The scaffolding function of LSD1 controls DNA methylation in mouse ESCs.
Animals
Histone Demethylases
/ metabolism
Mice
DNA Methylation
DNA (Cytosine-5-)-Methyltransferase 1
/ metabolism
Mouse Embryonic Stem Cells
/ metabolism
Cell Differentiation
Mice, Knockout
Ubiquitin-Protein Ligases
/ metabolism
CCAAT-Enhancer-Binding Proteins
/ metabolism
Histone Deacetylase 1
/ metabolism
Histones
/ metabolism
Cell Proliferation
Ubiquitination
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
05 Sep 2024
05 Sep 2024
Historique:
received:
19
06
2023
accepted:
21
08
2024
medline:
6
9
2024
pubmed:
6
9
2024
entrez:
5
9
2024
Statut:
epublish
Résumé
Lysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1
Identifiants
pubmed: 39237615
doi: 10.1038/s41467-024-51966-7
pii: 10.1038/s41467-024-51966-7
doi:
Substances chimiques
Histone Demethylases
EC 1.14.11.-
KDM1a protein, mouse
EC 1.14.11.-
DNA (Cytosine-5-)-Methyltransferase 1
EC 2.1.1.37
Dnmt1 protein, mouse
EC 2.1.1.37
Uhrf1 protein, mouse
EC 2.3.2.27
Ubiquitin-Protein Ligases
EC 2.3.2.27
CCAAT-Enhancer-Binding Proteins
0
Histone Deacetylase 1
EC 3.5.1.98
Histones
0
Hdac1 protein, mouse
EC 3.5.1.98
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7758Subventions
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2017-01636 and 2022-01322
Organisme : Kempestiftelserna (Kempe Foundations)
ID : JCK-2150 and JCSMK22-0109
Organisme : Cancerfonden (Swedish Cancer Society)
ID : 190337 Pj; 22 2455 Pj
Informations de copyright
© 2024. The Author(s).
Références
Atlasi, Y. & Stunnenberg, H. G. The interplay of epigenetic marks during stem cell differentiation and development. Nat. Rev. Genet. 18, 643–658 (2017).
pubmed: 28804139
doi: 10.1038/nrg.2017.57
Boland, M. J., Nazor, K. L. & Loring, J. F. Epigenetic regulation of pluripotency and differentiation. Circ. Res. 115, 311–324 (2014).
pubmed: 24989490
pmcid: 4229506
doi: 10.1161/CIRCRESAHA.115.301517
Malla, S., Melguizo-Sanchis, D. & Aguilo, F. Steering pluripotency and differentiation with N(6)-methyladenosine RNA modification. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 394–402 (2019).
pubmed: 30412796
doi: 10.1016/j.bbagrm.2018.10.013
Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).
pubmed: 15620353
doi: 10.1016/j.cell.2004.12.012
Forneris, F. et al. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207 (2005).
pubmed: 15811342
doi: 10.1016/j.febslet.2005.03.015
Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 41, 125–129 (2009).
pubmed: 19098913
doi: 10.1038/ng.268
Wang, J. et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446, 882–887 (2007).
pubmed: 17392792
doi: 10.1038/nature05671
Martinez-Gamero, C., Malla, S. & Aguilo, F. LSD1: expanding functions in stem cells and differentiation. Cells 10, 3252 (2021).
pubmed: 34831474
pmcid: 8624367
doi: 10.3390/cells10113252
Adamo, A. et al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat. Cell Biol. 13, 652–659 (2011).
pubmed: 21602794
doi: 10.1038/ncb2246
Han, X. et al. Destabilizing LSD1 by Jade-2 promotes neurogenesis: an antibraking system in neural development. Mol. Cell 55, 482–494 (2014).
pubmed: 25018020
doi: 10.1016/j.molcel.2014.06.006
Foster, C. T. et al. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol. Cell Biol. 30, 4851–4863 (2010).
pubmed: 20713442
pmcid: 2950538
doi: 10.1128/MCB.00521-10
Choi, J. et al. Histone demethylase LSD1 is required to induce skeletal muscle differentiation by regulating myogenic factors. Biochem. Biophys. Res. Commun. 401, 327–332 (2010).
pubmed: 20833138
doi: 10.1016/j.bbrc.2010.09.014
Musri, M. M. et al. Histone demethylase LSD1 regulates adipogenesis. J. Biol. Chem. 285, 30034–30041 (2010).
pubmed: 20656681
pmcid: 2943311
doi: 10.1074/jbc.M110.151209
Saleque, S. et al. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol. Cell 27, 562–572 (2007).
pubmed: 17707228
doi: 10.1016/j.molcel.2007.06.039
Su, S. T. et al. Involvement of histone demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation. Mol. Cell Biol. 29, 1421–1431 (2009).
pubmed: 19124609
pmcid: 2648243
doi: 10.1128/MCB.01158-08
Whyte, W. A. et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225 (2012).
pubmed: 22297846
pmcid: 4144424
doi: 10.1038/nature10805
Hahm, J. Y. et al. Methylation of UHRF1 by SET7 is essential for DNA double-strand break repair. Nucleic Acids Res. 47, 184–196 (2019).
pubmed: 30357346
doi: 10.1093/nar/gky975
Majello, B. et al. Expanding the role of the histone lysine-specific demethylase LSD1 in cancer. Cancers (Basel) 11, 324 (2019).
pubmed: 30866496
doi: 10.3390/cancers11030324
Mancini, M. et al. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res. 49, 6053–6068 (2021).
pubmed: 33939809
pmcid: 8216287
doi: 10.1093/nar/gkab293
Zhang, H. et al. SET8 prevents excessive DNA methylation by methylation-mediated degradation of UHRF1 and DNMT1. Nucleic Acids Res. 47, 9053–9068 (2019).
pubmed: 31400111
pmcid: 6753495
Esteve, P. O. et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc. Natl. Acad. Sci. USA 106, 5076–5081 (2009).
pubmed: 19282482
pmcid: 2654809
doi: 10.1073/pnas.0810362106
Yang, Y. et al. LSD1 coordinates with the SIN3A/HDAC complex and maintains sensitivity to chemotherapy in breast cancer. J. Mol. Cell Biol. 10, 285–301 (2018).
pubmed: 29741645
doi: 10.1093/jmcb/mjy021
Petell, C. J. et al. An epigenetic switch regulates de novo DNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation. Nucleic Acids Res. 44, 7605–7617 (2016).
pubmed: 27179026
pmcid: 5027477
doi: 10.1093/nar/gkw426
Gu, F. et al. Biological roles of LSD1 beyond its demethylase activity. Cell Mol. Life Sci. 77, 3341–3350 (2020).
pubmed: 32193608
pmcid: 11105033
doi: 10.1007/s00018-020-03489-9
Chao, A. et al. Lysine-specific demethylase 1 (LSD1) destabilizes p62 and inhibits autophagy in gynecologic malignancies. Oncotarget 8, 74434–74450 (2017).
pubmed: 29088798
pmcid: 5650353
doi: 10.18632/oncotarget.20158
Lan, H. et al. LSD1 destabilizes FBXW7 and abrogates FBXW7 functions independent of its demethylase activity. Proc. Natl. Acad. Sci. USA 116, 12311–12320 (2019).
pubmed: 31152129
pmcid: 6589684
doi: 10.1073/pnas.1902012116
Garcia-Martinez, L. et al. Endocrine resistance and breast cancer plasticity are controlled by CoREST. Nat. Struct. Mol. Biol. 29, 1122–1135 (2022).
pubmed: 36344844
pmcid: 9707522
doi: 10.1038/s41594-022-00856-x
Martello, G. & Smith, A. The nature of embryonic stem cells. Annu. Rev. Cell Dev. Biol. 30, 647–675 (2014).
pubmed: 25288119
doi: 10.1146/annurev-cellbio-100913-013116
Kim, S. A. et al. Crystal structure of the LSD1/CoREST histone demethylase bound to its nucleosome substrate. Mol. Cell 78, 903–914 e4 (2020).
pubmed: 32396821
pmcid: 7275924
doi: 10.1016/j.molcel.2020.04.019
Baron, R. et al. Molecular mimicry and ligand recognition in binding and catalysis by the histone demethylase LSD1-CoREST complex. Structure 19, 212–220 (2011).
pubmed: 21300290
pmcid: 3059804
doi: 10.1016/j.str.2011.01.001
Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562, 272–276 (2018).
pubmed: 30283134
doi: 10.1038/s41586-018-0578-0
Jung, H. R. et al. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol. Cell Proteom. 9, 838–850 (2010).
doi: 10.1074/mcp.M900489-MCP200
Ortabozkoyun, H. et al. CRISPR and biochemical screens identify MAZ as a cofactor in CTCF-mediated insulation at Hox clusters. Nat. Genet. 54, 202–212 (2022).
pubmed: 35145304
pmcid: 8837555
doi: 10.1038/s41588-021-01008-5
Guo, G. & Smith, A. A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency. Development 137, 3185–3192 (2010).
pubmed: 20823062
pmcid: 2934732
doi: 10.1242/dev.052753
Aguilo, F. et al. Coordination of m(6)A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17, 689–704 (2015).
pubmed: 26526723
pmcid: 4671830
doi: 10.1016/j.stem.2015.09.005
Agarwal, S. et al. KDM1A maintains genome-wide homeostasis of transcriptional enhancers. Genome Res. 31, 186–197 (2021).
pubmed: 33414108
pmcid: 7849409
doi: 10.1101/gr.234559.118
Zambanini, G. et al. A new CUT&RUN low volume-urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/beta-catenin tissue-specific genomic targets. Development 149, dev201124 (2022).
pubmed: 36355069
pmcid: 10112916
doi: 10.1242/dev.201124
Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, e21856 (2017).
pubmed: 28079019
pmcid: 5310842
doi: 10.7554/eLife.21856
Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).
pubmed: 29651053
doi: 10.1038/nprot.2018.015
Zhou, W. et al. DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. Cell Genom. 2, 100144 (2022).
pubmed: 35873672
pmcid: 9306256
doi: 10.1016/j.xgen.2022.100144
Elliott, E. N., Sheaffer, K. L. & Kaestner, K. H. The ‘de novo’ DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. Elife 5, e12975 (2016).
pubmed: 26808831
pmcid: 4786433
doi: 10.7554/eLife.12975
Mohammad, H. P. et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 28, 57–69 (2015).
pubmed: 26175415
doi: 10.1016/j.ccell.2015.06.002
Carnesecchi, J. et al. ERRalpha induces H3K9 demethylation by LSD1 to promote cell invasion. Proc. Natl. Acad. Sci. USA 114, 3909–3914 (2017).
pubmed: 28348226
pmcid: 5393192
doi: 10.1073/pnas.1614664114
Du, Z. et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci. Signal 3, ra80 (2010).
pubmed: 21045206
pmcid: 3116231
doi: 10.1126/scisignal.2001462
Ahmad, T. et al. TIP60 governs the auto‑ubiquitination of UHRF1 through USP7 dissociation from the UHRF1/USP7 complex. Int. J. Oncol. 59, 89 (2021).
pubmed: 34558642
pmcid: 8480382
doi: 10.3892/ijo.2021.5269
Yi, L. et al. Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncol. Rep. 36, 2935–2945 (2016).
pubmed: 27632941
doi: 10.3892/or.2016.5099
Lee, M. G. et al. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435 (2005).
pubmed: 16079794
doi: 10.1038/nature04021
Zeng, C. et al. Demethylase-independent roles of LSD1 in regulating enhancers and cell fate transition. Nat. Commun. 14, 4944 (2023).
pubmed: 37607921
pmcid: 10444793
doi: 10.1038/s41467-023-40606-1
Zhou, Q. et al. Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells. Mol. Cancer Res. 6, 873–883 (2008).
pubmed: 18505931
pmcid: 3361136
doi: 10.1158/1541-7786.MCR-07-0330
Hahm, J. Y. et al. Acetylation of UHRF1 regulates hemi-methylated DNA binding and maintenance of genome-wide DNA methylation. Cell Rep. 32, 107958 (2020).
pubmed: 32726623
doi: 10.1016/j.celrep.2020.107958
Okada, A. K. et al. Lysine acetylation regulates the interaction between proteins and membranes. Nat. Commun. 12, 6466 (2021).
pubmed: 34753925
pmcid: 8578602
doi: 10.1038/s41467-021-26657-2
Nalawansha, D. A. & Pflum, M. K. LSD1 substrate binding and gene expression are affected by HDAC1-mediated deacetylation. ACS Chem. Biol. 12, 254–264 (2017).
pubmed: 27977115
doi: 10.1021/acschembio.6b00776
Cheng, J. et al. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat. Commun. 6, 7023 (2015).
pubmed: 25960197
doi: 10.1038/ncomms8023
Sakamoto, A. et al. Lysine demethylase LSD1 coordinates glycolytic and mitochondrial metabolism in hepatocellular carcinoma cells. Cancer Res. 75, 1445–1456 (2015).
pubmed: 25649769
doi: 10.1158/0008-5472.CAN-14-1560
Sun, H. et al. Lysine-specific histone demethylase 1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch. Sci. Rep. 6, 30903 (2016).
pubmed: 27481483
pmcid: 4969595
doi: 10.1038/srep30903
Sehrawat, A. et al. LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc. Natl. Acad. Sci. USA 115, E4179–E4188 (2018).
pubmed: 29581250
pmcid: 5939079
doi: 10.1073/pnas.1719168115
Hatzi, K. et al. Histone demethylase LSD1 is required for germinal center formation and BCL6-driven lymphomagenesis. Nat. Immunol. 20, 86–96 (2019).
pubmed: 30538335
doi: 10.1038/s41590-018-0273-1
Dorighi, K. M. et al. Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. Mol. Cell 66, 568–576 e4 (2017).
pubmed: 28483418
pmcid: 5662137
doi: 10.1016/j.molcel.2017.04.018
Local, A. et al. Identification of H3K4me1-associated proteins at mammalian enhancers. Nat. Genet. 50, 73–82 (2018).
pubmed: 29255264
doi: 10.1038/s41588-017-0015-6
Rickels, R. et al. Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability. Nat. Genet. 49, 1647–1653 (2017).
pubmed: 28967912
pmcid: 5663216
doi: 10.1038/ng.3965
Wang, C. et al. Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition. Proc. Natl. Acad. Sci. USA 113, 11871–11876 (2016).
pubmed: 27698142
pmcid: 5081576
doi: 10.1073/pnas.1606857113
Rada-Iglesias, A. Is H3K4me1 at enhancers correlative or causative? Nat. Genet. 50, 4–5 (2018).
pubmed: 29273804
doi: 10.1038/s41588-017-0018-3
Li, Y., Chen, X. & Lu, C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep. 22, e51803 (2021).
pubmed: 33844406
pmcid: 8097341
doi: 10.15252/embr.202051803
Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).
pubmed: 18600261
pmcid: 2896277
doi: 10.1038/nature07107
Subramaniam, A. et al. Lysine-specific demethylase 1A restricts ex vivo propagation of human HSCs and is a target of UM171. Blood 136, 2151–2161 (2020).
pubmed: 32582923
pmcid: 7645986
doi: 10.1182/blood.2020005827
Cornett, E. M. et al. Lysine methylation regulators moonlighting outside the epigenome. Mol. Cell 75, 1092–1101 (2019).
pubmed: 31539507
pmcid: 6756181
doi: 10.1016/j.molcel.2019.08.026
Forneris, F. et al. Structural basis of LSD1-CoREST selectivity in histone H3 recognition. J. Biol. Chem. 282, 20070–20074 (2007).
pubmed: 17537733
doi: 10.1074/jbc.C700100200
Wang, G. et al. SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis. Nat. Cell Biol. 21, 214–225 (2019).
pubmed: 30692626
pmcid: 6414065
doi: 10.1038/s41556-018-0266-1
Felle, M. et al. The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res. 39, 8355–8365 (2011).
pubmed: 21745816
pmcid: 3201865
doi: 10.1093/nar/gkr528
Bronner, C. Control of DNMT1 abundance in epigenetic inheritance by acetylation, ubiquitylation, and the histone code. Sci. Signal 4, pe3 (2011).
pubmed: 21266713
doi: 10.1126/scisignal.2001764
Qin, W., Leonhardt, H. & Spada, F. Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1. J. Cell Biochem. 112, 439–444 (2011).
pubmed: 21268065
doi: 10.1002/jcb.22998
Ma, H. et al. M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability. Proc. Natl. Acad. Sci. USA 109, 4828–4833 (2012).
pubmed: 22411829
pmcid: 3323953
doi: 10.1073/pnas.1116349109
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621
pmcid: 3218662
doi: 10.1186/gb-2010-11-10-r106
Baillie-Johnson, P. et al. Generation of aggregates of mouse embryonic stem cells that show symmetry breaking, polarization and emergent collective behaviour in vitro. J. Vis. Exp. 24, 53252 (2015).
Lee, D. F. et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol. Cell 36, 131–140 (2009).
pubmed: 19818716
pmcid: 2770835
doi: 10.1016/j.molcel.2009.07.025
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Lai, W., Lyu, C. & Wang, H. Vertical ultrafiltration-facilitated DNA digestion for rapid and sensitive UHPLC-MS/MS detection of DNA modifications. Anal. Chem. 90, 6859–6866 (2018).
pubmed: 29792685
doi: 10.1021/acs.analchem.8b01041
Garcia-Prieto, C. A. et al. Validation of a DNA methylation microarray for 285,000 CpG sites in the mouse genome. Epigenetics 17, 1677–1685 (2022).
pubmed: 35297293
pmcid: 9621044
doi: 10.1080/15592294.2022.2053816
Zhou, W. et al. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).
pubmed: 30085201
pmcid: 6237738
Karch, K. R., Sidoli, S. & Garcia, B. A. Identification and quantification of histone PTMs using high-resolution mass spectrometry. Methods Enzymol. 574, 3–29 (2016).
pubmed: 27423855
pmcid: 5089704
doi: 10.1016/bs.mie.2015.12.007
Yuan, Z. F. et al. EpiProfile 2.0: a computational platform for processing epi-proteomics mass spectrometry data. J. Proteome Res. 17, 2533–2541 (2018).
pubmed: 29790754
pmcid: 6387837
doi: 10.1021/acs.jproteome.8b00133
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
pubmed: 33590861
pmcid: 7931819
doi: 10.1093/gigascience/giab008
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982
pmcid: 2592715
doi: 10.1186/gb-2008-9-9-r137
Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).
pubmed: 25765347
doi: 10.1093/bioinformatics/btv145
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432
pmcid: 2898526
doi: 10.1016/j.molcel.2010.05.004
Haeussler, M. et al. Navigating protected genomics data with UCSC Genome Browser in a Box. Bioinformatics 31, 764–766 (2015).
pubmed: 25348212
doi: 10.1093/bioinformatics/btu712
Lerdrup, M. et al. An interactive environment for agile analysis and visualization of ChIP-sequencing data. Nat. Struct. Mol. Biol. 23, 349–357 (2016).
pubmed: 26926434
doi: 10.1038/nsmb.3180
Bushnell, B., Rood, J. & Singer, E. BBMerge—accurate paired shotgun read merging via overlap. PLoS One 12, e0185056 (2017).
pubmed: 29073143
pmcid: 5657622
doi: 10.1371/journal.pone.0185056
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Nordin, A. et al. The CUT&RUN suspect list of problematic regions of the genome. Genome Biol. 24, 185 (2023).
pubmed: 37563719
pmcid: 10416431
doi: 10.1186/s13059-023-03027-3
Meers, M. P., Tenenbaum, D. & Henikoff, S. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenet. Chromatin 12, 42 (2019).
doi: 10.1186/s13072-019-0287-4
Yashar, W. M. et al. GoPeaks: histone modification peak calling for CUT&Tag. Genome Biol. 23, 144 (2022).
pubmed: 35788238
pmcid: 9252088
doi: 10.1186/s13059-022-02707-w
Ramirez, F. et al. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).
pubmed: 24799436
pmcid: 4086134
doi: 10.1093/nar/gku365
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461
pmcid: 4840234
doi: 10.1038/nbt.1630
Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020).
pubmed: 31882993
doi: 10.1093/bioinformatics/btz931
Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).
pubmed: 25358341
doi: 10.15252/msb.20145625
Mateus, A. et al. The functional proteome landscape of Escherichia coli. Nature 588, 473–478 (2020).
pubmed: 33299184
pmcid: 7612278
doi: 10.1038/s41586-020-3002-5
Kong, A. T. et al. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).
pubmed: 28394336
pmcid: 5409104
doi: 10.1038/nmeth.4256
Huber, W. et al. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18, S96–S104 (2002).
pubmed: 12169536
doi: 10.1093/bioinformatics/18.suppl_1.S96
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007