Optimizing Medical Care during a Nerve Agent Mass Casualty Incident Using Computer Simulation.


Journal

Journal of medical systems
ISSN: 1573-689X
Titre abrégé: J Med Syst
Pays: United States
ID NLM: 7806056

Informations de publication

Date de publication:
05 Sep 2024
Historique:
received: 10 12 2023
accepted: 23 07 2024
medline: 5 9 2024
pubmed: 5 9 2024
entrez: 5 9 2024
Statut: epublish

Résumé

Chemical mass casualty incidents (MCIs) pose a substantial threat to public health and safety, with the capacity to overwhelm healthcare infrastructure and create societal disorder. Computer simulation systems are becoming an established mechanism to validate these plans due to their versatility, cost-effectiveness and lower susceptibility to ethical problems. We created a computer simulation model of an urban subway sarin attack analogous to the 1995 Tokyo sarin incident. We created and combined evacuation, dispersion and victim models with the SIMEDIS computer simulator. We analyzed the effect of several possible approaches such as evacuation policy ('Scoop and Run' vs. 'Stay and Play'), three strategies (on-site decontamination and stabilization, off-site decontamination and stabilization, and on-site stabilization with off-site decontamination), preliminary triage, victim distribution methods, transport supervision skill level, and the effect of search and rescue capacity. Only evacuation policy, strategy and preliminary triage show significant effects on mortality. The total average mortality ranges from 14.7 deaths in the combination of off-site decontamination and Scoop and Run policy with pretriage, to 24 in the combination of onsite decontamination with the Stay and Play and no pretriage. Our findings suggest that in a simulated urban chemical MCI, a Stay and Play approach with on-site decontamination will lead to worse outcomes than a Scoop and Run approach with hospital-based decontamination. Quick transport of victims in combination with on-site antidote administration has the potential to save the most lives, due to faster hospital arrival for definitive care.

Identifiants

pubmed: 39235718
doi: 10.1007/s10916-024-02094-8
pii: 10.1007/s10916-024-02094-8
doi:

Substances chimiques

Sarin B4XG72QGFM
Nerve Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

82

Subventions

Organisme : Royal Higher Institute of Defence
ID : HFM/21-12

Informations de copyright

© 2024. The Author(s).

Références

Chai PR, Boyer EW, Al-Nahhas H, Erickson TB (2017) Toxic chemical weapons of assassination and warfare: nerve agents VX and sarin. Toxicology Communications 1:21–23. https://doi.org/10.1080/24734306.2017.1373503
doi: 10.1080/24734306.2017.1373503 pubmed: 29974075 pmcid: 6027656
Hulse EJ, Haslam JD, Emmett SR, Woolley T (2019) Organophosphorus nerve agent poisoning: managing the poisoned patient. British Journal of Anaesthesia 123:457–463. https://doi.org/10.1016/j.bja.2019.04.061
doi: 10.1016/j.bja.2019.04.061 pubmed: 31248646
Dorandeu F, Singer C, Chatfield S, Chilcottand RP, Hall J (2023) Exposure to organophosphorus compounds: best practice in managing timely, effective emergency responses. European Journal of Emergency Medicine. https://doi.org/10.1097/MEJ.0000000000001060
doi: 10.1097/MEJ.0000000000001060 pubmed: 37883238 pmcid: 10599800
Timbie JW, Ringel JS, Fox DS, Pillemer F, Waxman DA, Moore M, Hansen CK, Knebel AR, Ricciardi R, Kellermann AL (2013) Systematic Review of Strategies to Manage and Allocate Scarce Resources During Mass Casualty Events. Annals of Emergency Medicine 61:677–689.e101. https://doi.org/10.1016/j.annemergmed.2013.02.005
doi: 10.1016/j.annemergmed.2013.02.005 pubmed: 23522610 pmcid: 6997611
Bazyar J, Farrokhi M, Salari A, Safarpour H, Khankeh HR (2022) Accuracy of Triage Systems in Disasters and Mass Casualty Incidents; a Systematic Review. Arch Acad Emerg Med 10:e32. https://doi.org/10.22037/aaem.v10i1.1526
doi: 10.22037/aaem.v10i1.1526 pubmed: 35573710 pmcid: 9078064
Smith RM, Conn AK (2009) Prehospital care – Scoop and run or stay and play? Injury 40:S23–S26. https://doi.org/10.1016/j.injury.2009.10.033
doi: 10.1016/j.injury.2009.10.033 pubmed: 19895949
Wandling MW, Nathens AB, Shapiro MB, Haut ER (2018) Association of Prehospital Mode of Transport With Mortality in Penetrating Trauma: A Trauma System–Level Assessment of Private Vehicle Transportation vs Ground Emergency Medical Services. JAMA Surg 153:107. https://doi.org/10.1001/jamasurg.2017.3601
doi: 10.1001/jamasurg.2017.3601 pubmed: 28975247
Spoelder EJ, Slagt C, Scheffer GJ, van Geffen GJ (2022) Transport of the patient with trauma: a narrative review. Anaesthesia 77:1281–1287. https://doi.org/10.1111/anae.15812
doi: 10.1111/anae.15812 pubmed: 36089885 pmcid: 9826434
Okumura T, Suzuki K, Fukuda A, Kohama A, Takasu N, Ishimatsu S, Hinohara S (1998) The Tokyo Subway Sarin Attack: Disaster Management, Part 1: Community Emergency Response. Academic Emergency Medicine 5:613–617. https://doi.org/10.1111/j.1553-2712.1998.tb02470.x
doi: 10.1111/j.1553-2712.1998.tb02470.x pubmed: 9660289
Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A Fresh Approach to Numerical Computing. SIAM Rev 59:65–98. https://doi.org/10.1137/141000671
doi: 10.1137/141000671
Lauwens B (2013) SimJulia.jl - A discrete event process oriented simulation framework written in Julia
Tallach R, Brohi K (2022) Embracing uncertainty in mass casualty incidents. British Journal of Anaesthesia 128:e79–e82. https://doi.org/10.1016/j.bja.2021.10.024
doi: 10.1016/j.bja.2021.10.024 pubmed: 34823876
Abou-Donia MB, Siracuse B, Gupta N, Sobel Sokol A (2016) Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: critical review. Critical Reviews in Toxicology 46:845–875. https://doi.org/10.1080/10408444.2016.1220916
doi: 10.1080/10408444.2016.1220916 pubmed: 27705071 pmcid: 5764759
Okumura S, Okumura T, Ishimatsu S, Miura K, Maekawa H, Naito T (2005) Clinical review: Tokyo – protecting the health care worker during a chemical mass casualty event: an important issue of continuing relevance. Crit Care 9:397. https://doi.org/10.1186/cc3062
doi: 10.1186/cc3062 pubmed: 16137390 pmcid: 1269427
Suchard JR (2019) Chemical Weapons. In: Nelson LS, Howland MA, Lewin NA, Smith SW, Goldfrank LR, Hoffman RS (eds) Goldfrank’s Toxicologic Emergencies, 11e. McGraw-Hill Education, New York, NY
Benhassine M, Van Utterbeeck F, De Rouck R, Debacker M, Dhondt E, Hubloue I (2022) Simulating the Evacuation of a Subway Station after a Sarin Release. In: Proceedings of the 36th European Simulation Conference. EUROSIS-ETI, Porto, Portugal, pp 271–7
Smith SW, Portelli I, Narzisi G, Nelson LS, Menges F, Rekow ED, Mincer JS, Mishra B, Goldfrank LR (2009) A Novel Approach to Multihazard Modeling and Simulation. Disaster med public health prep 3:75–87. https://doi.org/10.1097/DMP.0b013e3181a88899
doi: 10.1097/DMP.0b013e3181a88899 pubmed: 19491602
Kleinmeier B, Zönnchen B, Gödel M, Köster G (2019) Vadere: An Open-Source Simulation Framework to Promote Interdisciplinary Understanding. Coll Dyn 4:A21. https://doi.org/10.17815/CD.2019.21
doi: 10.17815/CD.2019.21
Ackermann O, Lahm A, Pfohl M, Köther B, Lian TK, Kutzer A, Weber M, Marx F, Vogel T, Hax P-M (2011) Patient Care at the 2010 Love Parade in Duisburg, Germany. Deutsches Ärzteblatt international. https://doi.org/10.3238/arztebl.2011.0483
Khan AA, Noji EK (2016) Hajj stampede disaster, 2015: Reflections from the frontlines. Am J Disaster Med 11:59–68. https://doi.org/10.5055/ajdm.2016.0225
doi: 10.5055/ajdm.2016.0225 pubmed: 27649752
Sticco IM, Frank GA, Dorso CO (2021) Social Force Model parameter testing and optimization using a high stress real-life situation. Physica A: Statistical Mechanics and its Applications 561:125299. https://doi.org/10.1016/j.physa.2020.125299
doi: 10.1016/j.physa.2020.125299
Van Utterbeeck F, Ullrich C, Dhondt E, Debacker M, Murray JL, Van Campen S (2011) Generating and managing realistic victims for medical disaster simulations. In: Proceedings of the 2011 Winter Simulation Conference (WSC). IEEE, Phoenix, AZ, pp 2674–2684
Debacker M, Van Utterbeeck F, Ullrich C, Dhondt E, Hubloue I (2016) SIMEDIS: a Discrete-Event Simulation Model for Testing Responses to Mass Casualty Incidents. J Med Syst 40:273. https://doi.org/10.1007/s10916-016-0633-z
doi: 10.1007/s10916-016-0633-z pubmed: 27757716 pmcid: 5069323
Benhassine M, De Rouck R, Debacker M, Hubloue I, Dhondt E, Van Utterbeeck F (2023) Simulating Victim Health State Evolution from Physical and Chemical Injuries in Mass Casualty Incidents. New Trends in Computer Sciences 1:113–25. https://doi.org/10.3846/ntcs.2023.19458
doi: 10.3846/ntcs.2023.19458
Champion HR, Sacco WJ, Copes WS, Gann DS, Gennarelli TA, Flanagan ME (1989) A Revision of the Trauma Score: The Journal of Trauma: Injury, Infection, and Critical Care 29:623–629. https://doi.org/10.1097/00005373-198905000-00017
doi: 10.1097/00005373-198905000-00017
Sacco WJ (2005) Precise Formulation and Evidence-based Application of Resource-constrained Triage. Academic Emergency Medicine 12:759–770. https://doi.org/10.1197/j.aem.2005.04.003
doi: 10.1197/j.aem.2005.04.003 pubmed: 16079430
Raux M, Thicoïpé M, Wiel E, Rancurel E, Savary D, David J-S, Berthier F, Ricard-Hibon A, Birgel F, Riou B (2006) Comparison of respiratory rate and peripheral oxygen saturation to assess severity in trauma patients. Intensive Care Med 32:405–412. https://doi.org/10.1007/s00134-005-0063-8
doi: 10.1007/s00134-005-0063-8 pubmed: 16485093
Sigle M, Berliner L, Richter E, Van Iersel M, Gorgati E, Hubloue I, Bamberg M, Grasshoff C, Rosenberger P, Wunderlich R (2023) Development of an Anticipatory Triage-Ranking Algorithm Using Dynamic Simulation of the Expected Time Course of Patients With Trauma: Modeling and Simulation Study. J Med Internet Res 25:e44042. https://doi.org/10.2196/44042
doi: 10.2196/44042 pubmed: 37318826 pmcid: 10337428
El-Gohary A, Alshamrani A, Al-Otaibi AN (2013) The generalized Gompertz distribution. Applied Mathematical Modelling 37:13–24. https://doi.org/10.1016/j.apm.2011.05.017
doi: 10.1016/j.apm.2011.05.017
Bajzer Ž, Vuk-Pavlovic S (NaN/NaN/NaN) New Dimensions in Gompertzian Growth. Computational and Mathematical Methods in Medicine 2:307–315. https://doi.org/10.1080/10273660008833057
Ricklefs RE, Scheuerlein A (2002) Biological Implications of the Weibull and Gompertz Models of Aging. The Journals of Gerontology: Series A 57:B69–B76. https://doi.org/10.1093/gerona/57.2.B69
doi: 10.1093/gerona/57.2.B69
Copes WS, Champion HR, Sacco WJ, Lawnick MM, Keast SL, Bain LW (1988) The Injury Severity Score Revisited: The Journal of Trauma: Injury, Infection, and Critical Care 28:69–77. https://doi.org/10.1097/00005373-198801000-00010
doi: 10.1097/00005373-198801000-00010
Curling CA, Burr JK, Danakian L, Disraelly DS, LaViolet LA, Walsh TJ, Zirkle RA (2010) Technical Reference Manual: NATO Planning Guide for the Estimation of Chemical, Biological, Radiological, and Nuclear (CBRN), Casualties, Allied Medical Publication-8(C). 332
Crosier RB, Sommerville DR (2002) Relationship Between Toxicity Values for the Military Population and Toxicity Values for the General Population
Merrill E, Ruark C, Gearhart J, Robinson P (2015) Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling of Countermeasures to Nerve Agents. In: Handbook of Toxicology of Chemical Warfare Agents. Elsevier, pp 1035–1047
De Rouck R, Benhassine M, Debacker M, Dugauquier C, Van Utterbeeck F, Hubloue I Creating realistic nerve agent victim profiles for computer simulation of medical CBRN disaster response. Frontiers in Public Health
NATO Standardization Office (2018) NATO - AMEDP-7.2 - CBRN FIRST AID HANDBOOK
(2008) SALT Mass Casualty Triage: Concept Endorsed by the American College of Emergency Physicians, American College of Surgeons Committee on Trauma, American Trauma Society, National Association of EMS Physicians, National Disaster Life Support Education Consortium, and State and Territorial Injury Prevention Directors Association. Disaster med public health prep 2:245–246. https://doi.org/10.1097/DMP.0b013e31818d191e
Egan J, Amlôt R (2012) Modelling Mass Casualty Decontamination Systems Informed by Field Exercise Data. IJERPH 9:3685–3710. https://doi.org/10.3390/ijerph9103685
doi: 10.3390/ijerph9103685 pubmed: 23202768 pmcid: 3509475
De Rouck R, Debacker M, Kneuts R, Van Hove SJL, Vaes J, Van Droogenbroeck P, Hubloue I (2019) Results of an in-hospital CBRN decontamination and stabilization exercise
Suyama J, Knutsen CC, Northington WE, Hahn M, Hostler D (2007) IO Versus IV Access While Wearing Personal Protective Equipment in a HazMat Scenario. Prehospital Emergency Care 11:467–472. https://doi.org/10.1080/10903120701536982
doi: 10.1080/10903120701536982 pubmed: 17907035
Udayasiri R, Knott J, McD Taylor D, Papson J, Leow F, Hassan FA (2007) Emergency department staff can effectively resuscitate in level C personal protective equipment. Emerg Med Australas 19:113–121. https://doi.org/10.1111/j.1742-6723.2007.00918.x
doi: 10.1111/j.1742-6723.2007.00918.x pubmed: 17448096
Seabold S, Perktold J (2010) Statsmodels: Econometric and Statistical Modeling with Python. In: Proceedings of the 9th Python in Science Conference. Austin, Texas, pp 92–96
Mortelmans LJ, Boxstael S van, Cauwer HGD, Sabbe MB (2014) Preparedness of Belgian civil hospitals for chemical, biological, radiation, and nuclear incidents: are we there yet? European Journal of Emergency Medicine 21:296–300
doi: 10.1097/MEJ.0000000000000072 pubmed: 23978957
Haslam JD, Russell P, Hill S, Emmett SR, Blain PG (2022) Chemical, biological, radiological, and nuclear mass casualty medicine: a review of lessons from the Salisbury and Amesbury Novichok nerve agent incidents. British Journal of Anaesthesia 128:e200–e205. https://doi.org/10.1016/j.bja.2021.10.008
doi: 10.1016/j.bja.2021.10.008 pubmed: 34794766
De Rouck R, Debacker M, Hubloue I, Koghee S, Van Utterbeeck F, Dhondt E (2018) SIMEDIS 2.0: On the road toward a comprehensive mass casualty incident medical management simulator. In: 2018 Winter Simulation Conference (WSC). IEEE, Gothenburg, Sweden, pp 2713–2724
Yan W (2023) A Systematic Review of Research Developments in Mass Psychogenic Illness. EHSS 9:150–157. https://doi.org/10.54097/ehss.v9i.6439
doi: 10.54097/ehss.v9i.6439
Bartholomew RE, Wessely S (2002) Protean nature of mass sociogenic illness: From possessed nuns to chemical and biological terrorism fears. Br J Psychiatry 180:300–306. https://doi.org/10.1192/bjp.180.4.300
doi: 10.1192/bjp.180.4.300 pubmed: 11925351
Page LA, Keshishian C, Leonardi G, Murray V, Rubin GJ, Wessely S (2010) Frequency and Predictors of Mass Psychogenic Illness. Epidemiology 21:744. https://doi.org/10.1097/EDE.0b013e3181e9edc4
doi: 10.1097/EDE.0b013e3181e9edc4 pubmed: 20592616
Okumura T, Suzuki K, Fukuda A, Kohama A, Takasu N, Ishimatsu S, Hinohara S (1998) The Tokyo subway sarin attack: disaster management, Part 2: Hospital response. Acad Emerg Med 5:618–624. https://doi.org/10.1111/j.1553-2712.1998.tb02471.x
doi: 10.1111/j.1553-2712.1998.tb02471.x pubmed: 9660290
Ohbu S, Yamashina A, Takasu N, Yamaguchi T, Murai T, Nakano K, Matsui Y, Mikami R, Sakurai K, Hinohara S (1997) Sarin poisoning on Tokyo subway. South Med J 90:587–593. https://doi.org/10.1097/00007611-199706000-00002
doi: 10.1097/00007611-199706000-00002 pubmed: 9191733
Leiba A, Goldberg A, Hourvitz A, Weiss G, Peres M, Karskass A, Schwartz D, Levi Y, Bar-Dayan Y (2006) Who Should Worry for the “Worried Well”? Analysis of Mild Casualties Center Drills in Non-Conventional Scenarios. Prehospital and disaster medicine 21:441–4. https://doi.org/10.1017/S1049023X00004179
doi: 10.1017/S1049023X00004179 pubmed: 17334193
Auf der Heide E (2006) The Importance of Evidence-Based Disaster Planning. Annals of Emergency Medicine 47:34–49. https://doi.org/10.1016/j.annemergmed.2005.05.009
doi: 10.1016/j.annemergmed.2005.05.009 pubmed: 16387217
Hosseini M, Madani H, Shahriar K (2022) CFD-based Modeling of Sarin Gas Dispersion in a Subway Station–A Hypothetical Scenario. Journal of Mining and Environment 13. https://doi.org/10.22044/jme.2022.11604.2150

Auteurs

De Rouck Ruben (R)

Research Group on Emergency and Disaster Medicine, Vrije Universiteit Brussel, Laarbeeklaan 103, Jette, 1090, Belgium. ruben.de.rouck@vub.be.

Mehdi Benhassine (M)

Simulation, Modelling, and Analysis of Complex Systems, Department of Mathematics, Royal Military Academy, Renaissancelaan 30, Brussels, 1000, Belgium.

Debacker Michel (D)

Research Group on Emergency and Disaster Medicine, Vrije Universiteit Brussel, Laarbeeklaan 103, Jette, 1090, Belgium.

Van Utterbeeck Filip (VU)

Simulation, Modelling, and Analysis of Complex Systems, Department of Mathematics, Royal Military Academy, Renaissancelaan 30, Brussels, 1000, Belgium.

Dhondt Erwin (D)

Royal Higher Institute for Defence, Renaissancelaan 30, Brussels, 1000, Belgium.

Hubloue Ives (H)

Research Group on Emergency and Disaster Medicine, Vrije Universiteit Brussel, Laarbeeklaan 103, Jette, 1090, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH