sclerosis–associated interstitial lung disease: how to incorporate two food and drug administration–approved therapies in clinical practice. Arthritis Rheumatol. 74, 13–27 (2022).
pubmed: 34313399 doi: 10.1002/art.41933
Maher, T. M. et al. Rituximab versus intravenous cyclophosphamide in patients with connective tissue disease-associated interstitial lung disease in the UK (RECITAL): a double-blind, double-dummy, randomised, controlled, phase 2b trial. Lancet Respir. Med. 11, 45–54 (2022).
pubmed: 36375479 doi: 10.1016/S2213-2600(22)00359-9
Ninagawa, K. et al. Beneficial effects of nintedanib on cardiomyopathy in patients with systemic sclerosis: a pilot study. Rheumatology 62, 2550–2555 (2023).
pubmed: 36458921 doi: 10.1093/rheumatology/keac674
Kitas, G. D. et al. A multicenter, randomized, placebo‐controlled trial of atorvastatin for the primary prevention of cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheumatol. 71, 1437–1449 (2019).
pubmed: 30983166 pmcid: 6771601 doi: 10.1002/art.40892
Lin, C. M. A., Cooles, F. A. H. & Isaacs, J. D. Precision medicine: the precision gap in rheumatic disease. Nat. Rev. Rheumatol. 18, 725–733 (2022).
pubmed: 36216923 doi: 10.1038/s41584-022-00845-w
Dumitru, R. B. et al. Subclinical systemic sclerosis primary heart involvement by cardiovascular magnetic resonance shows no significant interval change. ACR Open Rheumatol. 5, 71–80 (2023).
pubmed: 36604819 pmcid: 9926075 doi: 10.1002/acr2.11515
Gluckman, T. J. et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play. J. Am. Coll. Cardiol. 79, 1717–1756 (2022).
pubmed: 35307156 pmcid: 8926109 doi: 10.1016/j.jacc.2022.02.003
RA-MAP Consortium. RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients. Sci. Data 9, 196 (2022).
doi: 10.1038/s41597-022-01264-y
RA-MAP Consortium.Characterization of disease course and remission in early seropositive rheumatoid arthritis: results from the TACERA longitudinal cohort study. Ther. Adv. Musculoskelet. Dis. 13, 175920X211043977 (2021).
doi: 10.1177/1759720X211043977
Curran, L. et al. Genotype-phenotype taxonomy of hypertrophic cardiomyopathy. Circ. Genom. Precis. Med. 16, e004200 (2023).
pubmed: 38014537 pmcid: 10729901 doi: 10.1161/CIRCGEN.123.004200
Klein, A. L. et al. Phase 3 trial of interleukin-1 trap rilonacept in recurrent pericarditis. N. Engl. J. Med. 384, 31–41 (2021).
pubmed: 33200890 doi: 10.1056/NEJMoa2027892

Auteurs

Maya H Buch (MH)

Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK. maya.buch@manchester.ac.uk.
NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK. maya.buch@manchester.ac.uk.

Ziad Mallat (Z)

Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK.

Marc R Dweck (MR)

Centre for Cardiovascular Science, Chancellors Building, Little France Crescent, University of Edinburgh, Edinburgh, UK.

Jason M Tarkin (JM)

Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK.

Declan P O'Regan (DP)

MRC Laboratory of Medical Sciences, Imperial College London, London, UK.

Vanessa Ferreira (V)

Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.

Taryn Youngstein (T)

National Heart & Lung Institute, Imperial College London, London, UK.
Department of Rheumatology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.

Sven Plein (S)

Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK.

Classifications MeSH