Small GTP-binding protein GDP dissociation stimulator influences cisplatin-induced acute kidney injury via PERK-dependent ER stress.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
05 Sep 2024
Historique:
received: 24 01 2024
accepted: 28 08 2024
medline: 6 9 2024
pubmed: 6 9 2024
entrez: 5 9 2024
Statut: epublish

Résumé

Cisplatin is a common anticancer drug, but its frequent nephrotoxicity limits its clinical use. Small GTP-binding protein GDP dissociation stimulator (smgGDS), a small GTPase chaperone protein, was considerably downregulated during cisplatin-induced acute kidney injury (CDDP-AKI), especially in renal tubular epithelial cells. SmgGDS-knockdown mice was established and found that smgGDS knockdown promoted CDDP-AKI, as demonstrated by an increase in serum creatine, blood urea nitrogen levels and the appearance of tubular patterns. RNA sequencing suggested that protein kinase RNA-like ER kinase (PERK), which bridges mitochondria-associated ER membranes, was involved in smgGDS knockdown following CDDP-AKI, and then identified that smgGDS knockdown increased phosphorylated-PERK in vivo and in vitro. Furthermore, we confirmed that smgGDS deficiency aggravated apoptosis and ER stress in vivo and in vitro. And the ER stress inhibitor 4-Phenylbutyric acid and the inhibition of PERK phosphorylation mitigated smgGDS deficiency-induced ER stress related apoptosis following cisplatin treatment, while the eIF2α phosphorylation inhibitor could not reverse the smgGDS deficiency accelerated cell death. Furthermore, the over-expression of smgGDS could reverse the ER stress and apoptosis caused by CDDP. Overall, smgGDS regulated PERK-dependent ER stress and apoptosis, thereby influencing renal damage. This study identified a target for diagnosing and treating cisplatin-induced acute kidney injury.

Identifiants

pubmed: 39237614
doi: 10.1038/s42003-024-06792-4
pii: 10.1038/s42003-024-06792-4
doi:

Substances chimiques

Cisplatin Q20Q21Q62J
eIF-2 Kinase EC 2.7.11.1
PERK kinase EC 2.7.11.1
Antineoplastic Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1091

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82170508
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82300546

Informations de copyright

© 2024. The Author(s).

Références

Levey, A. S. & James, M. T. Acute kidney injury. Ann. Intern Med. 167, ITC66–ITC80 (2017).
pubmed: 29114754 doi: 10.7326/AITC201711070
Bellomo, R., Kellum, J. A. & Ronco, C. Acute kidney injury. Lancet 380, 756–766 (2012).
pubmed: 22617274 doi: 10.1016/S0140-6736(11)61454-2
Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).
pubmed: 31777389 doi: 10.1016/S0140-6736(19)32563-2
Wen, L. et al. Selective EZH2 inhibitor zld1039 alleviates inflammation in cisplatin-induced acute kidney injury partially by enhancing RKIP and suppressing NF-κB p65 pathway. Acta Pharm. Sin. 43, 2067–2080 (2022).
doi: 10.1038/s41401-021-00837-8
Pabla, N. & Dong, Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73, 994–1007 (2008).
pubmed: 18272962 doi: 10.1038/sj.ki.5002786
Volarevic, V. et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: A balance on the knife edge between renoprotection and tumor toxicity. J. Biomed. Sci. 26, 25 (2019).
pubmed: 30866950 pmcid: 6417243 doi: 10.1186/s12929-019-0518-9
Jang, H. S. et al. Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury. Kidney Int 97, 327–339 (2020).
pubmed: 31733829 doi: 10.1016/j.kint.2019.08.019
Guo, J. et al. PERK controls bone homeostasis through the regulation of osteoclast differentiation and function. Cell Death Dis. 11, 847 (2020).
pubmed: 33051453 pmcid: 7554039 doi: 10.1038/s41419-020-03046-z
Gentilin, E., Simoni, E., Candito, M., Cazzador, D. & Astolfi, L. Cisplatin-induced ototoxicity: Updates on molecular targets. Trends Mol. Med 25, 1123–1132 (2019).
pubmed: 31473143 doi: 10.1016/j.molmed.2019.08.002
Shu, S. et al. Endoplasmic reticulum stress contributes to cisplatin-induced chronic kidney disease via the PERK-PKCδ pathway. Cell Mol. Life Sci. 79, 452 (2022).
pubmed: 35895146 pmcid: 11072288 doi: 10.1007/s00018-022-04480-2
Frakes, A. E. & Dillin, A. The UPR(ER): Sensor and coordinator of organismal homeostasis. Mol. Cell 66, 761–771 (2017).
pubmed: 28622521 doi: 10.1016/j.molcel.2017.05.031
Balsa, E. et al. ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α Axis. Mol. Cell 74, 877–890.e6 (2019).
pubmed: 31023583 pmcid: 6555668 doi: 10.1016/j.molcel.2019.03.031
Mao, H., Chen, W., Chen, L. & Li, L. Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases. Biochem Pharm. 199, 115011 (2022).
pubmed: 35314166 doi: 10.1016/j.bcp.2022.115011
Verfaillie, T. et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19, 1880–1891 (2012).
pubmed: 22705852 pmcid: 3469056 doi: 10.1038/cdd.2012.74
Grenier, A. et al. AMPK-PERK axis represses oxidative metabolism and enhances apoptotic priming of mitochondria in acute myeloid leukemia. Cell Rep. 38, 110197 (2022).
pubmed: 34986346 doi: 10.1016/j.celrep.2021.110197
Li, Y. et al. eIF2α-CHOP-BCl-2/JNK and IRE1α-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of Newcastle disease virus. Cell Death Dis. 10, 891 (2019).
pubmed: 31767828 pmcid: 6877643 doi: 10.1038/s41419-019-2128-6
Kaushik, S. et al. Pitavastatin attenuates cisplatin-induced renal injury by targeting MAPK and apoptotic pathways. J. Pharm. Pharm. 71, 1072–1081 (2019).
doi: 10.1111/jphp.13090
Krüger, K. et al. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells. Toxicol. Appl Pharm. 292, 103–114 (2016).
doi: 10.1016/j.taap.2015.12.023
Kudo, S. et al. SmgGDS as a crucial mediator of the inhibitory effects of statins on cardiac hypertrophy and fibrosis: Novel mechanism of the pleiotropic effects of statins. Hypertension 67, 878–889 (2016).
pubmed: 26975711 doi: 10.1161/HYPERTENSIONAHA.115.07089
Minami, T. et al. Statins up-regulate SmgGDS through β1-integrin/Akt1 pathway in endothelial cells. Cardiovasc Res. 109, 151–161 (2016).
pubmed: 26598509 doi: 10.1093/cvr/cvv253
Oesterle, A., Laufs, U. & Liao, J. K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res. 120, 229–243 (2017).
pubmed: 28057795 pmcid: 5467317 doi: 10.1161/CIRCRESAHA.116.308537
Tanaka, S. et al. Statins exert the pleiotropic effects through small GTP-binding protein dissociation stimulator upregulation with a resultant Rac1 degradation. Arterioscler Thromb. Vasc. Biol. 33, 1591–1600 (2013).
pubmed: 23640485 doi: 10.1161/ATVBAHA.112.300922
Yamamoto, T. et al. Purification and characterization from bovine brain cytosol of proteins that regulate the GDP/GTP exchange reaction of smg p21s, ras p21-like GTP-binding proteins. J. Biol. Chem. 265, 16626–16634 (1990).
pubmed: 2118909 doi: 10.1016/S0021-9258(17)46268-5
Nogi, M. et al. Small GTP-binding protein GDP dissociation stimulator prevents thoracic aortic aneurysm formation and rupture by phenotypic preservation of aortic smooth muscle cells. Circulation 138, 2413–2433 (2018).
pubmed: 29921611 doi: 10.1161/CIRCULATIONAHA.118.035648
Wang, T. et al. Estradiol-mediated small GTP-binding protein GDP dissociation stimulator induction contributes to sex differences in resilience to ferroptosis in takotsubo syndrome. Redox Biol. 68, 102961 (2023).
pubmed: 38007983 pmcid: 10719533 doi: 10.1016/j.redox.2023.102961
Asiri, A. et al. Mutated RAP1GDS1 causes a new syndrome of dysmorphic feature, intellectual disability & speech delay. Ann. Clin. Transl. Neurol. 7, 956–964 (2020).
pubmed: 32431071 pmcid: 7318102 doi: 10.1002/acn3.51059
Sánchez-Vera, I. et al. The prohibitin-binding compound fluorizoline activates the integrated stress response through the eIF2α Kinase HRI. Int J. Mol. Sci. 24, 8064 (2023).
pubmed: 37175767 pmcid: 10179266 doi: 10.3390/ijms24098064
Muñoz, J. P. et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32, 2348–2361 (2013).
pubmed: 23921556 pmcid: 3770335 doi: 10.1038/emboj.2013.168
Zhang, K. et al. The PERK-EIF2α-ATF4 signaling branch regulates osteoblast differentiation and proliferation by PTH. Am. J. Physiol. Endocrinol. Metab. 316, E590–E604 (2019).
pubmed: 30668150 doi: 10.1152/ajpendo.00371.2018
Naveau, M. et al. Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA. Nucleic Acids Res. 41, 1047–1057 (2013).
pubmed: 23193270 doi: 10.1093/nar/gks1180
Orwick, A. et al. Lung cancer-kidney crosstalk induces kidney injury, interstitial fibrosis, and enhanced cisplatin-induced nephrotoxicity. Am. J. Physiol Renal Physiol (2023).
Hao, L. et al. ATF4 activation promotes hepatic mitochondrial dysfunction by repressing NRF1-TFAM signalling in alcoholic steatohepatitis. Gut 70, 1933–1945 (2021).
pubmed: 33177163 doi: 10.1136/gutjnl-2020-321548
Kumar, V. & Maity, S. ER stress-sensor proteins and ER-mitochondrial crosstalk-signaling beyond (ER) stress response. Biomolecules 11, 173 (2021).
pubmed: 33525374 pmcid: 7911976 doi: 10.3390/biom11020173
Tapella, L. et al. Protein synthesis inhibition and loss of homeostatic functions in astrocytes from an Alzheimer’s disease mouse model: a role for ER-mitochondria interaction. Cell Death Dis. 13, 878 (2022).
pubmed: 36257957 pmcid: 9579125 doi: 10.1038/s41419-022-05324-4
Zhong, Y. et al. Inhibition of ER stress attenuates kidney injury and apoptosis induced by 3-MCPD via regulating mitochondrial fission/fusion and Ca(2+) homeostasis. Cell Biol. Toxicol. 37, 795–809 (2021).
pubmed: 33651226 doi: 10.1007/s10565-021-09589-x
Zhou, H. Y., Sun, Y. Y., Chang, P. & Huang, H. C. Curcumin Inhibits Cell Damage and Apoptosis Caused by Thapsigargin-Induced Endoplasmic Reticulum Stress Involving the Recovery of Mitochondrial Function Mediated by Mitofusin-2. Neurotox. Res. 40, 449–460 (2022).
pubmed: 35192145 doi: 10.1007/s12640-022-00481-y
Chino, H. & Mizushima, N. ER-Phagy: Quality control and turnover of endoplasmic reticulum. Trends Cell Biol. 30, 384–398 (2020).
pubmed: 32302550 doi: 10.1016/j.tcb.2020.02.001
Ferro-Novick, S., Reggiori, F. & Brodsky, J. L. ER-Phagy, ER Homeostasis, and ER quality control: Implications for disease. Trends Biochem Sci. 46, 630–639 (2021).
pubmed: 33509650 pmcid: 8286283 doi: 10.1016/j.tibs.2020.12.013
García-Torres, D. & Fierke, C. A. The chaperone SmgGDS-607 has a dual role, both activating and inhibiting farnesylation of small GTPases. J. Biol. Chem. 294, 11793–11804 (2019).
pubmed: 31197034 pmcid: 6682747 doi: 10.1074/jbc.RA119.007438
Shimizu, H., Toma-Fukai, S., Kontani, K., Katada, T. & Shimizu, T. GEF mechanism revealed by the structure of SmgGDS-558 and farnesylated RhoA complex and its implication for a chaperone mechanism. Proc. Natl Acad. Sci. USA 115, 9563–9568 (2018).
pubmed: 30190425 pmcid: 6156624 doi: 10.1073/pnas.1804740115
Lanning, C. C., Ruiz-Velasco, R. & Williams, C. L. Novel mechanism of the co-regulation of nuclear transport of SmgGDS and Rac1. J. Biol. Chem. 278, 12495–12506 (2003).
pubmed: 12551911 doi: 10.1074/jbc.M211286200
Brandt, A. C., Koehn, O. J. & Williams, C. L. SmgGDS: An emerging master regulator of prenylation and trafficking by small GTPases in the Ras and Rho Families. Front Mol. Biosci. 8, 685135 (2021).
pubmed: 34222337 pmcid: 8242357 doi: 10.3389/fmolb.2021.685135
Hwang, J. & Qi, L. Quality control in the endoplasmic reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 43, 593–605 (2018).
pubmed: 30056836 pmcid: 6327314 doi: 10.1016/j.tibs.2018.06.005
Zhou, Y. et al. Porcine epidemic diarrhea virus activates PERK-ROS axis to benefit its replication in Vero E6 cells. Vet. Res. 54, 9 (2023).
pubmed: 36737830 pmcid: 9897154 doi: 10.1186/s13567-023-01139-z
Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153, 1011–1022 (2001).
pubmed: 11381086 pmcid: 2174339 doi: 10.1083/jcb.153.5.1011
Liu, X. et al. DRD4 (dopamine D4 Receptor) mitigate abdominal aortic aneurysm via decreasing P38 MAPK (mitogen-activated protein kinase)/NOX4 (NADPH oxidase 4) axis-associated oxidative stress. Hypertension 78, 294–307 (2021).
pubmed: 34176291 doi: 10.1161/HYPERTENSIONAHA.120.16738
Xu, S. et al. Nuclear farnesoid X receptor attenuates acute kidney injury through fatty acid oxidation. Kidney Int 101, 987–1002 (2022).
pubmed: 35227690 doi: 10.1016/j.kint.2022.01.029
Chu, H. et al. Targeting highly pathogenic coronavirus-induced apoptosis reduces viral pathogenesis and disease severity. Sci. Adv. 7, eabf8577 (2021).
pubmed: 34134991 pmcid: 8208716 doi: 10.1126/sciadv.abf8577
Sharma, V. et al. eIF2α controls memory consolidation via excitatory and somatostatin neurons. Nature 586, 412–416 (2020).
pubmed: 33029011 pmcid: 7874887 doi: 10.1038/s41586-020-2805-8
Sidrauski, C., McGeachy, A. M., Ingolia, N. T. & Walter, P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. Elife 4, e05033 (2015).
pubmed: 25719440 pmcid: 4341466 doi: 10.7554/eLife.05033
Chen, J. et al. EGF receptor-dependent YAP activation is important for renal recovery from AKI. J. Am. Soc. Nephrol. 29, 2372–2385 (2018).
pubmed: 30072422 pmcid: 6115662 doi: 10.1681/ASN.2017121272

Auteurs

Yuxue Yang (Y)

The Hospital Affiliated to the Medical School of Yangzhou University (Taizhou People's Hospital), No. 366 Taihu Road, Taizhou, Jiangsu, 225300, China.
Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.

Ting Xiong (T)

Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.

Ti Wang (T)

The Hospital Affiliated to the Medical School of Yangzhou University (Taizhou People's Hospital), No. 366 Taihu Road, Taizhou, Jiangsu, 225300, China.

Xiwei Chen (X)

The Hospital Affiliated to the Medical School of Yangzhou University (Taizhou People's Hospital), No. 366 Taihu Road, Taizhou, Jiangsu, 225300, China.

Ziwei Ma (Z)

Clinical Medical College, Dalian Medical University, Dalian, Liaoning, 116044, China.

Bangyun Zuo (B)

The Hospital Affiliated to the Medical School of Yangzhou University (Taizhou People's Hospital), No. 366 Taihu Road, Taizhou, Jiangsu, 225300, China.

Dong Ning (D)

School of Medicine, National University of Ireland Galway, University Road, Galway, 999014, Ireland.

Ruilong Song (R)

College of Veterinary Medicine, Yangzhou University, #88 South University Avenue, Yangzhou, Jiangsu, 225009, China.

Xuesong Liu (X)

Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China. seanxsl712@163.com.

Daxin Wang (D)

The Hospital Affiliated to the Medical School of Yangzhou University (Taizhou People's Hospital), No. 366 Taihu Road, Taizhou, Jiangsu, 225300, China. daxinw113@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH