Glymphatic System and Psychiatric Disorders: A Rapid Comprehensive Scoping Review.

Glymphatic system aquaporin-4 astrocytes depression. mood disorders psychiatric disorders

Journal

Current neuropharmacology
ISSN: 1875-6190
Titre abrégé: Curr Neuropharmacol
Pays: United Arab Emirates
ID NLM: 101157239

Informations de publication

Date de publication:
2024
Historique:
received: 29 05 2023
revised: 22 07 2023
accepted: 25 08 2023
medline: 5 9 2024
pubmed: 5 9 2024
entrez: 5 9 2024
Statut: ppublish

Résumé

Since discovering the glymphatic system, there has been a looming interest in exploring its relationship with psychiatric disorders. Recently, increasing evidence suggests an involvement of the glymphatic system in the pathophysiology of psychiatric disorders. However, clear data are still lacking. In this context, this rapid comprehensive PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) scoping review aims to identify and analyze current evidence about the relation between the glymphatic system and psychiatric disorders. We conducted a comprehensive review of the literature and then proceeded to discuss the findings narratively. Tables were then constructed and articles were sorted according to authors, year, title, location of study, sample size, psychiatric disorder, the aim of the study, principal findings, implications. Twenty papers were identified as eligible, among which 2 articles on Schizophrenia, 1 on Autism Spectrum Disorders, 2 on Depression, 1 on Depression and Trauma-related Disorders, 1 on Depression and Anxiety, 2 on Anxiety and Sleep Disorders, 8 on Sleep Disorders, 2 on Alcohol use disorder and 1 on Cocaine Use Disorder. This review suggests a correlation between the glymphatic system and several psychiatric disorders: Schizophrenia, Depression, Anxiety Disorders, Sleep Disorders, Alcohol Use Disorder, Cocaine Use Disorder, Trauma-Related Disorders, and Autism Spectrum Disorders. Impairment of the glymphatic system could play a role in Trauma-Related Disorders, Alcohol Use Disorders, Cocaine Use Disorders, Sleep Disorders, Depression, and Autism Spectrum Disorders. It is important to implement research on this topic and adopt standardized markers and radio diagnostic tools.

Sections du résumé

BACKGROUND BACKGROUND
Since discovering the glymphatic system, there has been a looming interest in exploring its relationship with psychiatric disorders. Recently, increasing evidence suggests an involvement of the glymphatic system in the pathophysiology of psychiatric disorders. However, clear data are still lacking. In this context, this rapid comprehensive PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) scoping review aims to identify and analyze current evidence about the relation between the glymphatic system and psychiatric disorders.
METHODS METHODS
We conducted a comprehensive review of the literature and then proceeded to discuss the findings narratively. Tables were then constructed and articles were sorted according to authors, year, title, location of study, sample size, psychiatric disorder, the aim of the study, principal findings, implications.
RESULTS RESULTS
Twenty papers were identified as eligible, among which 2 articles on Schizophrenia, 1 on Autism Spectrum Disorders, 2 on Depression, 1 on Depression and Trauma-related Disorders, 1 on Depression and Anxiety, 2 on Anxiety and Sleep Disorders, 8 on Sleep Disorders, 2 on Alcohol use disorder and 1 on Cocaine Use Disorder.
CONCLUSION CONCLUSIONS
This review suggests a correlation between the glymphatic system and several psychiatric disorders: Schizophrenia, Depression, Anxiety Disorders, Sleep Disorders, Alcohol Use Disorder, Cocaine Use Disorder, Trauma-Related Disorders, and Autism Spectrum Disorders. Impairment of the glymphatic system could play a role in Trauma-Related Disorders, Alcohol Use Disorders, Cocaine Use Disorders, Sleep Disorders, Depression, and Autism Spectrum Disorders. It is important to implement research on this topic and adopt standardized markers and radio diagnostic tools.

Identifiants

pubmed: 39234773
pii: CN-EPUB-138142
doi: 10.2174/1570159X22666240130091235
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2016-2033

Informations de copyright

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.

Références

Iliff J.J.; Wang M.; Liao Y.; Plogg B.A.; Peng W.; Gundersen G.A.; Benveniste H.; Vates G.E.; Deane R.; Goldman S.A.; Nagelhus E.A.; Nedergaard M.; A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012,4(147),147ra111
doi: 10.1126/scitranslmed.3003748 pubmed: 22896675
Jessen N.A.; Munk A.S.F.; Lundgaard I.; Nedergaard M.; The glymphatic system: A beginner’s guide. Neurochem Res 2015,40(12),2583-2599
doi: 10.1007/s11064-015-1581-6 pubmed: 25947369
Mathiisen T.M.; Lehre K.P.; Danbolt N.C.; Ottersen O.P.; The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. Glia 2010,58(9),1094-1103
doi: 10.1002/glia.20990 pubmed: 20468051
Troili F.; Cipollini V.; Moci M.; Morena E.; Palotai M.; Rinaldi V.; Romano C.; Ristori G.; Giubilei F.; Salvetti M.; Orzi F.; Guttmann C.R.G.; Cavallari M.; Perivascular Unit: This must be the place. the anatomical crossroad between the immune, vascular and nervous system. Front Neuroanat 2020,14,17
doi: 10.3389/fnana.2020.00017 pubmed: 32372921
Iadecola C.; Nedergaard M.; Glial regulation of the cerebral microvasculature. Nat Neurosci 2007,10(11),1369-1376
doi: 10.1038/nn2003 pubmed: 17965657
Bohr T.; Hjorth P.G.; Holst S.C.; Hrabětová S.; Kiviniemi V.; Lilius T.; Lundgaard I.; Mardal K.A.; Martens E.A.; Mori Y.; Nägerl U.V.; Nicholson C.; Tannenbaum A.; Thomas J.H.; Tithof J.; Benveniste H.; Iliff J.J.; Kelley D.H.; Nedergaard M.; The glymphatic system: Current understanding and modeling. iSci 2022,25(9),104987
doi: 10.1016/j.isci.2022.104987 pubmed: 36093063
Iliff J.J.; Wang M.; Zeppenfeld D.M.; Venkataraman A.; Plog B.A.; Liao Y.; Deane R.; Nedergaard M.; Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 2013,33(46),18190-18199
doi: 10.1523/JNEUROSCI.1592-13.2013 pubmed: 24227727
Mestre H.; Kostrikov S.; Mehta R.I.; Nedergaard M.; Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci 2017,131(17),2257-2274
doi: 10.1042/CS20160381 pubmed: 28798076
Cherian I.; Beltran M.; Kasper E.; Bhattarai B.; Munokami S.; Grasso G.; Exploring the Virchow-Robin spaces function: A unified theory of brain diseases. Surg Neurol Int 2016,7(27)(26),711
doi: 10.4103/2152-7806.192486 pubmed: 27857861
Barisano G.; Lynch K.M.; Sibilia F.; Lan H.; Shih N.C.; Sepehrband F.; Choupan J.; Imaging perivascular space structure and function using brain MRI. Neuroimage 2022,257,119329
doi: 10.1016/j.neuroimage.2022.119329 pubmed: 35609770
Aspelund A.; Antila S.; Proulx S.T.; Karlsen T.V.; Karaman S.; Detmar M.; Wiig H.; Alitalo K.; A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 2015,212(7),991-999
doi: 10.1084/jem.20142290 pubmed: 26077718
Iliff J.J.; Goldman S.A.; Nedergaard M.; Implications of the discovery of brain lymphatic pathways. Lancet Neurol 2015,14(10),977-979
doi: 10.1016/S1474-4422(15)00221-5 pubmed: 26376966
Louveau A.; Smirnov I.; Keyes T.J.; Eccles J.D.; Rouhani S.J.; Peske J.D.; Derecki N.C.; Castle D.; Mandell J.W.; Lee K.S.; Harris T.H.; Kipnis J.; Structural and functional features of central nervous system lymphatic vessels. Nature 2015,523(7560),337-341
doi: 10.1038/nature14432 pubmed: 26030524
Louveau A.; Herz J.; Alme M.N.; Salvador A.F.; Dong M.Q.; Viar K.E.; Herod S.G.; Knopp J.; Setliff J.C.; Lupi A.L.; Da Mesquita S.; Frost E.L.; Gaultier A.; Harris T.H.; Cao R.; Hu S.; Lukens J.R.; Smirnov I.; Overall C.C.; Oliver G.; Kipnis J.; CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 2018,21(10),1380-1391
doi: 10.1038/s41593-018-0227-9 pubmed: 30224810
Yankova G.; Bogomyakova O.; Tulupov A.; The glymphatic system and meningeal lymphatics of the brain: new understanding of brain clearance. Rev Neurosci 2021,32(7),693-705
doi: 10.1515/revneuro-2020-0106 pubmed: 33618444
Kida S.; Pantazis A.; Weller R.O.; CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 1993,19(6),480-488
doi: 10.1111/j.1365-2990.1993.tb00476.x pubmed: 7510047
Cabezas R.; Avila M.; Gonzalez J.; El-Bachá R.S.; Báez E.; García-Segura L.M.; Jurado Coronel J.C.; Capani F.; Cardona-Gomez G.P.; Barreto G.E.; Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 2014,8,211
doi: 10.3389/fncel.2014.00211 pubmed: 25136294
Ikeshima-Kataoka H.; Neuroimmunological implications of AQP4 in astrocytes. Int J Mol Sci 2016,17(8),1306
doi: 10.3390/ijms17081306 pubmed: 27517922
Mestre H.; Tithof J.; Du T.; Song W.; Peng W.; Sweeney A.M.; Olveda G.; Thomas J.H.; Nedergaard M.; Kelley D.H.; Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 2018,9(1),4878
doi: 10.1038/s41467-018-07318-3 pubmed: 30451853
Kress B.T.; Iliff J.J.; Xia M.; Wang M.; Wei H.S.; Zeppenfeld D.; Xie L.; Kang H.; Xu Q.; Liew J.A.; Plog B.A.; Ding F.; Deane R.; Nedergaard M.; Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 2014,76(6),845-861
doi: 10.1002/ana.24271 pubmed: 25204284
Bellesi M.; de Vivo L.; Tononi G.; Cirelli C.; Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 2015,13(1),66
doi: 10.1186/s12915-015-0176-7 pubmed: 26303010
Tso M.C.F.; Herzog E.D.; Was Cajal right about sleep? BMC Biol 2015,13(1),67
doi: 10.1186/s12915-015-0178-5 pubmed: 26303078
Pizarro A.; Hayer K.; Lahens N.F.; Hogenesch J.B.; CircaDB: A database of mammalian circadian gene expression profiles. Nucleic Acids Res 2012,41(D1),D1009-D1013
doi: 10.1093/nar/gks1161 pubmed: 23180795
Kruyer A.; Kalivas P.W.; Scofield M.D.; Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023,48(1),21-36
doi: 10.1038/s41386-022-01338-w pubmed: 35577914
Verkhratsky A.; Nedergaard M.; Physiology of astroglia. Physiol Rev 2018,98(1),239-389
doi: 10.1152/physrev.00042.2016 pubmed: 29351512
Chiareli R.A.; Carvalho G.A.; Marques B.L.; Mota L.S.; Oliveira-Lima O.C.; Gomes R.M.; Birbrair A.; Gomez R.S.; Simão F.; Klempin F.; Leist M.; Pinto M.C.X.; The role of astrocytes in the neurorepair process. Front Cell Dev Biol 2021,9,665795
doi: 10.3389/fcell.2021.665795 pubmed: 34113618
Koehler R.C.; Roman R.J.; Harder D.R.; Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 2009,32(3),160-169
doi: 10.1016/j.tins.2008.11.005 pubmed: 19162338
Masamoto K.; Unekawa M.; Watanabe T.; Toriumi H.; Takuwa H.; Kawaguchi H.; Kanno I.; Matsui K.; Tanaka K.F.; Tomita Y.; Suzuki N.; Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci Rep 2015,5(1),11455
doi: 10.1038/srep11455 pubmed: 26076820
Fultz N.E.; Bonmassar G.; Setsompop K.; Stickgold R.A.; Rosen B.R.; Polimeni J.R.; Lewis L.D.; Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 2019,366(6465),628-631
doi: 10.1126/science.aax5440 pubmed: 31672896
van Veluw S.J.; Hou S.S.; Calvo-Rodriguez M.; Arbel-Ornath M.; Snyder A.C.; Frosch M.P.; Greenberg S.M.; Bacskai B.J.; Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 2020,105(3),549-561.e5
doi: 10.1016/j.neuron.2019.10.033 pubmed: 31810839
Hablitz L.M.; Plá V.; Giannetto M.; Vinitsky H.S.; Stæger F.F.; Metcalfe T.; Nguyen R.; Benrais A.; Nedergaard M.; Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun 2020,11(1),4411
doi: 10.1038/s41467-020-18115-2 pubmed: 32879313
Hablitz L.M.; Nedergaard M.; The glymphatic system: A novel component of fundamental neurobiology. J Neurosci 2021,41(37),7698-7711
doi: 10.1523/JNEUROSCI.0619-21.2021 pubmed: 34526407
Liu G.; Mestre H.; Sweeney A.M.; Sun Q.; Weikop P.; Du T.; Nedergaard M.; Direct measurement of cerebrospinal fluid production in mice. Cell Rep 2020,33(12),108524
doi: 10.1016/j.celrep.2020.108524 pubmed: 33357428
O’Donnell J.; Zeppenfeld D.; McConnell E.; Pena S.; Nedergaard M.; Norepinephrine: A neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res 2012,37(11),2496-2512
doi: 10.1007/s11064-012-0818-x pubmed: 22717696
Nilsson C.; Lindvall-Axelsson M.; Owman C.; Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Brain Res Rev 1992,17(2),109-138
doi: 10.1016/0165-0173(92)90011-A pubmed: 1393190
Xie L.; Kang H.; Xu Q.; Chen M.J.; Liao Y.; Thiyagarajan M.; O’Donnell J.; Christensen D.J.; Nicholson C.; Iliff J.J.; Takano T.; Deane R.; Nedergaard M.; Sleep drives metabolite clearance from the adult brain. Science 2013,342(6156),373-377
doi: 10.1126/science.1241224 pubmed: 24136970
Mogensen F.L.H.; Delle C.; Nedergaard M.; The glymphatic system (En)during inflammation. Int J Mol Sci 2021,22(14),7491
doi: 10.3390/ijms22147491 pubmed: 34299111
Lundgaard I.; Li B.; Xie L.; Kang H.; Sanggaard S.; Haswell J.D.R.; Sun W.; Goldman S.; Blekot S.; Nielsen M.; Takano T.; Deane R.; Nedergaard M.; Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun 2015,6(1),6807
doi: 10.1038/ncomms7807 pubmed: 25904018
Thrane V.R.; Thrane A.S.; Plog B.A.; Thiyagarajan M.; Iliff J.J.; Deane R.; Nagelhus E.A.; Nedergaard M.; Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep 2013,3(1),2582
doi: 10.1038/srep02582 pubmed: 24002448
Achariyar T.M.; Li B.; Peng W.; Verghese P.B.; Shi Y.; McConnell E.; Benraiss A.; Kasper T.; Song W.; Takano T.; Holtzman D.M.; Nedergaard M.; Deane R.; Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener 2016,11(1),74
doi: 10.1186/s13024-016-0138-8 pubmed: 27931262
Natale G.; Limanaqi F.; Busceti C.L.; Mastroiacovo F.; Nicoletti F.; Puglisi-Allegra S.; Fornai F.; Glymphatic system as a gateway to connect neurodegeneration from periphery to CNS. Front Neurosci 2021,15,639140
doi: 10.3389/fnins.2021.639140 pubmed: 33633540
Buccellato F.R.; D’Anca M.; Serpente M.; Arighi A.; Galimberti D.; The role of glymphatic system in alzheimer’s and parkinson’s disease pathogenesis. Biomedicines 2022,10(9),2261
doi: 10.3390/biomedicines10092261 pubmed: 36140362
Reeves B.C.; Karimy J.K.; Kundishora A.J.; Mestre H.; Cerci H.M.; Matouk C.; Alper S.L.; Lundgaard I.; Nedergaard M.; Kahle K.T.; Glymphatic system impairment in alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol Med 2020,26(3),285-295
doi: 10.1016/j.molmed.2019.11.008 pubmed: 31959516
Schubert J.J.; Veronese M.; Marchitelli L.; Bodini B.; Tonietto M.; Stankoff B.; Brooks D.J.; Bertoldo A.; Edison P.; Turkheimer F.E.; Dynamic 11C-PiB PET shows cerebrospinal fluid flow alterations in alzheimer disease and multiple sclerosis. J Nucl Med 2019,60(10),1452-1460
doi: 10.2967/jnumed.118.223834 pubmed: 30850505
Carotenuto A.; Cacciaguerra L.; Pagani E.; Preziosa P.; Filippi M.; Rocca M.A.; Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability. Brain 2022,145(8),2785-2795
doi: 10.1093/brain/awab454 pubmed: 34919648
Hesdorffer D.C.; Comorbidity between neurological illness and psychiatric disorders. CNS Spectr 2016,21(3),230-238
doi: 10.1017/S1092852915000929 pubmed: 26898322
Uttara B.; Singh A.; Zamboni P.; Mahajan R.; Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009,7(1),65-74
doi: 10.2174/157015909787602823 pubmed: 19721819
Zhang X.Y.; Yao J.K.; Oxidative stress and therapeutic implications in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2013,46,197-199
doi: 10.1016/j.pnpbp.2013.03.003 pubmed: 23523744
Najjar S.; Pearlman D.M.; Alper K.; Najjar A.; Devinsky O.; Neuroinflammation and psychiatric illness. J Neuroinflammation 2013,10(1),816
doi: 10.1186/1742-2094-10-43 pubmed: 23547920
Mishra A.; Bandopadhyay R.; Singh P.K.; Mishra P.S.; Sharma N.; Khurana N.; Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab Brain Dis 2021,36(7),1591-1626
doi: 10.1007/s11011-021-00806-4 pubmed: 34387831
Krystal A.D.; Psychiatric disorders and sleep. Neurol Clin 2012,30(4),1389-1413
doi: 10.1016/j.ncl.2012.08.018 pubmed: 23099143
Steele T.A.; St Louis E.K.; Videnovic A.; Auger R.R.; Circadian rhythm sleep–wake disorders: A contemporary review of neurobiology, treatment, and dysregulation in neurodegenerative disease. Neurotherapeutics 2021,18(1),53-74
doi: 10.1007/s13311-021-01031-8 pubmed: 33844152
Leng Y.; Musiek E.S.; Hu K.; Cappuccio F.P.; Yaffe K.; Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol 2019,18(3),307-318
doi: 10.1016/S1474-4422(18)30461-7 pubmed: 30784558
Jones S.G.; Benca R.M.; Circadian disruption in psychiatric disorders. Sleep Med Clin 2015,10(4),481-493
doi: 10.1016/j.jsmc.2015.07.004 pubmed: 26568124
Zhang X.; Alnafisah R.S.; Hamoud A.R.A.; Shukla R.; McCullumsmith R.E.; O’Donovan S.M.; Astrocytes in neuropsychiatric disorders: A review of postmortem evidence. Adv Neurobiol 2021,26,153-172
doi: 10.1007/978-3-030-77375-5_8 pubmed: 34888835
McConnell H.L.; Li Z.; Woltjer R.L.; Mishra A.; Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem Int 2019,128,70-84
doi: 10.1016/j.neuint.2019.04.005 pubmed: 30986503
Zhang D.; Li X.; Li B.; Glymphatic system dysfunction in central nervous system diseases and mood disorders. Front Aging Neurosci 2022,14,873697
doi: 10.3389/fnagi.2022.873697 pubmed: 35547631
Gu S.; Li Y.; Jiang Y.; Huang J.H.; Wang F.; Glymphatic dysfunction induced oxidative stress and neuro-inflammation in major depression disorders. Antioxidants 2022,11(11),2296
doi: 10.3390/antiox11112296 pubmed: 36421482
Tricco A.C.; Lillie E.; Zarin W.; O’Brien K.K.; Colquhoun H.; Levac D.; Moher D.; Peters M.D.J.; Horsley T.; Weeks L.; Hempel S.; Akl E.A.; Chang C.; McGowan J.; Stewart L.; Hartling L.; Aldcroft A.; Wilson M.G.; Garritty C.; Lewin S.; Godfrey C.M.; Macdonald M.T.; Langlois E.V.; Soares-Weiser K.; Moriarty J.; Clifford T.; Tunçalp Ö.; Straus S.E.; PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med 2018,169(7),467-473
doi: 10.7326/M18-0850 pubmed: 30178033
Munn Z.; Peters M.D.J.; Stern C.; Tufanaru C.; McArthur A.; Aromataris E.; Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol 2018,18(1),143
doi: 10.1186/s12874-018-0611-x pubmed: 30453902
Arksey H.; O’Malley L.; Scoping studies: Towards a methodological framework. Int J Soc Res Methodol 2005,8(1),19-32
doi: 10.1080/1364557032000119616
Wu Y.F.; Sytwu H.K.; Lung F.W.; Polymorphisms in the human aquaporin 4 gene are associated with schizophrenia in the southern chinese han population: A case–control study. Front Psychiatry 2020,11,596
doi: 10.3389/fpsyt.2020.00596 pubmed: 32676041
Wu Y.F.; Sytwu H.K.; Lung F.W.; Human aquaporin 4 gene polymorphisms and haplotypes are associated with Serum S100B level and negative symptoms of schizophrenia in a southern chinese han population. Front Psychiatry 2018,9,657
doi: 10.3389/fpsyt.2018.00657 pubmed: 30618856
Li X.; Ruan C.; Zibrila A.I.; Musa M.; Wu Y.; Zhang Z.; Liu H.; Salimeen M.; Children with autism spectrum disorder present glymphatic system dysfunction evidenced by diffusion tensor imaging along the perivascular space. Medicine 2022,101(48),e32061
doi: 10.1097/MD.0000000000032061 pubmed: 36482590
Liu X.; Hao J.; Yao E.; Cao J.; Zheng X.; Yao D.; Zhang C.; Li J.; Pan D.; Luo X.; Wang M.; Wang W.; Polyunsaturated fatty acid supplement alleviates depression-incident cognitive dysfunction by protecting the cerebrovascular and glymphatic systems. Brain Behav Immun 2020,89,357-370
doi: 10.1016/j.bbi.2020.07.022 pubmed: 32717402
Xia M.; Yang L.; Sun G.; Qi S.; Li B.; Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology 2017,234(3),365-379
doi: 10.1007/s00213-016-4473-9 pubmed: 27837334
Ranti D.L.; Warburton A.J.; Rutland J.W.; Dullea J.T.; Markowitz M.; Smith D.A.; Kligler S.Z.K.; Rutter S.; Langan M.; Arrighi-Allisan A.; George I.; Verma G.; Murrough J.W.; Delman B.N.; Balchandani P.; Morris L.S.; Perivascular spaces as a marker of psychological trauma in depression: A 7‐Tesla MRI study. Brain Behav 2022,12(7),32598
doi: 10.1002/brb3.2598 pubmed: 35672958
Chen H.; Wan H.; Zhang M.; Liu G.; Wang X.; Wang Z.; Ma H.; Pan Y.; Feng T.; Wang Y.; Cerebral small vessel disease may worsen motor function, cognition, and mood in Parkinson’s disease. Parkinsonism Relat Disord 2021,83,86-92
doi: 10.1016/j.parkreldis.2020.12.025 pubmed: 33493785
Liu D.; He X.; Wu D.; Zhang Q.; Yang C.; Liang F.; He X.; Dai G.; Pei Z.; Lan Y.; Xu G.; Continuous theta burst stimulation facilitates the clearance efficiency of the glymphatic pathway in a mouse model of sleep deprivation. Neurosci Lett 2017,653,189-194
doi: 10.1016/j.neulet.2017.05.064 pubmed: 28576566
Vasciaveo V.; Iadarola A.; Casile A.; Dante D.; Morello G.; Minotta L.; Tamagno E.; Cicolin A.; Guglielmotto M.; Sleep fragmentation affects glymphatic system through the different expression of AQP4 in wild type and 5xFAD mouse models. Acta Neuropathol Commun 2023,11(1),16
doi: 10.1186/s40478-022-01498-2 pubmed: 36653878
Zhang R.; Liu Y.; Chen Y.; Li Q.; Marshall C.; Wu T.; Hu G.; Xiao M.; Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neurosci Ther 2020,26(2),228-239
doi: 10.1111/cns.13194 pubmed: 31364823
Siow T.Y.; Toh C.H.; Hsu J.L.; Liu G.H.; Lee S.H.; Chen N.H.; Fu C.J.; Castillo M.; Fang J.T.; Association of sleep, neuropsychological performance, and gray matter volume with glymphatic function in community-dwelling older adults. Neurology 2022,98(8),e829-e838
doi: 10.1212/WNL.0000000000013215 pubmed: 34906982
Wang X.X.; Cao Q.C.; Teng J.F.; Wang R.F.; Yang Z.T.; Wang M.G.; Cao Z.H.; MRI-visible enlarged perivascular spaces: imaging marker to predict cognitive impairment in older chronic insomnia patients. Eur Radiol 2022,32(8),5446-5457
doi: 10.1007/s00330-022-08649-y pubmed: 35286409
Rainey-Smith S.R.; Mazzucchelli G.N.; Villemagne V.L.; Brown B.M.; Porter T.; Weinborn M.; Bucks R.S.; Milicic L.; Sohrabi H.R.; Taddei K.; Ames D.; Maruff P.; Masters C.L.; Rowe C.C.; Salvado O.; Martins R.N.; Laws S.M.; Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden. Transl Psychiatry 2018,8(1),47
doi: 10.1038/s41398-018-0094-x pubmed: 29479071
Piantino J.; Schwartz D.L.; Luther M.; Newgard C.; Silbert L.; Raskind M.; Pagulayan K.; Kleinhans N.; Iliff J.; Peskind E.; Link between mild traumatic brain injury, poor sleep, and magnetic resonance imaging: Visible perivascular spaces in veterans. J Neurotrauma 2021,38(17),2391-2399
doi: 10.1089/neu.2020.7447 pubmed: 33599176
Shokri-Kojori E.; Wang G.J.; Wiers C.E.; Demiral S.B.; Guo M.; Kim S.W.; Lindgren E.; Ramirez V.; Zehra A.; Freeman C.; Miller G.; Manza P.; Srivastava T.; De Santi S.; Tomasi D.; Benveniste H.; Volkow N.D.; β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci 2018,115(17),4483-4488
doi: 10.1073/pnas.1721694115 pubmed: 29632177
Eide P.K.; Ringstad G.; Cerebrospinal fluid egress to human parasagittal dura and the impact of sleep deprivation. Brain Res 2021,1772,147669
doi: 10.1016/j.brainres.2021.147669 pubmed: 34587499
Chen W.; Huang P.; Zeng H.; Lin J.; Shi Z.; Yao X.; Cocaine-induced structural and functional impairments of the glymphatic pathway in mice. Brain Behav Immun 2020,88,97-104
doi: 10.1016/j.bbi.2020.04.057 pubmed: 32335199
Lundgaard I.; Wang W.; Eberhardt A.; Vinitsky H.S.; Reeves B.C.; Peng S.; Lou N.; Hussain R.; Nedergaard M.; Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci Rep 2018,8(1),2246
doi: 10.1038/s41598-018-20424-y pubmed: 29396480
Liu Q.; Yan L.; Huang M.; Zeng H.; Satyanarayanan S.K.; Shi Z.; Chen D.; Lu J.H.; Pei Z.; Yao X.; Su H.; Experimental alcoholism primes structural and functional impairment of the glymphatic pathway. Brain Behav Immun 2020,85,106-119
doi: 10.1016/j.bbi.2019.06.029 pubmed: 31247290
Li B.; Zhang D.; Verkhratsky A.; Astrocytes in post-traumatic stress disorder. Neurosci Bull 2022,38(8),953-965
doi: 10.1007/s12264-022-00845-6 pubmed: 35349095
Van Praag H.M.; Asnis G.M.; Kahn R.S.; Brown S.L.; Korn M.; Friedman J.M.H.; Wetzler S.; Monoamines and abnormal behaviour. A multi-aminergic perspective. Br J Psychiatry 1990,157(5),723-734
doi: 10.1192/bjp.157.5.723 pubmed: 1980627
Li C.T.; Yang K.C.; Lin W.C.; Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: Evidence from clinical neuroimaging studies. Front Psychiatry 2019,9,767
doi: 10.3389/fpsyt.2018.00767 pubmed: 30733690
Tay T.L.; Béchade C.; D’Andrea I.; St-Pierre M.K.; Henry M.S.; Roumier A.; Tremblay M.E.; Microglia gone rogue: Impacts on psychiatric disorders across the lifespan. Front Mol Neurosci 2018,10,421
doi: 10.3389/fnmol.2017.00421 pubmed: 29354029
Chong P.L.H.; Garic D.; Shen M.D.; Lundgaard I.; Schwichtenberg A.J.; Sleep, cerebrospinal fluid, and the glymphatic system: A systematic review. Sleep Med Rev 2022,61,101572
doi: 10.1016/j.smrv.2021.101572 pubmed: 34902819
Mestre H.; Hablitz L.M.; Xavier A.L.R.; Feng W.; Zou W.; Pu T.; Monai H.; Murlidharan G.; Castellanos Rivera R.M.; Simon M.J.; Pike M.M.; Plá V.; Du T.; Kress B.T.; Wang X.; Plog B.A.; Thrane A.S.; Lundgaard I.; Abe Y.; Yasui M.; Thomas J.H.; Xiao M.; Hirase H.; Asokan A.; Iliff J.J.; Nedergaard M.; Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 2018,7,e40070
doi: 10.7554/eLife.40070 pubmed: 30561329
Peng S.; Liu J.; Liang C.; Yang L.; Wang G.; Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol Dis 2023,179,106035
doi: 10.1016/j.nbd.2023.106035 pubmed: 36796590
Taoka T.; Ito R.; Nakamichi R.; Kamagata K.; Sakai M.; Kawai H.; Nakane T.; Abe T.; Ichikawa K.; Kikuta J.; Aoki S.; Naganawa S.; Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study. Jpn J Radiol 2022,40(2),147-158
doi: 10.1007/s11604-021-01187-5 pubmed: 34390452
Walz R.; Diaz A.; Martins E.T.; Rufino A.; Amante L.N.; Thais M.E.; Quevedo J.; Hohl A.; Linhares M.N.; Walz R.; Psychiatric disorders and traumatic brain injury. Neuropsychiatr Dis Treat 2008,4(4),797-816
doi: 10.2147/NDT.S2653 pubmed: 19043523
Bryant R.A.; O’Donnell M.L.; Creamer M.; McFarlane A.C.; Clark C.R.; Silove D.; The psychiatric sequelae of traumatic injury. Am J Psychiatry 2010,167(3),312-320
doi: 10.1176/appi.ajp.2009.09050617 pubmed: 20048022
Richmond-Rakerd L.S.; D’Souza S.; Milne B.J.; Caspi A.; Moffitt T.E.; Longitudinal associations of mental disorders with dementia. JAMA Psychiat 2022,79(4),333-340
doi: 10.1001/jamapsychiatry.2021.4377 pubmed: 35171209
Pancheri C.; Verdolini N.; Pacchiarotti I.; Samalin L.; Delle Chiaie R.; Biondi M.; Carvalho A.F.; Valdes M.; Ritter P.; Vieta E.; Murru A.; A systematic review on sleep alterations anticipating the onset of bipolar disorder. Eur Psychiatry 2019,58,45-53
doi: 10.1016/j.eurpsy.2019.02.003 pubmed: 30818134
Ritter P.S.; Höfler M.; Wittchen H.U.; Lieb R.; Bauer M.; Pfennig A.; Beesdo-Baum K.; Disturbed sleep as risk factor for the subsequent onset of bipolar disorder: Data from a 10-year prospective-longitudinal study among adolescents and young adults. J Psychiatr Res 2015,68,76-82
doi: 10.1016/j.jpsychires.2015.06.005 pubmed: 26228404
Bersani F.S.; Iannitelli A.; Pacitti F.; Bersani G.; Sleep and biorythm disturbances in schizophrenia, mood and anxiety disorders: A review. Riv Psichiatr 2012,47(5),365-375
doi: 10.1708/1175.13027 pubmed: 23160047
Yan T.; Qiu Y.; Yu X.; Yang L.; Glymphatic dysfunction: A bridge between sleep disturbance and mood disorders. Front Psychiatry 2021,12,658340
doi: 10.3389/fpsyt.2021.658340 pubmed: 34025481
Jorm A.F.; History of depression as a risk factor for dementia: An updated review. Aust N Z J Psychiatry 2001,35(6),776-781
doi: 10.1046/j.1440-1614.2001.00967.x pubmed: 11990888
Medina A.; Watson S.J.; Bunney W.; Myers R.M.; Schatzberg A.; Barchas J.; Akil H.; Thompson R.C.; Evidence for alterations of the glial syncytial function in major depressive disorder. J Psychiatr Res 2016,72,15-21
doi: 10.1016/j.jpsychires.2015.10.010 pubmed: 26519765
Iwamoto K.; Kakiuchi C.; Bundo M.; Ikeda K.; Kato T.; Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry 2004,9(4),406-416
doi: 10.1038/sj.mp.4001437 pubmed: 14743183
Althubaity N.; Schubert J.; Martins D.; Yousaf T.; Nettis M.A.; Mondelli V.; Pariante C.; Harrison N.A.; Bullmore E.T.; Dima D.; Turkheimer F.E.; Veronese M.; Choroid plexus enlargement is associated with neuroinflammation and reduction of blood brain barrier permeability in depression. Neuroimage Clin 2022,33,102926
doi: 10.1016/j.nicl.2021.102926 pubmed: 34972034
Bernard R.; Kerman I.A.; Thompson R.C.; Jones E.G.; Bunney W.E.; Barchas J.D.; Schatzberg A.F.; Myers R.M.; Akil H.; Watson S.J.; Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 2011,16(6),634-646
doi: 10.1038/mp.2010.44 pubmed: 20386568
Gos T.; Schroeter M.L.; Lessel W.; Bernstein H.G.; Dobrowolny H.; Schiltz K.; Bogerts B.; Steiner J.; S100B-immunopositive astrocytes and oligodendrocytes in the hippocampus are differentially afflicted in unipolar and bipolar depression: A postmortem study. J Psychiatr Res 2013,47(11),1694-1699
doi: 10.1016/j.jpsychires.2013.07.005 pubmed: 23896207
Michel M.; Fiebich B.L.; Kuzior H.; Meixensberger S.; Berger B.; Maier S.; Nickel K.; Runge K.; Denzel D.; Pankratz B.; Schiele M.A.; Domschke K.; van Elst L.T.; Endres D.; Increased GFAP concentrations in the cerebrospinal fluid of patients with unipolar depression. Transl Psychiatry 2021,11(1),308
doi: 10.1038/s41398-021-01423-6 pubmed: 34021122
Liao Y.; Xie B.; Zhang H.; He Q.; Guo L.; Subramanieapillai M.; Fan B.; Lu C.; McIntyre R.S.; Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl Psychiatry 2019,9(1),190
doi: 10.1038/s41398-019-0515-5 pubmed: 31383846
Genel O.; Pariante C.M.; Borsini A.; The role of AQP4 in the pathogenesis of depression, and possible related mechanisms. Brain Behav Immun 2021,98,366-377
doi: 10.1016/j.bbi.2021.08.232 pubmed: 34474133
Zhou X.; Xiao Q.; Xie L.; Yang F.; Wang L.; Tu J.; Astrocyte, a promising target for mood disorder interventions. Front Mol Neurosci 2019,12,136
doi: 10.3389/fnmol.2019.00136 pubmed: 31231189
Kim Y.K.; Jeon S.W.; Neuroinflammation and the immune-kynurenine pathway in anxiety disorders. Curr Neuropharmacol 2018,16(5),574-582
doi: 10.2174/1570159X15666170913110426 pubmed: 28901278
Steiner J.; Bielau H.; Bernstein H-G.; Bogerts B.; Wunderlich M.T.; Increased cerebrospinal fluid and serum levels of S100B in first-onset schizophrenia are not related to a degenerative release of glial fibrillar acidic protein, myelin basic protein and neurone-specific enolase from glia or neurones. J Neurol Neurosurg Psychiatry 2006,77(11),1284-1287
doi: 10.1136/jnnp.2006.093427 pubmed: 17043297
Tarasov V.V.; Svistunov A.A.; Chubarev V.N.; Sologova S.S.; Mukhortova P.; Levushkin D.; Somasundaram S.G.; Kirkland C.E.; Bachurin S.O.; Aliev G.; Alterations of astrocytes in the context of schizophrenic dementia. Front Pharmacol 2020,10,1612
doi: 10.3389/fphar.2019.01612 pubmed: 32116664
Hubbard J.A.; Hsu M.S.; Seldin M.M.; Binder D.K.; Expression of the astrocyte water channel aquaporin-4 in the mouse brain. ASN Neuro 2015,7(5),1759091415605486
doi: 10.1177/1759091415605486 pubmed: 26489685
Periyasamy P.; Guo M.L.; Buch S.; Cocaine induces astrocytosis through ER stress-mediated activation of autophagy. Autophagy 2016,12(8),1310-1329
doi: 10.1080/15548627.2016.1183844 pubmed: 27337297
Miguel-Hidalgo J.J.; Molecular neuropathology of astrocytes and oligodendrocytes in alcohol use disorders. Front Mol Neurosci 2018,11,78
doi: 10.3389/fnmol.2018.00078 pubmed: 29615864
Shen M.D.; Nordahl C.W.; Li D.D.; Lee A.; Angkustsiri K.; Emerson R.W.; Rogers S.J.; Ozonoff S.; Amaral D.G.; Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2-4 years: A case-control study. Lancet Psychiatry 2018,5(11),895-904
doi: 10.1016/S2215-0366(18)30294-3 pubmed: 30270033
Fatemi S.H.; Folsom T.D.; Reutiman T.J.; Lee S.; Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse 2008,62(7),501-507
doi: 10.1002/syn.20519 pubmed: 18435417
Hendrickson R.C.; Raskind M.A.; Millard S.P.; Sikkema C.; Terry G.E.; Pagulayan K.F.; Li G.; Peskind E.R.; Evidence for altered brain reactivity to norepinephrine in Veterans with a history of traumatic stress. Neurobiol Stress 2018,8,103-111
doi: 10.1016/j.ynstr.2018.03.001 pubmed: 29888305
Arent C.O.; Valvassori S.S.; Steckert A.V.; Resende W.R.; Dal-Pont G.C.; Lopes-Borges J.; Amboni R.T.; Bianchini G.; Quevedo J.; The effects of n-acetylcysteine and/or deferoxamine on manic-like behavior and brain oxidative damage in mice submitted to the paradoxal sleep deprivation model of mania. J Psychiatr Res 2015,65,71-79
doi: 10.1016/j.jpsychires.2015.04.011 pubmed: 25937502
Benedetti F.; Fresi F.; MacCioni P.; Smeraldi E.; Behavioural sensitization to repeated sleep deprivation in a mice model of mania. Behav Brain Res 2008,187(2),221-227
doi: 10.1016/j.bbr.2007.09.012 pubmed: 17950929
da Rosa M.I.; Simon C.; Grande A.J.; Barichello T.; Oses J.P.; Quevedo J.; Serum S100B in manic bipolar disorder patients: Systematic review and meta-analysis. J Affect Disord 2016,206,210-215
doi: 10.1016/j.jad.2016.07.030 pubmed: 27475892
Chen Y.; Wang M.; Su S.; The structural and fuctional changes of glymphatic system in children with attention-deficit/hyperactivity disorder. Res Square 2022
doi: 10.21203/rs.3.rs-1922962/v1
Abdolizadeh A.; Carmona E.T.; Ueno F.; Nakajima S.; Tarumi R.; Tsugawa S.; Honda S.; Matsushita K.; Caravaggio F.; Song J.; Chavez S.; Noda Y.; Uchida H.; Remington G.; Gerretsen P.; Graff-Guerrero Ariel P548; Glymphatic system in schizophrenia: An H-MRS high-molecular-weight macromolecules study. Biolog Psychiat 2022,91(9),S310-S311
doi: 10.1016/j.biopsych.2022.02.785

Auteurs

Tommaso Barlattani (T)

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy.

Paolo Grandinetti (P)

National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy.

Alexsander Di Cintio (AD)

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy.

Alessio Montemagno (A)

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy.

Roberta Testa (R)

National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy.

Chiara D'Amelio (C)

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy.

Luigi Olivieri (L)

National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy.

Carmine Tomasetti (C)

National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy.

Alessandro Rossi (A)

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy.

Francesca Pacitti (F)

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy.

Domenico De Berardis (D)

National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH