Prevalence and motor-functional correlates of frontotemporal-spectrum disorders in a large cohort of non-demented ALS patients.

Amyotrophic lateral sclerosis Epidemiology Frontotemporal degeneration Neuropsychology

Journal

Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161

Informations de publication

Date de publication:
05 Sep 2024
Historique:
received: 28 07 2024
accepted: 20 08 2024
revised: 20 08 2024
medline: 5 9 2024
pubmed: 5 9 2024
entrez: 5 9 2024
Statut: aheadofprint

Résumé

This study aimed at (1) delivering generalizable estimates of the prevalence of frontotemporal-spectrum disorders (FTSDs) in non-demented ALS patients and (2) exploring their motor-functional correlates. N = 808 ALS patients without FTD were assessed for motor-functional outcomes-i.e., disease duration, severity (ALSFRS-R), progression rate (ΔFS), and stage (King's and Milano-Torino-MiToS-systems)-cognition-via the cognitive section of the Edinburgh Cognitive and Behavioural ALS Screen (ECAS)-and behaviour-via the ECAS-Carer Interview. Neuropsychological phenotypes were retrieved via Strong's revised criteria-i.e., ALS cognitively and behaviourally normal (ALScbn) or cognitively and/or behaviourally impaired (ALSci/bi/cbi). Defective ECAS-Total performances were detected in ~ 29% of patients, with the ECAS-Executive being failed by the highest number of patients (~ 30%), followed by the ECAS-Language, -Fluency, and -Memory (~ 15-17%) and -Visuospatial (~ %8). Apathy was the most frequent behavioural change (~ 28%), followed by loss of sympathy/empathy (~ 13%); remaining symptoms were reported in < 4% of patients. The distribution of Strong's classifications was as follows: ALScbn: 46.7%; ALSci/bi/cbi: 22.9%/20.0%/10.4%. Multinomial regressions on Strong's classifications revealed that lower ALSFRS-R scores were associated with a higher probability of ALSbi and ALScbi classifications (p ≤ .008). Higher King's and MiToS stages were associated with a higher probability of ALSbi classification (p ≤ .031). FTSDs affect ~ 50% of non-demented ALS patients, with cognitive deficits being as frequent as behavioural changes. A higher degree of motor-functional involvement is associated with worse behavioural outcomes-with this link being weaker for cognitive deficits.

Sections du résumé

BACKGROUND BACKGROUND
This study aimed at (1) delivering generalizable estimates of the prevalence of frontotemporal-spectrum disorders (FTSDs) in non-demented ALS patients and (2) exploring their motor-functional correlates.
METHODS METHODS
N = 808 ALS patients without FTD were assessed for motor-functional outcomes-i.e., disease duration, severity (ALSFRS-R), progression rate (ΔFS), and stage (King's and Milano-Torino-MiToS-systems)-cognition-via the cognitive section of the Edinburgh Cognitive and Behavioural ALS Screen (ECAS)-and behaviour-via the ECAS-Carer Interview. Neuropsychological phenotypes were retrieved via Strong's revised criteria-i.e., ALS cognitively and behaviourally normal (ALScbn) or cognitively and/or behaviourally impaired (ALSci/bi/cbi).
RESULTS RESULTS
Defective ECAS-Total performances were detected in ~ 29% of patients, with the ECAS-Executive being failed by the highest number of patients (~ 30%), followed by the ECAS-Language, -Fluency, and -Memory (~ 15-17%) and -Visuospatial (~ %8). Apathy was the most frequent behavioural change (~ 28%), followed by loss of sympathy/empathy (~ 13%); remaining symptoms were reported in < 4% of patients. The distribution of Strong's classifications was as follows: ALScbn: 46.7%; ALSci/bi/cbi: 22.9%/20.0%/10.4%. Multinomial regressions on Strong's classifications revealed that lower ALSFRS-R scores were associated with a higher probability of ALSbi and ALScbi classifications (p ≤ .008). Higher King's and MiToS stages were associated with a higher probability of ALSbi classification (p ≤ .031).
CONCLUSIONS CONCLUSIONS
FTSDs affect ~ 50% of non-demented ALS patients, with cognitive deficits being as frequent as behavioural changes. A higher degree of motor-functional involvement is associated with worse behavioural outcomes-with this link being weaker for cognitive deficits.

Identifiants

pubmed: 39235524
doi: 10.1007/s00415-024-12658-w
pii: 10.1007/s00415-024-12658-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abrahams S (2023) Neuropsychological impairment in amyotrophic lateral sclerosis–frontotemporal-spectrum disorder. Nat Rev Neurol 19:655–667
pubmed: 37828358 doi: 10.1038/s41582-023-00878-z
Strong MJ, Abrahams S, Goldstein LH et al (2017) Amyotrophic lateral sclerosis-frontotemporal-spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 18:153–174
pubmed: 28054827 pmcid: 7409990 doi: 10.1080/21678421.2016.1267768
Raaphorst J, De Visser M, Linssen WH, De Haan RJ, Schmand B (2010) The cognitive profile of amyotrophic lateral sclerosis: a meta-analysis. Amyotroph Lateral Scler 11:27–37
pubmed: 19180349 doi: 10.3109/17482960802645008
Beeldman E, Raaphorst J, Twennaar MK, de Visser M, Schmand BA, de Haan RJ (2016) The cognitive profile of ALS: a systematic review and meta-analysis update. J Neurol Neurosurg Psychiatry 87:611–619
pubmed: 26283685 doi: 10.1136/jnnp-2015-310734
Finsel J, Uttner I, Vázquez Medrano CR, Ludolph AC, Lulé D (2023) Cognition in the course of ALS—a meta-analysis. Amyotroph Lateral Scler Frontotemporal Degener 24:2–13
pubmed: 35866707 doi: 10.1080/21678421.2022.2101379
Raaphorst J, Beeldman E, De Visser M, De Haan RJ, Schmand B (2012) A systematic review of behavioural changes in motor neuron disease. Amyotroph Lateral Scler 13:493–501
pubmed: 22424127 doi: 10.3109/17482968.2012.656652
Kutlubaev MA, Caga J, Xu Y, Areprintseva DK, Pervushina EV, Kiernan MC (2023) Apathy in amyotrophic lateral sclerosis: systematic review and meta-analysis of frequency, correlates, and outcomes. Amyotroph Lateral Scler Frontotemporal Degener 24:14–23
pubmed: 35352575 doi: 10.1080/21678421.2022.2053721
Gosselt IK, Nijboer TC, Van Es MA (2020) An overview of screening instruments for cognition and behaviour in patients with ALS: selecting the appropriate tool for clinical practice. Amyotroph Lateral Scler Frontotemporal Degener 21:324–336
pubmed: 32157912 doi: 10.1080/21678421.2020.1732424
Abrahams S, Newton J, Niven E, Foley J, Bak TH (2014) Screening for cognition and behaviour changes in ALS. Amyotroph Lateral Scler Frontotemporal Degener 15:9–14
pubmed: 23781974 doi: 10.3109/21678421.2013.805784
Chiò A, Moglia C, Canosa A, Manera U, Vasta R, Brunetti M et al (2019) Cognitive impairment across ALS clinical stages in a population-based cohort. Neurology 93(10):e984–e994
pubmed: 31409738 pmcid: 6745732 doi: 10.1212/WNL.0000000000008063
Al-Chalabi A, Hardiman O, Kiernan MC, Chiò A, Rix-Brooks B, van den Berg LH (2016) Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol 15:1182–1194
pubmed: 27647646 doi: 10.1016/S1474-4422(16)30199-5
Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477
pubmed: 21810890 pmcid: 3170532 doi: 10.1093/brain/awr179
Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014
pubmed: 21325651 pmcid: 3059138 doi: 10.1212/WNL.0b013e31821103e6
Poletti B, Solca F, Carelli L et al (2016) The validation of the Italian Edinburgh cognitive and behavioural ALS screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener 17:489–498
pubmed: 27219526 doi: 10.1080/21678421.2016.1183679
Poletti B, Aiello EN, Solca F et al (2023) Diagnostic properties of the Italian ECAS-Carer Interview (ECAS-CI). Neurol Sci 44:941–946
pubmed: 36417015 doi: 10.1007/s10072-022-06505-x
Serian A, Finsel J, Ludolph AC, Uttner I, Lulé D (2024) Screening instruments of cognition: The relation of the mini-mental state examination to the Edinburgh cognitive and behavioural ALS screen in amyotrophic lateral sclerosis. PLoS ONE 19:e0304593
pubmed: 38900757 pmcid: 11189171 doi: 10.1371/journal.pone.0304593
Perneczky R, Wagenpfeil S, Komossa K, Grimmer T, Diehl J, Kurz A (2006) Mapping scores onto stages: mini-mental state examination and clinical dementia rating. Am J Geriatr Psychiatry 14:139–144
pubmed: 16473978 doi: 10.1097/01.JGP.0000192478.82189.a8
Poletti B, Aiello EN, La Tona A, et al. Single task-level, 2SD-based cutoffs for the Italian version of the Edinburgh Cognitive and Behavioral ALS screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener. 2023:1–4.
Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci 169:13–21
pubmed: 10540002 doi: 10.1016/S0022-510X(99)00210-5
Kimura FC, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H et al (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 66:265–267
pubmed: 16434671 doi: 10.1212/01.wnl.0000194316.91908.8a
Roche JC, Rojas-Garcia R, Scott KM, Scotton W, Ellis CE, Burman R et al (2012) A proposed staging system for amyotrophic lateral sclerosis. Brain 135:847–852
pubmed: 22271664 pmcid: 3286327 doi: 10.1093/brain/awr351
Chiò A, Hammond ER, Mora G, Bonito V, Filippini G (2015) Development and evaluation of a clinical staging system for amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 86:38–44
pubmed: 24336810 doi: 10.1136/jnnp-2013-306589
Balendra R, Al Khleifat A, Fang T, Al-Chalabi A (2019) A standard operating procedure for King’s ALS clinical staging. Amyotroph Lateral Scler Frontotemporal Degener 20:159–164
pubmed: 30773950 pmcid: 6558284 doi: 10.1080/21678421.2018.1556696
Ghaderi S, Fatehi F, Kalra S, Batouli SA (2023) MRI biomarkers for memory-related impairment in amyotrophic lateral sclerosis: a systematic review. Amyotroph Lateral Scler Frontotemporal Degener 24:572–588
doi: 10.1080/21678421.2023.2236651
Crockford C, Newton J, Lonergan K, Chiwera T, Booth T, Chandran S et al (2018) ALS-specific cognitive and behaviour changes associated with advancing disease stage in ALS. Neurology 91:e1370–e1380
pubmed: 30209236 pmcid: 6177274 doi: 10.1212/WNL.0000000000006317
McHutchison CA, Wuu J, McMillan CT, Rademakers R, Statland J, Wu G et al (2024) Temporal course of cognitive and behavioural changes in motor neuron diseases. J Neurol Neurosurg Psychiatry 95(4):316–324
pubmed: 37827570
Elamin M, Bede P, Byrne S, Jordan N, Gallagher L, Wynne B et al (2013) Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology 80:1590–1597
pubmed: 23553481 doi: 10.1212/WNL.0b013e31828f18ac
Aiello EN, Pain D, Radici A, Aktipi KM, Sideri R, Appollonio I, Mora G (2022) Cognition and motor phenotypes in ALS: a retrospective study. Neurol Sci 43:5397–5402
pubmed: 35608739 pmcid: 9385798 doi: 10.1007/s10072-022-06157-x
Bersano E, Sarnelli MF, Solara V, Iazzolino B, Peotta L, De Marchi F et al (2020) Decline of cognitive and behavioral functions in amyotrophic lateral sclerosis: a longitudinal study. Amyotroph Lateral Scler Frontotemporal Degener 21:373–379
pubmed: 32484726 doi: 10.1080/21678421.2020.1771732
Canosa A, Moglia C, Manera U, Vasta R, Torrieri MC, Arena V et al (2021) Metabolic brain changes across different levels of cognitive impairment in ALS: a 18F-FDG-PET study. J Neurol, Neurosurg Psychiatry 92:357–363
doi: 10.1136/jnnp-2020-323876
Bock M, Duong YN, Kim A, Allen I, Murphy J, Lomen-Hoerth C (2017) Progression and effect of cognitive-behavioral changes in patients with amyotrophic lateral sclerosis. Neurol Clin Pract 7:488–498
pubmed: 29431172 pmcid: 5800712 doi: 10.1212/CPJ.0000000000000397
Ye S, Jin P, Chen L, Zhang N, Fan D (2021) Prognosis of amyotrophic lateral sclerosis with cognitive and behavioural changes based on a sixty-month longitudinal follow-up. PLoS ONE 16:e0253279
pubmed: 34379621 pmcid: 8357115 doi: 10.1371/journal.pone.0253279
Poletti B, Solca F, Carelli L, Faini A, Madotto F, Lafronza A et al (2018) Cognitive-behavioral longitudinal assessment in ALS: the Italian Edinburgh Cognitive and Behavioral ALS screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener 19:387–395
pubmed: 29804470 doi: 10.1080/21678421.2018.1473443
Aiello EN, Iazzolino B, Pain D, Peotta L, Palumbo F, Radici A et al (2022) The diagnostic value of the Italian version of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener 23:527–531
pubmed: 35311435 doi: 10.1080/21678421.2022.2051552
Aiello EN, Solca F, Torre S, Carelli L, Monti A, Ferrucci R et al (2023) Reliable change indices for the Italian Edinburgh cognitive and behavioral ALS screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener 24:339–342
pubmed: 36286187 doi: 10.1080/21678421.2022.2134801
McMillan CT, Wuu J, Rascovsky K, Cosentino S, Grossman M, Elman L et al (2022) Defining cognitive impairment in amyotrophic lateral sclerosis: an evaluation of empirical approaches. Amyotroph Lateral Scler Frontotemporal Degener 23:517–526
pubmed: 35253557 pmcid: 9448823 doi: 10.1080/21678421.2022.2039713
Carelli L, Solca F, Faini A, Madotto F, Lafronza A, Monti A et al (2018) The complex interplay between depression/anxiety and executive functioning: insights from the ECAS in a large ALS population. Front Psychol 9:450
pubmed: 29674987 pmcid: 5895754 doi: 10.3389/fpsyg.2018.00450
Siciliano M, Trojano L, Trojsi F, Monsurro MR, Tedeschi G, Santangelo G (2019) Assessing anxiety and its correlates in amyotrophic lateral sclerosis: The state-trait anxiety inventory. Muscle Nerve 60:47–55
pubmed: 30897219 doi: 10.1002/mus.26475
Mioshi E, Lillo P, Kiernan M, Hodges J (2012) Activities of daily living in motor neuron disease: role of behavioural and motor changes. J Clin Neurosci 19:552–556
pubmed: 22249015 doi: 10.1016/j.jocn.2011.07.042
Aiello EN, Solca F, Torre S, Gentile F, Scheveger F, Olivero M et al (2024) Frontotemporal-spectrum disorders and functional independence in non-demented ALS patients. Neurol Sci 45:1087–1095
pubmed: 37773576 doi: 10.1007/s10072-023-07074-3
Shah JS, Pedraza O, Festic E, Oskarsson B (2021) The relationship between ventilatory function and cognitive and behavioral impairment in ALS. Amyotroph Lateral Scler Frontotemporal Degener 22:62–67
pubmed: 34348534 doi: 10.1080/21678421.2021.1924206
Maranzano A, Verde F, Colombo E, Poletti B, Doretti A, Bonetti R et al (2023) Regional spreading pattern is associated with clinical phenotype in amyotrophic lateral sclerosis. Brain 146:4105–4116
pubmed: 37075222 pmcid: 10545526 doi: 10.1093/brain/awad129
Maranzano A, Poletti B, Solca F, Torre S, Colombo E, Faré M et al (2022) Upper motor neuron dysfunction is associated with the presence of behavioural impairment in patients with amyotrophic lateral sclerosis. Eur J Neurol 29:1402–1409
pubmed: 34989063 doi: 10.1111/ene.15243
Aiello EN, Solca F, Torre S, Patisso V, De Lorenzo A, Treddenti M, et al. Bulbar involvement and cognitive features in amyotrophic lateral sclerosis: a retrospective study on 347 patients. Front Aging Neurosci. 2023;15.
Yang T, Hou Y, Li C, Cao B, Cheng Y, Wei Q, Zhang L et al (2021) Risk factors for cognitive impairment in amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 92:688–693
pubmed: 33563800 doi: 10.1136/jnnp-2020-325701
Moglia C, Calvo A, Canosa A, Manera U, Vasta R, Di Pede F et al (2024) Cognitive and behavioral features of patients with Amyotrophic lateral sclerosis who are carriers of the TARDBP pathogenic variant. Neurology 102:e208082
pubmed: 38261982 pmcid: 10962913 doi: 10.1212/WNL.0000000000208082
Dalla Bella E, Bersano E, Bruzzone MG, Gellera C, Pensato V, Lauria G et al (2022) Behavioral and cognitive phenotypes of patients with amyotrophic lateral sclerosis carrying SOD1 variants. Neurology 99:e2052–e2062
pubmed: 35985819 pmcid: 9651465 doi: 10.1212/WNL.0000000000201044
Calvo A, Moglia C, Canosa A, Manera U, Vasta R, Grassano M et al (2024) High Frequency of Cognitive and Behavioral Impairment in Amyotrophic Lateral Sclerosis Patients with SOD1 Pathogenic Variants. Ann Neurol 96:150–158
pubmed: 38568044 doi: 10.1002/ana.26928

Auteurs

Barbara Poletti (B)

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy. b.poletti@auxologico.it.
Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, Milan, Italy. b.poletti@auxologico.it.

Edoardo Nicolò Aiello (EN)

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Monica Consonni (M)

3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Barbara Iazzolino (B)

"Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy.

Silvia Torre (S)

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Federica Solca (F)

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Veronica Faltracco (V)

3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Alessandra Telesca (A)

Neuroalgology Unit, Department of Clinical Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
Neurointensive Care Unit, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Francesca Palumbo (F)

"Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy.

Eleonora Dalla Bella (E)

3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Enrica Bersano (E)

3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.

Nilo Riva (N)

3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Federico Verde (F)

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.
Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy.

Stefano Messina (S)

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Alberto Doretti (A)

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Alessio Maranzano (A)

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Claudia Morelli (C)

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Andrea Calvo (A)

"Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy.
Neurology 1, City of Health and Science University Hospital of Turin, Turin, Italy.

Vincenzo Silani (V)

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.
Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy.

Giuseppe Lauria (G)

3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.

Adriano Chiò (A)

"Rita Levi Montalcini" Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Turin, Turin, Italy.
Neurology 1, City of Health and Science University Hospital of Turin, Turin, Italy.
Institute of Cognitive Science and Technologies, National Research Council, Rome, Italy.

Nicola Ticozzi (N)

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.
Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy.

Classifications MeSH