Mild Blast Exposure Dysregulates Metabolic Pathways and Correlation Networking as Evident from LC-MS-Based Plasma Profiling.

Blast-induced neurotrauma (BINT) LC–MS Metabolomics Multiomics Pathway Traumatic brain injury (TBI)

Journal

Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963

Informations de publication

Date de publication:
05 Sep 2024
Historique:
received: 18 01 2024
accepted: 08 08 2024
medline: 5 9 2024
pubmed: 5 9 2024
entrez: 5 9 2024
Statut: aheadofprint

Résumé

Blast-induced trauma is emerging as a serious threat due to its wide pathophysiology where not only the brain but also a spectrum of organs is being affected. In the present study, we aim to identify the plasma-based metabolic dysregulations along with the associated temporal changes at 5-6 h, day 1 and day 7 post-injury in a preclinical animal model for blast exposure, through liquid chromatography-mass spectrometry (LC-MS). Using significantly advanced metabolomic and statistical bioinformatic platforms, we were able to elucidate better and unravel the complex networks of blast-induced neurotrauma (BINT) and its interlinked systemic effects. Significant changes were evident at 5-6 h with maximal changes at day 1. Temporal analysis also depicted progressive changes which continued till day 7. Significant associations of metabolic markers belonging to the class of amino acids, energy-related molecules, lipids, vitamin, hormone, phenolic acid, keto and histidine derivatives, nucleic acid molecules, uremic toxins, and uronic acids were observed. Also, the present study is the first of its kind where comprehensive, detailed pathway dysregulations of amino acid metabolism and biosynthesis, perturbed nucleotides, lipid peroxidation, and nucleic acid damage followed by correlation networking and multiomics networking were explored on preclinical animal models exposed to mild blast trauma. In addition, markers for systemic changes (renal dysfunction) were also observed. Global pathway predictions of unannotated peaks also presented important insights into BINT pathophysiology. Conclusively, the present study depicts important findings that might help underpin the biological mechanisms of blast-induced brain or systemic trauma.

Identifiants

pubmed: 39235645
doi: 10.1007/s12035-024-04429-5
pii: 10.1007/s12035-024-04429-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Department of Health Research, India
ID : (DHR)-YSF/DHR/12014/54/2020
Organisme : University Grants Commission
ID : UGC Grant
Organisme : University Grants Commission
ID : UGC Grant
Organisme : Council of Scientific and Industrial Research, India
ID : CSIR-Grant
Organisme : Defence R&D Organization (DRDO), Ministry of Defence, India
ID : INM3 24
Organisme : Defence R&D Organization (DRDO), Ministry of Defence, India
ID : INM3 24
Organisme : Defence R&D Organization (DRDO), Ministry of Defence, India
ID : INM3 24
Organisme : Defence R&D Organization (DRDO), Ministry of Defence, India
ID : INM3 24

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Chandra N, Sundaramurthy A (2015) Acute pathophysiology of blast injury—from biomechanics to experiments and computations: implications on head and polytrauma. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press/Taylor & Francis, Boca Raton (FL), pp 199–258
Cernak I, Noble-Haeusslein LJ (2010) Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 30:255–266. https://doi.org/10.1038/jcbfm.2009.203
doi: 10.1038/jcbfm.2009.203 pubmed: 19809467
McDonald SJ, Sharkey JM, Sun M et al (2020) Beyond the brain: peripheral interactions after traumatic brain injury. J Neurotrauma 37:770–781. https://doi.org/10.1089/neu.2019.6885
doi: 10.1089/neu.2019.6885 pubmed: 32041478
Kraus MF, Susmaras T, Caughlin BP et al (2007) White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain 130:2508–2519. https://doi.org/10.1093/brain/awm216
doi: 10.1093/brain/awm216 pubmed: 17872928
Okie S (2005) Traumatic brain injury in the war zone. N Engl J Med 352:2043–2047. https://doi.org/10.1056/NEJMp058102
doi: 10.1056/NEJMp058102 pubmed: 15901856
Alexander MP (1995) Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology 45:1253–1260. https://doi.org/10.1212/wnl.45.7.1253
doi: 10.1212/wnl.45.7.1253 pubmed: 7617178
Zheng F, Zhou Y-T, Feng D-D et al (2020) Metabolomics analysis of the hippocampus in a rat model of traumatic brain injury during the acute phase. Brain Behav 10:e01520. https://doi.org/10.1002/brb3.1520
doi: 10.1002/brb3.1520 pubmed: 31908160
Posti JP, Dickens AM, Orešič M et al (2017) Metabolomics profiling as a diagnostic tool in severe traumatic brain injury. Front Neurol 8:398. https://doi.org/10.3389/fneur.2017.00398
doi: 10.3389/fneur.2017.00398 pubmed: 28868043 pmcid: 5563327
Young B, Ott L, Phillips R, McClain C (1991) Metabolic management of the patient with head injury. Neurosurg Clin N Am 2:301–320
doi: 10.1016/S1042-3680(18)30737-X pubmed: 1821743
Banoei MM, Casault C, Metwaly SM, Winston BW (2018) Metabolomics and biomarker discovery in traumatic brain injury. J Neurotrauma 35:1831–1848. https://doi.org/10.1089/neu.2017.5326
doi: 10.1089/neu.2017.5326 pubmed: 29587568
Wolf SJ, Bebarta VS, Bonnett CJ et al (2009) Blast injuries. Lancet 374:405–415. https://doi.org/10.1016/S0140-6736(09)60257-9
doi: 10.1016/S0140-6736(09)60257-9 pubmed: 19631372
Chen Y, Huang W, Constantini S (2013) Concepts and strategies for clinical management of blast-induced traumatic brain injury and posttraumatic stress disorder. J Neuropsychiatry Clin Neurosci 25:103–110. https://doi.org/10.1176/appi.neuropsych.12030058
doi: 10.1176/appi.neuropsych.12030058 pubmed: 23686026
Rodriguez UA, Zeng Y, Deyo D et al (2018) Effects of mild blast traumatic brain injury on cerebral vascular, histopathological, and behavioral outcomes in rats. J Neurotrauma 35:375–392. https://doi.org/10.1089/neu.2017.5256
doi: 10.1089/neu.2017.5256 pubmed: 29160141 pmcid: 5784797
Badea A, Kamnaksh A, Anderson RJ et al (2018) Repeated mild blast exposure in young adult rats results in dynamic and persistent microstructural changes in the brain. Neuroimage Clin 18:60–73. https://doi.org/10.1016/j.nicl.2018.01.007
doi: 10.1016/j.nicl.2018.01.007 pubmed: 29868442 pmcid: 5984602
Mishra V, Skotak M, Schuetz H et al (2016) Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: experimental rat injury model. Sci Rep 6:26992. https://doi.org/10.1038/srep26992
doi: 10.1038/srep26992 pubmed: 27270403 pmcid: 4895217
Thomas I, Dickens AM, Posti JP et al (2022) Serum metabolome associated with severity of acute traumatic brain injury. Nat Commun 13:2545. https://doi.org/10.1038/s41467-022-30227-5
doi: 10.1038/s41467-022-30227-5 pubmed: 35538079 pmcid: 9090763
Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17:451–459. https://doi.org/10.1038/nrm.2016.25
doi: 10.1038/nrm.2016.25 pubmed: 26979502 pmcid: 5729912
Kamnaksh A, Kovesdi E, Kwon S-K et al (2011) Factors affecting blast traumatic brain injury. J Neurotrauma 28:2145–2153. https://doi.org/10.1089/neu.2011.1983
doi: 10.1089/neu.2011.1983 pubmed: 21861635
Kuriakose M, Younger D, Ravula AR et al (2019) Synergistic role of oxidative stress and blood-brain barrier permeability as injury mechanisms in the acute pathophysiology of blast-induced neurotrauma. Sci Rep 9:7717. https://doi.org/10.1038/s41598-019-44147-w
doi: 10.1038/s41598-019-44147-w pubmed: 31118451 pmcid: 6531444
Greene NM (1972) Metabolic effects of anesthetics. In: Chenoweth MB (ed) Modern inhalation anesthetics. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 271–287
doi: 10.1007/978-3-642-65055-0_11
Baranovicova E, Kalenska D, Tomascova A et al (2020) Time-related metabolomics study in the rat plasma after global cerebral ischemia and reperfusion: effect of ischemic preconditioning. IUBMB Life 72:2010–2023. https://doi.org/10.1002/iub.2340
doi: 10.1002/iub.2340 pubmed: 32663378
Maan K, Baghel R, Bakhshi R et al (2022) An integrative chemometric approach and correlative metabolite networking of LC-MS and 1H NMR based urine metabolomics for radiation signatures. Mol Omics 18:214–225. https://doi.org/10.1039/d1mo00399b
doi: 10.1039/d1mo00399b pubmed: 34982087
Cernak I, Wang Z, Jiang J et al (2001) Cognitive deficits following blast injury-induced neurotrauma: possible involvement of nitric oxide. Brain Inj 15:593–612. https://doi.org/10.1080/02699050010009559
doi: 10.1080/02699050010009559 pubmed: 11429089
Cernak I (2015) Blast injuries and blast-induced neurotrauma: overview of pathophysiology and experimental knowledge models and findings. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Frontiers in Neuroengineering. CRC Press/Taylor & Francis, Boca Raton (FL)
Yarnell AM, Barry ES, Mountney A et al (2016) The Revised Neurobehavioral Severity Scale (NSS-R) for rodents. Curr Protoc Neurosci 75:9.52.1-9.52.16. https://doi.org/10.1002/cpns.10
doi: 10.1002/cpns.10 pubmed: 27063788
Maan K, Baghel R, Dhariwal S et al (2023) Metabolomics and transcriptomics based multi-omics integration reveals radiation-induced altered pathway networking and underlying mechanism. NPJ Syst Biol Appl 9:42. https://doi.org/10.1038/s41540-023-00305-5
doi: 10.1038/s41540-023-00305-5 pubmed: 37689794 pmcid: 10492812
Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37:W652–W660. https://doi.org/10.1093/nar/gkp356
doi: 10.1093/nar/gkp356 pubmed: 19429898 pmcid: 2703878
R Core Team R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ , R version 4.2.2 (2022–10–31 ucrt). Accessed 1 Mar 2023
Basu S, Duren W, Evans CR et al (2017) Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data. Bioinformatics 33:1545–1553. https://doi.org/10.1093/bioinformatics/btx012
doi: 10.1093/bioinformatics/btx012 pubmed: 28137712 pmcid: 5860222
Lu Y, Pang Z, Xia J (2023) Comprehensive investigation of pathway enrichment methods for functional interpretation of LC–MS global metabolomics data. Brief Bioinform 24:bbac553. https://doi.org/10.1093/bib/bbac553
doi: 10.1093/bib/bbac553 pubmed: 36572652
Zhou G, Xia J (2018) OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space. Nucleic Acids Res 46:W514–W522. https://doi.org/10.1093/nar/gky510
doi: 10.1093/nar/gky510 pubmed: 29878180 pmcid: 6030925
Prins M, Greco T, Alexander D, Giza CC (2013) The pathophysiology of traumatic brain injury at a glance. Dis Model Mech 6:1307–1315. https://doi.org/10.1242/dmm.011585
doi: 10.1242/dmm.011585 pubmed: 24046353 pmcid: 3820255
Shi J, Dong B, Mao Y et al (2016) Review: traumatic brain injury and hyperglycemia, a potentially modifiable risk factor. Oncotarget 7:71052–71061. https://doi.org/10.18632/oncotarget.11958
doi: 10.18632/oncotarget.11958 pubmed: 27626493 pmcid: 5342608
Skotak M, Wang F, Alai A et al (2013) Rat injury model under controlled field-relevant primary blast conditions: acute response to a wide range of peak overpressures. J Neurotrauma 30:1147–1160. https://doi.org/10.1089/neu.2012.2652
doi: 10.1089/neu.2012.2652 pubmed: 23362798 pmcid: 3700437
Faden AI, Barrett JP, Stoica BA, Henry RJ (2021) Bidirectional brain-systemic interactions and outcomes after TBI. Trends Neurosci 44:406–418. https://doi.org/10.1016/j.tins.2020.12.004
doi: 10.1016/j.tins.2020.12.004 pubmed: 33495023 pmcid: 8084884
Orešič M, Posti JP, Kamstrup-Nielsen MH et al (2016) Human serum metabolites associate with severity and patient outcomes in traumatic brain injury. EBioMedicine 12:118–126. https://doi.org/10.1016/j.ebiom.2016.07.015
doi: 10.1016/j.ebiom.2016.07.015 pubmed: 27665050 pmcid: 5078571
Greco T, Vespa PM, Prins ML (2020) Alternative substrate metabolism depends on cerebral metabolic state following traumatic brain injury. Exp Neurol 329:113289. https://doi.org/10.1016/j.expneurol.2020.113289
doi: 10.1016/j.expneurol.2020.113289 pubmed: 32247790 pmcid: 8168752
Tang WH, Martin KA, Hwa J (2012) Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 3:87. https://doi.org/10.3389/fphar.2012.00087
doi: 10.3389/fphar.2012.00087 pubmed: 22582044 pmcid: 3348620
Tigchelaar C, van Zuylen ML, Hulst AH et al (2022) Elevated cerebrospinal fluid glucose levels and diabetes mellitus are associated with activation of the neurotoxic polyol pathway. Diabetologia 65:1098–1107. https://doi.org/10.1007/s00125-022-05693-7
doi: 10.1007/s00125-022-05693-7 pubmed: 35380232 pmcid: 9174140
Low PA (2005) Oxidative stress and excitatory neurotoxins in neuropathy. In: Peripheral neuropathy. Elsevier, pp 509–533
Arun P, Abu-Taleb R, Oguntayo S et al (2013) Acute mitochondrial dysfunction after blast exposure: potential role of mitochondrial glutamate oxaloacetate transaminase. J Neurotrauma 30:1645–1651. https://doi.org/10.1089/neu.2012.2834
doi: 10.1089/neu.2012.2834 pubmed: 23600763
Lumb AB (2017) Chapter 22 - Hypoxia. In: Nunn’s applied respiratory physiology, 8th ed. Elsevier, pp 327–334.e1
Lusardi T (2009) Adenosine neuromodulation and traumatic brain injury. CN 7:228–237. https://doi.org/10.2174/157015909789152137
doi: 10.2174/157015909789152137
Ament Z, Bevers MB, Wolcott Z et al (2021) Uric acid and gluconic acid as predictors of hyperglycemia and cytotoxic injury after stroke. Transl Stroke Res 12:293–302. https://doi.org/10.1007/s12975-020-00862-5
doi: 10.1007/s12975-020-00862-5 pubmed: 33067777
Hoyles L, Swann J (2019) Influence of the human gut microbiome on the metabolic phenotype. In: The handbook of metabolic phenotyping. Elsevier, pp 535–560
Shyti R, Kohler I, Schoenmaker B et al (2015) Plasma metabolic profiling after cortical spreading depression in a transgenic mouse model of hemiplegic migraine by capillary electrophoresis–mass spectrometry. Mol Biosyst 11:1462–1471. https://doi.org/10.1039/c5mb00049a
doi: 10.1039/c5mb00049a pubmed: 25856790
Dalazen GR, Terra M, Jacques CED et al (2014) Pipecolic acid induces oxidative stress in vitro in cerebral cortex of young rats and the protective role of lipoic acid. Metab Brain Dis 29:175–183. https://doi.org/10.1007/s11011-013-9466-3
doi: 10.1007/s11011-013-9466-3 pubmed: 24338030
Sadilkova K, Gospe SM, Hahn SH (2009) Simultaneous determination of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate and pipecolic acid by LC-MS/MS for pyridoxine-dependent seizures and folinic acid-responsive seizures. J Neurosci Methods 184:136–141. https://doi.org/10.1016/j.jneumeth.2009.07.019
doi: 10.1016/j.jneumeth.2009.07.019 pubmed: 19631689
Duranton F, Cohen G, De Smet R et al (2012) Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 23:1258–1270. https://doi.org/10.1681/ASN.2011121175
doi: 10.1681/ASN.2011121175 pubmed: 22626821 pmcid: 3380651
Cohen BD (2003) Methyl group deficiency and guanidino production in uremia. Mol Cell Biochem 244:31–36
doi: 10.1023/A:1022483117996 pubmed: 12701806
Goelzer A, Bekkal Brikci F, Martin-Verstraete I et al (2008) Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis. BMC Syst Biol 2:20. https://doi.org/10.1186/1752-0509-2-20
doi: 10.1186/1752-0509-2-20 pubmed: 18302748 pmcid: 2311275
Navone L, Casati P, Licona-Cassani C et al (2014) Allantoin catabolism influences the production of antibiotics in Streptomyces coelicolor. Appl Microbiol Biotechnol 98:351–360. https://doi.org/10.1007/s00253-013-5372-1
doi: 10.1007/s00253-013-5372-1 pubmed: 24292080
Durham WJ, Foreman JP, Randolph KM et al (2017) Hypoaminoacidemia Characterizes Chronic Traumatic Brain Injury. J Neurotrauma 34:385–390. https://doi.org/10.1089/neu.2015.4350
doi: 10.1089/neu.2015.4350 pubmed: 27178787
Li T, Zhang W, Hu E et al (2021) Integrated metabolomics and network pharmacology to reveal the mechanisms of hydroxysafflor yellow A against acute traumatic brain injury. Comput Struct Biotechnol J 19:1002–1013. https://doi.org/10.1016/j.csbj.2021.01.033
doi: 10.1016/j.csbj.2021.01.033 pubmed: 33613866 pmcid: 7868816
Parthasarathy A, Cross PJ, Dobson RCJ et al (2018) A three-ring circus: metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front Mol Biosci 5:29. https://doi.org/10.3389/fmolb.2018.00029
doi: 10.3389/fmolb.2018.00029 pubmed: 29682508 pmcid: 5897657
Aquilani R, Iadarola P, Boschi F et al (2003) Reduced plasma levels of tyrosine, precursor of brain catecholamines, and of essential amino acids in patients with severe traumatic brain injury after rehabilitation. Arch Phys Med Rehabil 84:1258–1265. https://doi.org/10.1016/s0003-9993(03)00148-5
doi: 10.1016/s0003-9993(03)00148-5 pubmed: 13680559
Mirveis Z, Howe O, Cahill P et al (2023) Monitoring and modelling the glutamine metabolic pathway: a review and future perspectives. Metabolomics 19:67. https://doi.org/10.1007/s11306-023-02031-9
doi: 10.1007/s11306-023-02031-9 pubmed: 37482587 pmcid: 10363518
Moore CM, Frazier JA, Glod CA et al (2007) Glutamine and glutamate levels in children and adolescents with bipolar disorder: a 4.0-T proton magnetic resonance spectroscopy study of the anterior cingulate cortex. J Am Acad Child Adolesc Psychiatry 46:524–534. https://doi.org/10.1097/chi.0b013e31802f5f2c
doi: 10.1097/chi.0b013e31802f5f2c pubmed: 17420688 pmcid: 4090056
Abdallah CG, Jiang L, De Feyter HM et al (2014) Glutamate metabolism in major depressive disorder. Am J Psychiatry 171:1320–1327. https://doi.org/10.1176/appi.ajp.2014.14010067
doi: 10.1176/appi.ajp.2014.14010067 pubmed: 25073688 pmcid: 4472484
Trachtman H, Futterweit S, del Pizzo R (1992) Taurine and osmoregulation. IV. Cerebral taurine transport is increased in rats with hypernatremic dehydration. Pediatr Res 32:118–124. https://doi.org/10.1203/00006450-199207000-00023
doi: 10.1203/00006450-199207000-00023 pubmed: 1635837
Fu C, Wu Q, Zhang Z et al (2019) UPLC-ESI-IT-TOF-MS metabolomic study of the therapeutic effect of Xuefu Zhuyu decoction on rats with traumatic brain injury. J Ethnopharmacol 245:112149. https://doi.org/10.1016/j.jep.2019.112149
doi: 10.1016/j.jep.2019.112149 pubmed: 31401321
Merckx C, De Paepe B (2022) The role of taurine in skeletal muscle functioning and its potential as a supportive treatment for Duchenne muscular dystrophy. Metabolites 12:193. https://doi.org/10.3390/metabo12020193
doi: 10.3390/metabo12020193 pubmed: 35208266 pmcid: 8879184
Sajja VSSS, Jablonska A, Haughey N et al (2018) Sphingolipids and microRNA changes in blood following blast traumatic brain injury: an exploratory study. J Neurotrauma 35:353–361. https://doi.org/10.1089/neu.2017.5009
doi: 10.1089/neu.2017.5009 pubmed: 29020847
Pidoplichko VI, Figueiredo TH, Braga MF et al (2023) Alpha-linolenic acid enhances the facilitation of GABAergic neurotransmission in the BLA and CA1. Exp Biol Med (Maywood) 248:596–604. https://doi.org/10.1177/15353702231165010
doi: 10.1177/15353702231165010 pubmed: 37208920
Yuan Q, Xie F, Huang W et al (2022) The review of alpha-linolenic acid: sources, metabolism, and pharmacology. Phytother Res 36:164–188. https://doi.org/10.1002/ptr.7295
doi: 10.1002/ptr.7295 pubmed: 34553434
Park SG, Schimmel P, Kim S (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci U S A 105:11043–11049. https://doi.org/10.1073/pnas.0802862105
doi: 10.1073/pnas.0802862105 pubmed: 18682559 pmcid: 2516211
Yao P, Fox PL (2013) Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med 5:332–343. https://doi.org/10.1002/emmm.201100626
doi: 10.1002/emmm.201100626 pubmed: 23427196 pmcid: 3598075
Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23:153–165. https://doi.org/10.1016/j.niox.2010.06.001
doi: 10.1016/j.niox.2010.06.001 pubmed: 20547235
Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(829–837):837a–837d. https://doi.org/10.1093/eurheartj/ehr304
doi: 10.1093/eurheartj/ehr304
Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336(Pt 1):1–17. https://doi.org/10.1042/bj3360001
doi: 10.1042/bj3360001 pubmed: 9806879 pmcid: 1219836
Periwal V, Bassler S, Andrejev S et al (2022) Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs. PLoS Comput Biol 18:e1010029. https://doi.org/10.1371/journal.pcbi.1010029
doi: 10.1371/journal.pcbi.1010029 pubmed: 35468126 pmcid: 9071136
Yun-Choi HS, Kim JH, Lee JR (1987) Potential inhibitors of platelet aggregation from plant sources, III. J Nat Prod 50:1059–1064. https://doi.org/10.1021/np50054a008
doi: 10.1021/np50054a008 pubmed: 3127544
Farkas WR, Jacobson KB, Katze JR (1984) Substrate and inhibitor specificity of tRNA-guanine ribosyltransferase. Biochim Biophys Acta 781:64–75. https://doi.org/10.1016/0167-4781(84)90124-6
doi: 10.1016/0167-4781(84)90124-6 pubmed: 6696916
Manasaryan G, Suplatov D, Pushkarev S et al (2021) Bioinformatic analysis of the nicotinamide binding site in poly(ADP-ribose) polymerase family proteins. Cancers (Basel) 13:1201. https://doi.org/10.3390/cancers13061201
doi: 10.3390/cancers13061201 pubmed: 33801950
Nilov D, Maluchenko N, Kurgina T et al (2020) Molecular mechanisms of PARP-1 inhibitor 7-methylguanine. Int J Mol Sci 21:2159. https://doi.org/10.3390/ijms21062159
doi: 10.3390/ijms21062159 pubmed: 32245127 pmcid: 7139824

Auteurs

Ruchi Baghel (R)

Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India.
Department of Health Research (DHR), IRCS Building, 2 FloorRed Cross Road, New Delhi, 110001, India.
Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India.

Kiran Maan (K)

Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India.
Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India.

Seema Dhariwal (S)

Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India.
Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India.

Megha Kumari (M)

Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India.

Apoorva Sharma (A)

Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India.
Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India.

Kailash Manda (K)

Department of Neurobehavioral Sciences, Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India.

Richa Trivedi (R)

Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India.

Poonam Rana (P)

Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India. poonam.inmas@gov.in.
Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India. poonam.inmas@gov.in.

Classifications MeSH