The scaffolding function of LSD1 controls DNA methylation in mouse ESCs.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
05 Sep 2024
Historique:
received: 19 06 2023
accepted: 21 08 2024
medline: 6 9 2024
pubmed: 6 9 2024
entrez: 5 9 2024
Statut: epublish

Résumé

Lysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1

Identifiants

pubmed: 39237615
doi: 10.1038/s41467-024-51966-7
pii: 10.1038/s41467-024-51966-7
doi:

Substances chimiques

Histone Demethylases EC 1.14.11.-
KDM1a protein, mouse EC 1.14.11.-
DNA (Cytosine-5-)-Methyltransferase 1 EC 2.1.1.37
Dnmt1 protein, mouse EC 2.1.1.37
Uhrf1 protein, mouse EC 2.3.2.27
Ubiquitin-Protein Ligases EC 2.3.2.27
CCAAT-Enhancer-Binding Proteins 0
Histone Deacetylase 1 EC 3.5.1.98
Histones 0
Hdac1 protein, mouse EC 3.5.1.98

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7758

Subventions

Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2017-01636 and 2022-01322
Organisme : Kempestiftelserna (Kempe Foundations)
ID : JCK-2150 and JCSMK22-0109
Organisme : Cancerfonden (Swedish Cancer Society)
ID : 190337 Pj; 22 2455 Pj

Informations de copyright

© 2024. The Author(s).

Références

Atlasi, Y. & Stunnenberg, H. G. The interplay of epigenetic marks during stem cell differentiation and development. Nat. Rev. Genet. 18, 643–658 (2017).
pubmed: 28804139 doi: 10.1038/nrg.2017.57
Boland, M. J., Nazor, K. L. & Loring, J. F. Epigenetic regulation of pluripotency and differentiation. Circ. Res. 115, 311–324 (2014).
pubmed: 24989490 pmcid: 4229506 doi: 10.1161/CIRCRESAHA.115.301517
Malla, S., Melguizo-Sanchis, D. & Aguilo, F. Steering pluripotency and differentiation with N(6)-methyladenosine RNA modification. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 394–402 (2019).
pubmed: 30412796 doi: 10.1016/j.bbagrm.2018.10.013
Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).
pubmed: 15620353 doi: 10.1016/j.cell.2004.12.012
Forneris, F. et al. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207 (2005).
pubmed: 15811342 doi: 10.1016/j.febslet.2005.03.015
Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 41, 125–129 (2009).
pubmed: 19098913 doi: 10.1038/ng.268
Wang, J. et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446, 882–887 (2007).
pubmed: 17392792 doi: 10.1038/nature05671
Martinez-Gamero, C., Malla, S. & Aguilo, F. LSD1: expanding functions in stem cells and differentiation. Cells 10, 3252 (2021).
pubmed: 34831474 pmcid: 8624367 doi: 10.3390/cells10113252
Adamo, A. et al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat. Cell Biol. 13, 652–659 (2011).
pubmed: 21602794 doi: 10.1038/ncb2246
Han, X. et al. Destabilizing LSD1 by Jade-2 promotes neurogenesis: an antibraking system in neural development. Mol. Cell 55, 482–494 (2014).
pubmed: 25018020 doi: 10.1016/j.molcel.2014.06.006
Foster, C. T. et al. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol. Cell Biol. 30, 4851–4863 (2010).
pubmed: 20713442 pmcid: 2950538 doi: 10.1128/MCB.00521-10
Choi, J. et al. Histone demethylase LSD1 is required to induce skeletal muscle differentiation by regulating myogenic factors. Biochem. Biophys. Res. Commun. 401, 327–332 (2010).
pubmed: 20833138 doi: 10.1016/j.bbrc.2010.09.014
Musri, M. M. et al. Histone demethylase LSD1 regulates adipogenesis. J. Biol. Chem. 285, 30034–30041 (2010).
pubmed: 20656681 pmcid: 2943311 doi: 10.1074/jbc.M110.151209
Saleque, S. et al. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol. Cell 27, 562–572 (2007).
pubmed: 17707228 doi: 10.1016/j.molcel.2007.06.039
Su, S. T. et al. Involvement of histone demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation. Mol. Cell Biol. 29, 1421–1431 (2009).
pubmed: 19124609 pmcid: 2648243 doi: 10.1128/MCB.01158-08
Whyte, W. A. et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225 (2012).
pubmed: 22297846 pmcid: 4144424 doi: 10.1038/nature10805
Hahm, J. Y. et al. Methylation of UHRF1 by SET7 is essential for DNA double-strand break repair. Nucleic Acids Res. 47, 184–196 (2019).
pubmed: 30357346 doi: 10.1093/nar/gky975
Majello, B. et al. Expanding the role of the histone lysine-specific demethylase LSD1 in cancer. Cancers (Basel) 11, 324 (2019).
pubmed: 30866496 doi: 10.3390/cancers11030324
Mancini, M. et al. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res. 49, 6053–6068 (2021).
pubmed: 33939809 pmcid: 8216287 doi: 10.1093/nar/gkab293
Zhang, H. et al. SET8 prevents excessive DNA methylation by methylation-mediated degradation of UHRF1 and DNMT1. Nucleic Acids Res. 47, 9053–9068 (2019).
pubmed: 31400111 pmcid: 6753495
Esteve, P. O. et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc. Natl. Acad. Sci. USA 106, 5076–5081 (2009).
pubmed: 19282482 pmcid: 2654809 doi: 10.1073/pnas.0810362106
Yang, Y. et al. LSD1 coordinates with the SIN3A/HDAC complex and maintains sensitivity to chemotherapy in breast cancer. J. Mol. Cell Biol. 10, 285–301 (2018).
pubmed: 29741645 doi: 10.1093/jmcb/mjy021
Petell, C. J. et al. An epigenetic switch regulates de novo DNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation. Nucleic Acids Res. 44, 7605–7617 (2016).
pubmed: 27179026 pmcid: 5027477 doi: 10.1093/nar/gkw426
Gu, F. et al. Biological roles of LSD1 beyond its demethylase activity. Cell Mol. Life Sci. 77, 3341–3350 (2020).
pubmed: 32193608 pmcid: 11105033 doi: 10.1007/s00018-020-03489-9
Chao, A. et al. Lysine-specific demethylase 1 (LSD1) destabilizes p62 and inhibits autophagy in gynecologic malignancies. Oncotarget 8, 74434–74450 (2017).
pubmed: 29088798 pmcid: 5650353 doi: 10.18632/oncotarget.20158
Lan, H. et al. LSD1 destabilizes FBXW7 and abrogates FBXW7 functions independent of its demethylase activity. Proc. Natl. Acad. Sci. USA 116, 12311–12320 (2019).
pubmed: 31152129 pmcid: 6589684 doi: 10.1073/pnas.1902012116
Garcia-Martinez, L. et al. Endocrine resistance and breast cancer plasticity are controlled by CoREST. Nat. Struct. Mol. Biol. 29, 1122–1135 (2022).
pubmed: 36344844 pmcid: 9707522 doi: 10.1038/s41594-022-00856-x
Martello, G. & Smith, A. The nature of embryonic stem cells. Annu. Rev. Cell Dev. Biol. 30, 647–675 (2014).
pubmed: 25288119 doi: 10.1146/annurev-cellbio-100913-013116
Kim, S. A. et al. Crystal structure of the LSD1/CoREST histone demethylase bound to its nucleosome substrate. Mol. Cell 78, 903–914 e4 (2020).
pubmed: 32396821 pmcid: 7275924 doi: 10.1016/j.molcel.2020.04.019
Baron, R. et al. Molecular mimicry and ligand recognition in binding and catalysis by the histone demethylase LSD1-CoREST complex. Structure 19, 212–220 (2011).
pubmed: 21300290 pmcid: 3059804 doi: 10.1016/j.str.2011.01.001
Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562, 272–276 (2018).
pubmed: 30283134 doi: 10.1038/s41586-018-0578-0
Jung, H. R. et al. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol. Cell Proteom. 9, 838–850 (2010).
doi: 10.1074/mcp.M900489-MCP200
Ortabozkoyun, H. et al. CRISPR and biochemical screens identify MAZ as a cofactor in CTCF-mediated insulation at Hox clusters. Nat. Genet. 54, 202–212 (2022).
pubmed: 35145304 pmcid: 8837555 doi: 10.1038/s41588-021-01008-5
Guo, G. & Smith, A. A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency. Development 137, 3185–3192 (2010).
pubmed: 20823062 pmcid: 2934732 doi: 10.1242/dev.052753
Aguilo, F. et al. Coordination of m(6)A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17, 689–704 (2015).
pubmed: 26526723 pmcid: 4671830 doi: 10.1016/j.stem.2015.09.005
Agarwal, S. et al. KDM1A maintains genome-wide homeostasis of transcriptional enhancers. Genome Res. 31, 186–197 (2021).
pubmed: 33414108 pmcid: 7849409 doi: 10.1101/gr.234559.118
Zambanini, G. et al. A new CUT&RUN low volume-urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/beta-catenin tissue-specific genomic targets. Development 149, dev201124 (2022).
pubmed: 36355069 pmcid: 10112916 doi: 10.1242/dev.201124
Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, e21856 (2017).
pubmed: 28079019 pmcid: 5310842 doi: 10.7554/eLife.21856
Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).
pubmed: 29651053 doi: 10.1038/nprot.2018.015
Zhou, W. et al. DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. Cell Genom. 2, 100144 (2022).
pubmed: 35873672 pmcid: 9306256 doi: 10.1016/j.xgen.2022.100144
Elliott, E. N., Sheaffer, K. L. & Kaestner, K. H. The ‘de novo’ DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. Elife 5, e12975 (2016).
pubmed: 26808831 pmcid: 4786433 doi: 10.7554/eLife.12975
Mohammad, H. P. et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 28, 57–69 (2015).
pubmed: 26175415 doi: 10.1016/j.ccell.2015.06.002
Carnesecchi, J. et al. ERRalpha induces H3K9 demethylation by LSD1 to promote cell invasion. Proc. Natl. Acad. Sci. USA 114, 3909–3914 (2017).
pubmed: 28348226 pmcid: 5393192 doi: 10.1073/pnas.1614664114
Du, Z. et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci. Signal 3, ra80 (2010).
pubmed: 21045206 pmcid: 3116231 doi: 10.1126/scisignal.2001462
Ahmad, T. et al. TIP60 governs the auto‑ubiquitination of UHRF1 through USP7 dissociation from the UHRF1/USP7 complex. Int. J. Oncol. 59, 89 (2021).
pubmed: 34558642 pmcid: 8480382 doi: 10.3892/ijo.2021.5269
Yi, L. et al. Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncol. Rep. 36, 2935–2945 (2016).
pubmed: 27632941 doi: 10.3892/or.2016.5099
Lee, M. G. et al. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435 (2005).
pubmed: 16079794 doi: 10.1038/nature04021
Zeng, C. et al. Demethylase-independent roles of LSD1 in regulating enhancers and cell fate transition. Nat. Commun. 14, 4944 (2023).
pubmed: 37607921 pmcid: 10444793 doi: 10.1038/s41467-023-40606-1
Zhou, Q. et al. Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells. Mol. Cancer Res. 6, 873–883 (2008).
pubmed: 18505931 pmcid: 3361136 doi: 10.1158/1541-7786.MCR-07-0330
Hahm, J. Y. et al. Acetylation of UHRF1 regulates hemi-methylated DNA binding and maintenance of genome-wide DNA methylation. Cell Rep. 32, 107958 (2020).
pubmed: 32726623 doi: 10.1016/j.celrep.2020.107958
Okada, A. K. et al. Lysine acetylation regulates the interaction between proteins and membranes. Nat. Commun. 12, 6466 (2021).
pubmed: 34753925 pmcid: 8578602 doi: 10.1038/s41467-021-26657-2
Nalawansha, D. A. & Pflum, M. K. LSD1 substrate binding and gene expression are affected by HDAC1-mediated deacetylation. ACS Chem. Biol. 12, 254–264 (2017).
pubmed: 27977115 doi: 10.1021/acschembio.6b00776
Cheng, J. et al. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat. Commun. 6, 7023 (2015).
pubmed: 25960197 doi: 10.1038/ncomms8023
Sakamoto, A. et al. Lysine demethylase LSD1 coordinates glycolytic and mitochondrial metabolism in hepatocellular carcinoma cells. Cancer Res. 75, 1445–1456 (2015).
pubmed: 25649769 doi: 10.1158/0008-5472.CAN-14-1560
Sun, H. et al. Lysine-specific histone demethylase 1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch. Sci. Rep. 6, 30903 (2016).
pubmed: 27481483 pmcid: 4969595 doi: 10.1038/srep30903
Sehrawat, A. et al. LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc. Natl. Acad. Sci. USA 115, E4179–E4188 (2018).
pubmed: 29581250 pmcid: 5939079 doi: 10.1073/pnas.1719168115
Hatzi, K. et al. Histone demethylase LSD1 is required for germinal center formation and BCL6-driven lymphomagenesis. Nat. Immunol. 20, 86–96 (2019).
pubmed: 30538335 doi: 10.1038/s41590-018-0273-1
Dorighi, K. M. et al. Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Mol. Cell 66, 568–576 e4 (2017).
pubmed: 28483418 pmcid: 5662137 doi: 10.1016/j.molcel.2017.04.018
Local, A. et al. Identification of H3K4me1-associated proteins at mammalian enhancers. Nat. Genet. 50, 73–82 (2018).
pubmed: 29255264 doi: 10.1038/s41588-017-0015-6
Rickels, R. et al. Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability. Nat. Genet. 49, 1647–1653 (2017).
pubmed: 28967912 pmcid: 5663216 doi: 10.1038/ng.3965
Wang, C. et al. Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition. Proc. Natl. Acad. Sci. USA 113, 11871–11876 (2016).
pubmed: 27698142 pmcid: 5081576 doi: 10.1073/pnas.1606857113
Rada-Iglesias, A. Is H3K4me1 at enhancers correlative or causative? Nat. Genet. 50, 4–5 (2018).
pubmed: 29273804 doi: 10.1038/s41588-017-0018-3
Li, Y., Chen, X. & Lu, C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep. 22, e51803 (2021).
pubmed: 33844406 pmcid: 8097341 doi: 10.15252/embr.202051803
Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).
pubmed: 18600261 pmcid: 2896277 doi: 10.1038/nature07107
Subramaniam, A. et al. Lysine-specific demethylase 1A restricts ex vivo propagation of human HSCs and is a target of UM171. Blood 136, 2151–2161 (2020).
pubmed: 32582923 pmcid: 7645986 doi: 10.1182/blood.2020005827
Cornett, E. M. et al. Lysine methylation regulators moonlighting outside the epigenome. Mol. Cell 75, 1092–1101 (2019).
pubmed: 31539507 pmcid: 6756181 doi: 10.1016/j.molcel.2019.08.026
Forneris, F. et al. Structural basis of LSD1-CoREST selectivity in histone H3 recognition. J. Biol. Chem. 282, 20070–20074 (2007).
pubmed: 17537733 doi: 10.1074/jbc.C700100200
Wang, G. et al. SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis. Nat. Cell Biol. 21, 214–225 (2019).
pubmed: 30692626 pmcid: 6414065 doi: 10.1038/s41556-018-0266-1
Felle, M. et al. The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res. 39, 8355–8365 (2011).
pubmed: 21745816 pmcid: 3201865 doi: 10.1093/nar/gkr528
Bronner, C. Control of DNMT1 abundance in epigenetic inheritance by acetylation, ubiquitylation, and the histone code. Sci. Signal 4, pe3 (2011).
pubmed: 21266713 doi: 10.1126/scisignal.2001764
Qin, W., Leonhardt, H. & Spada, F. Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1. J. Cell Biochem. 112, 439–444 (2011).
pubmed: 21268065 doi: 10.1002/jcb.22998
Ma, H. et al. M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability. Proc. Natl. Acad. Sci. USA 109, 4828–4833 (2012).
pubmed: 22411829 pmcid: 3323953 doi: 10.1073/pnas.1116349109
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621 pmcid: 3218662 doi: 10.1186/gb-2010-11-10-r106
Baillie-Johnson, P. et al. Generation of aggregates of mouse embryonic stem cells that show symmetry breaking, polarization and emergent collective behaviour in vitro. J. Vis. Exp. 24, 53252 (2015).
Lee, D. F. et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol. Cell 36, 131–140 (2009).
pubmed: 19818716 pmcid: 2770835 doi: 10.1016/j.molcel.2009.07.025
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Lai, W., Lyu, C. & Wang, H. Vertical ultrafiltration-facilitated DNA digestion for rapid and sensitive UHPLC-MS/MS detection of DNA modifications. Anal. Chem. 90, 6859–6866 (2018).
pubmed: 29792685 doi: 10.1021/acs.analchem.8b01041
Garcia-Prieto, C. A. et al. Validation of a DNA methylation microarray for 285,000 CpG sites in the mouse genome. Epigenetics 17, 1677–1685 (2022).
pubmed: 35297293 pmcid: 9621044 doi: 10.1080/15592294.2022.2053816
Zhou, W. et al. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).
pubmed: 30085201 pmcid: 6237738
Karch, K. R., Sidoli, S. & Garcia, B. A. Identification and quantification of histone PTMs using high-resolution mass spectrometry. Methods Enzymol. 574, 3–29 (2016).
pubmed: 27423855 pmcid: 5089704 doi: 10.1016/bs.mie.2015.12.007
Yuan, Z. F. et al. EpiProfile 2.0: a computational platform for processing epi-proteomics mass spectrometry data. J. Proteome Res. 17, 2533–2541 (2018).
pubmed: 29790754 pmcid: 6387837 doi: 10.1021/acs.jproteome.8b00133
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
pubmed: 33590861 pmcid: 7931819 doi: 10.1093/gigascience/giab008
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).
pubmed: 25765347 doi: 10.1093/bioinformatics/btv145
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Haeussler, M. et al. Navigating protected genomics data with UCSC Genome Browser in a Box. Bioinformatics 31, 764–766 (2015).
pubmed: 25348212 doi: 10.1093/bioinformatics/btu712
Lerdrup, M. et al. An interactive environment for agile analysis and visualization of ChIP-sequencing data. Nat. Struct. Mol. Biol. 23, 349–357 (2016).
pubmed: 26926434 doi: 10.1038/nsmb.3180
Bushnell, B., Rood, J. & Singer, E. BBMerge—accurate paired shotgun read merging via overlap. PLoS One 12, e0185056 (2017).
pubmed: 29073143 pmcid: 5657622 doi: 10.1371/journal.pone.0185056
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Nordin, A. et al. The CUT&RUN suspect list of problematic regions of the genome. Genome Biol. 24, 185 (2023).
pubmed: 37563719 pmcid: 10416431 doi: 10.1186/s13059-023-03027-3
Meers, M. P., Tenenbaum, D. & Henikoff, S. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenet. Chromatin 12, 42 (2019).
doi: 10.1186/s13072-019-0287-4
Yashar, W. M. et al. GoPeaks: histone modification peak calling for CUT&Tag. Genome Biol. 23, 144 (2022).
pubmed: 35788238 pmcid: 9252088 doi: 10.1186/s13059-022-02707-w
Ramirez, F. et al. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).
pubmed: 24799436 pmcid: 4086134 doi: 10.1093/nar/gku365
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461 pmcid: 4840234 doi: 10.1038/nbt.1630
Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020).
pubmed: 31882993 doi: 10.1093/bioinformatics/btz931
Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).
pubmed: 25358341 doi: 10.15252/msb.20145625
Mateus, A. et al. The functional proteome landscape of Escherichia coli. Nature 588, 473–478 (2020).
pubmed: 33299184 pmcid: 7612278 doi: 10.1038/s41586-020-3002-5
Kong, A. T. et al. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).
pubmed: 28394336 pmcid: 5409104 doi: 10.1038/nmeth.4256
Huber, W. et al. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18, S96–S104 (2002).
pubmed: 12169536 doi: 10.1093/bioinformatics/18.suppl_1.S96
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007

Auteurs

Sandhya Malla (S)

Department of Molecular Biology, Umeå University, Umeå, Sweden.
Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.

Kanchan Kumari (K)

Department of Molecular Biology, Umeå University, Umeå, Sweden.
Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.

Carlos A García-Prieto (CA)

Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain.
Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain.

Jonatan Caroli (J)

Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.

Anna Nordin (A)

Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.

Trinh T T Phan (TTT)

Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Devi Prasad Bhattarai (DP)

Department of Molecular Biology, Umeå University, Umeå, Sweden.
Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.

Carlos Martinez-Gamero (C)

Department of Molecular Biology, Umeå University, Umeå, Sweden.
Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.

Eshagh Dorafshan (E)

Department of Molecular Biology, Umeå University, Umeå, Sweden.
Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.

Stephanie Stransky (S)

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.

Damiana Álvarez-Errico (D)

Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain.

Paulina Avovome Saiki (PA)

Department of Molecular Biology, Umeå University, Umeå, Sweden.
Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.

Weiyi Lai (W)

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.

Cong Lyu (C)

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.

Ludvig Lizana (L)

Department of Physics, Integrated Science Lab, Umeå University, Umeå, Sweden.

Jonathan D Gilthorpe (JD)

Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.

Hailin Wang (H)

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.

Simone Sidoli (S)

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.

Andre Mateus (A)

Department of Chemistry, Umeå University, Umeå, Sweden.
The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.

Dung-Fang Lee (DF)

Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA.
Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Claudio Cantù (C)

Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.

Manel Esteller (M)

Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain.
Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain.

Andrea Mattevi (A)

Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.

Angel-Carlos Roman (AC)

Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain.

Francesca Aguilo (F)

Department of Molecular Biology, Umeå University, Umeå, Sweden. francesca.aguilo@umu.se.
Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden. francesca.aguilo@umu.se.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH