Regional desynchronization of microglial activity is associated with cognitive decline in Alzheimer's disease.


Journal

Molecular neurodegeneration
ISSN: 1750-1326
Titre abrégé: Mol Neurodegener
Pays: England
ID NLM: 101266600

Informations de publication

Date de publication:
05 Sep 2024
Historique:
received: 20 02 2024
accepted: 20 08 2024
medline: 6 9 2024
pubmed: 6 9 2024
entrez: 5 9 2024
Statut: epublish

Résumé

Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker. To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization. Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia. Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.

Sections du résumé

BACKGROUND BACKGROUND
Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker.
METHODS METHODS
To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization.
RESULTS RESULTS
Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia.
CONCLUSION CONCLUSIONS
Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.

Identifiants

pubmed: 39238030
doi: 10.1186/s13024-024-00752-6
pii: 10.1186/s13024-024-00752-6
doi:

Substances chimiques

Receptors, GABA 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

64

Informations de copyright

© 2024. The Author(s).

Références

Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. The Lancet Neurology. 2015;14(4):388–405.
pubmed: 25792098 pmcid: 5909703 doi: 10.1016/S1474-4422(15)70016-5
Serrano-Pozo A, Mielke ML, Gómez-Isla T, Betensky RA, Growdon JH, Frosch MP, Hyman BT. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol. 2011;179(3):1373–84.
pubmed: 21777559 pmcid: 3157187 doi: 10.1016/j.ajpath.2011.05.047
Fan Z, Brooks DJ, Okello A, Edison P. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain. 2017;140(3):792–803.
pubmed: 28122877 pmcid: 5837520
Rauchmann BS, Brendel M, Franzmeier N, Trappmann L, Zaganjori M, Ersoezlue E, et al. Microglial Activation and Connectivity in Alzheimer Disease and Aging. Ann Neurol. 2022;92(5):768–81.
Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, et al. Microglial activation and tau propagate jointly across Braak stages. Nat Med. 2021;27(9):1592–9.
pubmed: 34446931 doi: 10.1038/s41591-021-01456-w
Finze A, Biechele G, Rauchmann BS, Franzmeier N, Palleis C, Katzdobler S, et al. Individual regional associations between Aβ-, tau- and neurodegeneration (ATN) with microglial activation in patients with primary and secondary tauopathies. Mol Psychiatry. 2023:1–13.
Ewers M, Franzmeier N, Suárez-Calvet M, Morenas-Rodriguez E, Caballero MAA, Kleinberger G, et al. Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease. Sci Transl Med. 2019;11(507):eaav6221.
pubmed: 31462511 pmcid: 7050285 doi: 10.1126/scitranslmed.aav6221
Morenas-Rodríguez E, Li Y, Nuscher B, Franzmeier N, Xiong C, Suárez-Calvet M, et al. Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer’s disease: a longitudinal observational study. Lancet Neurol. 2022;21(4):329–41.
pubmed: 35305339 pmcid: 8926925 doi: 10.1016/S1474-4422(22)00027-8
Ewers M, Biechele G, Suárez-Calvet M, Sacher C, Blume T, Morenas-Rodriguez E, et al. Higher CSF sTREM2 and microglia activation are associated with slower rates of beta-amyloid accumulation. EMBO Mol Med. 2020;12(9): e12308.
pubmed: 32790063 pmcid: 7507349 doi: 10.15252/emmm.202012308
Hou J, Chen Y, Grajales-Reyes G, Colonna M. TREM2 dependent and independent functions of microglia in Alzheimer’s disease. Mol Neurodegener. 2022;17(1):84.
pubmed: 36564824 pmcid: 9783481 doi: 10.1186/s13024-022-00588-y
Tan Y-L, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry. 2020;25(2):351–67.
pubmed: 31772305 doi: 10.1038/s41380-019-0609-8
Werry EL, Bright FM, Piguet O, Ittner LM, Halliday GM, Hodges JR, et al. Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int J Mol Sci. 2019;20(13):3161.
Stefaniak J, O’Brien J. Imaging of neuroinflammation in dementia: a review. J Neurol Neurosurg Psychiatry. 2016;87(1):21–8.
pubmed: 26384512
Van Camp N, Lavisse S, Roost P, Gubinelli F, Hillmer A, Boutin H. TSPO imaging in animal models of brain diseases. Eur J Nucl Med Mol Imaging. 2021;49(1):77–109.
pubmed: 34245328 pmcid: 8712305 doi: 10.1007/s00259-021-05379-z
Sebastian Monasor L, Müller SA, Colombo AV, Tanrioever G, König J, Roth S, et al. Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. Elife. 2020;9: e54083.
pubmed: 32510331 pmcid: 7279888 doi: 10.7554/eLife.54083
Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Péran P, et al. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer’s disease: An update. Eur J Neurosci. 2022;55(5):1322–43.
pubmed: 35083791 doi: 10.1111/ejn.15613
Vogel JW, Young AL, Oxtoby NP, Smith R, Ossenkoppele R, Strandberg OT, et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat Med. 2021;27(5):871–81.
pubmed: 33927414 pmcid: 8686688 doi: 10.1038/s41591-021-01309-6
Yakushev I, Drzezga A, Habeck C. Metabolic connectivity: methods and applications. Curr Opin Neurol. 2017;30(6):677–85.
pubmed: 28914733 doi: 10.1097/WCO.0000000000000494
Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, et al. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat Commun. 2019;10(1):3758.
pubmed: 31434879 pmcid: 6704256 doi: 10.1038/s41467-019-11674-z
Xiang X, Wind K, Wiedemann T, Blume T, Shi Y, Briel N, et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci Transl Med. 2021;13(615):eabe5640.
pubmed: 34644146 doi: 10.1126/scitranslmed.abe5640
Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006;7(9):940–6.
pubmed: 16906128 pmcid: 1559665 doi: 10.1038/sj.embor.7400784
Parhizkar S, Arzberger T, Brendel M, Kleinberger G, Deussing M, Focke C, et al. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat Neurosci. 2019;22(2):191–204.
pubmed: 30617257 pmcid: 6417433 doi: 10.1038/s41593-018-0296-9
Eckenweber F, Medina-Luque J, Blume T, Sacher C, Biechele G, Wind K, et al. Longitudinal TSPO expression in tau transgenic P301S mice predicts increased tau accumulation and deteriorated spatial learning. J Neuroinflammation. 2020;17:1–12.
doi: 10.1186/s12974-020-01883-5
Zatcepin A, Heindl S, Schillinger U, Kaiser L, Lindner S, Bartenstein P, et al. Reduced acquisition time [18F] GE-180 PET scanning protocol replaces gold-standard dynamic acquisition in a mouse ischemic stroke model. Front Med. 2022;9:830020.
Heindl S, Ricci A, Carofiglio O, Zhou Q, Arzberger T, Lenart N, et al. Chronic T cell proliferation in brains after stroke could interfere with the efficacy of immunotherapies. J Exp Med. 2021;218(8): e20202411.
pubmed: 34037669 pmcid: 8160576 doi: 10.1084/jem.20202411
Llovera G, Pinkham K, Liesz A. Modeling stroke in mice: focal cortical lesions by photothrombosis. JoVE (Journal of Visualized Experiments). 2021;(171):e62536.
Brendel M, Probst F, Jaworska A, Overhoff F, Korzhova V, Albert NL, et al. Glial Activation and Glucose Metabolism in a Transgenic Amyloid Mouse Model: A Triple-Tracer PET Study. J Nucl Med. 2016;57(6):954–60.
pubmed: 26912428 doi: 10.2967/jnumed.115.167858
Overhoff F, Brendel M, Jaworska A, Korzhova V, Delker A, Probst F, et al. Automated Spatial Brain Normalization and Hindbrain White Matter Reference Tissue Give Improved [(18)F]-Florbetaben PET Quantitation in Alzheimer’s Model Mice. Front Neurosci. 2016;10:45.
pubmed: 26973442 pmcid: 4770021 doi: 10.3389/fnins.2016.00045
Deussing M, Blume T, Vomacka L, Mahler C, Focke C, Todica A, et al. Coupling between physiological TSPO expression in brain and myocardium allows stabilization of late-phase cerebral [(18)F]GE180 PET quantification. Neuroimage. 2017;165:83–91.
pubmed: 28988133 doi: 10.1016/j.neuroimage.2017.10.006
Ma Y, Hof PR, Grant SC, Blackband SJ, Bennett R, Slatest L, et al. A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience. 2005;135(4):1203–15.
pubmed: 16165303 doi: 10.1016/j.neuroscience.2005.07.014
Gnörich J, Reifschneider A, Wind K, Zatcepin A, Kunte ST, Beumers P, et al. Depletion and activation of microglia impact metabolic connectivity of the mouse brain. J Neuroinflammation. 2023;20(1):47.
pubmed: 36829182 pmcid: 9951492 doi: 10.1186/s12974-023-02735-8
Albert NL, Unterrainer M, Fleischmann DF, Lindner S, Vettermann F, Brunegraf A, et al. TSPO PET for glioma imaging using the novel ligand (18)F-GE-180: first results in patients with glioblastoma. Eur J Nucl Med Mol Imaging. 2017;44(13):2230–8.
pubmed: 28821920 doi: 10.1007/s00259-017-3799-9
Vettermann FJ, Harris S, Schmitt J, Unterrainer M, Lindner S, Rauchmann BS, et al. Impact of TSPO Receptor Polymorphism on [(18)F]GE-180 Binding in Healthy Brain and Pseudo-Reference Regions of Neurooncological and Neurodegenerative Disorders. Life (Basel). 2021;11(6):484
Grosch M, Lindner M, Bartenstein P, Brandt T, Dieterich M, Ziegler S, Zwergal A. Dynamic whole-brain metabolic connectivity during vestibular compensation in the rat. Neuroimage. 2021;226: 117588.
pubmed: 33249212 doi: 10.1016/j.neuroimage.2020.117588
Freedman D, Pisani R, Purves R. Statistics. 4th ed. New York: W.W. Norton & Company; 2007. Chapter 8, Correlation; p. 119–140.
Huber M, Beyer L, Prix C, Schönecker S, Palleis C, Rauchmann BS, et al. Metabolic correlates of dopaminergic loss in dementia with Lewy bodies. Mov Disord. 2020;35(4):595–605.
pubmed: 31840326 doi: 10.1002/mds.27945
Bartos LM, Kunte ST, Beumers P, Xiang X, Wind K, Ziegler S, et al. Single-Cell Radiotracer Allocation via Immunomagnetic Sorting to Disentangle PET Signals at Cellular Resolution. J Nucl Med. 2022;63(10):1459–62.
pubmed: 35589403 pmcid: 9536696 doi: 10.2967/jnumed.122.264171
Bartos LM, Kirchleitner SV, Kolabas ZI, Quach S, Beck A, Lorenz J, et al. Deciphering sources of PET signals in the tumor microenvironment of glioblastoma at cellular resolution. Sci Adv. 2023;9(43):eadi8986.
pubmed: 37889970 pmcid: 10610915 doi: 10.1126/sciadv.adi8986
Gnorich J, Reifschneider A, Wind K, Zatcepin A, Kunte ST, Beumers P, et al. Depletion and activation of microglia impact metabolic connectivity of the mouse brain. J Neuroinflammation. 2023;20(1):47.
pubmed: 36829182 pmcid: 9951492 doi: 10.1186/s12974-023-02735-8
Wendeln A-C, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature. 2018;556(7701):332–8.
pubmed: 29643512 pmcid: 6038912 doi: 10.1038/s41586-018-0023-4
Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–8.
pubmed: 23254930 doi: 10.1038/nature11729
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888-902.e21.
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;52(3/4):591–611.
doi: 10.2307/2333709
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57(1):289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x
Eckenweber F, Medina-Luque J, Blume T, Sacher C, Biechele G, Wind K, et al. Longitudinal TSPO expression in tau transgenic P301S mice predicts increased tau accumulation and deteriorated spatial learning. J Neuroinflammation. 2020;17(1):208.
pubmed: 32660586 pmcid: 7358201 doi: 10.1186/s12974-020-01883-5
Sacher C, Blume T, Beyer L, Peters F, Eckenweber F, Sgobio C, et al. Longitudinal PET Monitoring of Amyloidosis and Microglial Activation in a Second-Generation Amyloid-beta Mouse Model. J Nucl Med. 2019;60(12):1787–93.
pubmed: 31302633 pmcid: 6894380 doi: 10.2967/jnumed.119.227322
Bartos LM, Kunte ST, Beumers P, Xiang X, Wind K, Ziegler S, et al. Single-Cell Radiotracer Allocation via Immunomagnetic Sorting to Disentangle PET Signals at Cellular Resolution. J Nucl Med. 2022;63(10):1459–62.
pubmed: 35589403 pmcid: 9536696 doi: 10.2967/jnumed.122.264171
Palleis C, Sauerbeck J, Beyer L, Harris S, Schmitt J, Morenas-Rodriguez E, et al. In vivo assessment of neuroinflammation in 4-repeat tauopathies. Mov Disord. 2021;36(4):883–94.
pubmed: 33245166 doi: 10.1002/mds.28395
Safaiyan S, Besson-Girard S, Kaya T, Cantuti-Castelvetri L, Liu L, Ji H, et al. White matter aging drives microglial diversity. Neuron. 2021;109(7):1100-17.e10.
pubmed: 33606969 doi: 10.1016/j.neuron.2021.01.027
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.
pubmed: 21778362 doi: 10.1126/science.1202529
Neumann H, Kotter MR, Franklin RJM. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2008;132(2):288–95.
pubmed: 18567623 pmcid: 2640215 doi: 10.1093/brain/awn109
Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, Werner G, et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep. 2017;18(7):1186–98.
pubmed: 28483841 pmcid: 5494532 doi: 10.15252/embr.201743922
Finze A, Biechele G, Rauchmann B-S, Franzmeier N, Palleis C, Katzdobler S, et al. Individual regional associations between Aβ-, tau- and neurodegeneration (ATN) with microglial activation in patients with primary and secondary tauopathies. medRxiv. 2022:2022.11.12.22282082.
Kim B, Suh E, Nguyen AT, Prokop S, Mikytuck B, Olatunji OA, et al. TREM2 risk variants are associated with atypical Alzheimer’s disease. Acta Neuropathol. 2022;144(6):1085–102.
pubmed: 36112222 pmcid: 9643636 doi: 10.1007/s00401-022-02495-4
Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353(6294):78–82.
pubmed: 27365449 doi: 10.1126/science.aaf2403
Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997;42(1):85–94.
pubmed: 9225689 doi: 10.1002/ana.410420114
Lee PL, Chou KH, Chung CP, Lai TH, Zhou JH, Wang PN, Lin CP. Posterior Cingulate Cortex Network Predicts Alzheimer’s Disease Progression. Front Aging Neurosci. 2020;12: 608667.
pubmed: 33384594 pmcid: 7770227 doi: 10.3389/fnagi.2020.608667
Hamelin L, Lagarde J, Dorothée G, Potier MC, Corlier F, Kuhnast B, et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain. 2018;141(6):1855–70.
pubmed: 29608645 doi: 10.1093/brain/awy079
Ismail R, Parbo P, Madsen LS, Hansen AK, Hansen KV, Schaldemose JL, et al. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: a longitudinal PET study. J Neuroinflammation. 2020;17(1):151.
pubmed: 32375809 pmcid: 7203856 doi: 10.1186/s12974-020-01820-6
Kreisl WC. Discerning the relationship between microglial activation and Alzheimer’s disease. Brain. 2017;140(7):1825–8.
pubmed: 29177498 doi: 10.1093/brain/awx151
Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, et al. Microglia, amyloid, and cognition in Alzheimer’s disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis. 2008;32(3):412–9.
pubmed: 18786637 doi: 10.1016/j.nbd.2008.08.001
Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology. 2009;72(1):56–62.
pubmed: 19122031 pmcid: 2817573 doi: 10.1212/01.wnl.0000338622.27876.0d
Passamonti L, Rodríguez PV, Hong YT, Allinson KSJ, Bevan-Jones WR, Williamson D, et al. [<sup>11</sup>C]PK11195 binding in Alzheimer disease and progressive supranuclear palsy. Neurology. 2018;90(22):e1989–96.
pubmed: 29703774 pmcid: 5980519 doi: 10.1212/WNL.0000000000005610
Malpetti M, Kievit RA, Passamonti L, Jones PS, Tsvetanov KA, Rittman T, et al. Microglial activation and tau burden predict cognitive decline in Alzheimer’s disease. Brain. 2020;143(5):1588–602.
pubmed: 32380523 pmcid: 7241955 doi: 10.1093/brain/awaa088
Wang Q, Chen G, Schindler SE, Christensen J, McKay NS, Liu J, et al. Baseline Microglial Activation Correlates With Brain Amyloidosis and Longitudinal Cognitive Decline in Alzheimer Disease. Neurology - Neuroimmunology Neuroinflammation. 2022;9(3): e1152.
pubmed: 35260470 doi: 10.1212/NXI.0000000000001152
Lewcock JW, Schlepckow K, Di Paolo G, Tahirovic S, Monroe KM, Haass C. Emerging Microglia Biology Defines Novel Therapeutic Approaches for Alzheimer’s Disease. Neuron. 2020;108(5):801–21.
pubmed: 33096024 doi: 10.1016/j.neuron.2020.09.029
Passamonti L, Tsvetanov KA, Jones PS, Bevan-Jones WR, Arnold R, Borchert RJ, et al. Neuroinflammation and Functional Connectivity in Alzheimer’s Disease: Interactive Influences on Cognitive Performance. J Neurosci. 2019;39(36):7218–26.
pubmed: 31320450 pmcid: 6733539 doi: 10.1523/JNEUROSCI.2574-18.2019
Leng F, Hinz R, Gentleman S, Hampshire A, Dani M, Brooks DJ, Edison P. Neuroinflammation is independently associated with brain network dysfunction in Alzheimer’s disease. Mol Psychiatry. 2023;28(3):1303–11.
Tournier BB, Tsartsalis S, Ceyzériat K, Garibotto V, Millet P. In Vivo TSPO Signal and Neuroinflammation in Alzheimer's Disease. Cells. 2020;9(9):1941.
Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim HI, et al. [(18)F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci. 2017;20(3):393–5.
pubmed: 28135241 pmcid: 5378483 doi: 10.1038/nn.4492
Biechele G, Franzmeier N, Blume T, Ewers M, Luque JM, Eckenweber F, et al. Glial activation is moderated by sex in response to amyloidosis but not to tau pathology in mouse models of neurodegenerative diseases. J Neuroinflammation. 2020;17(1):374.
pubmed: 33317543 pmcid: 7737385 doi: 10.1186/s12974-020-02046-2
Brendel M, Probst F, Jaworska A, Overhoff F, Korzhova V, Albert NL, et al. Glial activation and glucose metabolism in a transgenic amyloid mouse model: a triple-tracer PET study. J Nucl Med. 2016;57(6):954–60.
pubmed: 26912428 doi: 10.2967/jnumed.115.167858

Auteurs

Artem Zatcepin (A)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany. Artem.Zatcepin@med.uni-muenchen.de.
German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. Artem.Zatcepin@med.uni-muenchen.de.

Johannes Gnörich (J)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.

Boris-Stephan Rauchmann (BS)

Institute of Neuroradiology, University Hospital LMU, Munich, Germany.
Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.

Laura M Bartos (LM)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.

Stephan Wagner (S)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.

Nicolai Franzmeier (N)

Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.

Maura Malpetti (M)

Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.

Xianyuan Xiang (X)

Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany.
CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, ShenzhenShenzhen, 518055, China.

Yuan Shi (Y)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.

Samira Parhizkar (S)

Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.

Maximilian Grosch (M)

German Center for Vertigo and Balance Disorders, University Hospital of Munich, LMU Munich, Munich, Germany.

Karin Wind-Mark (K)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.

Sebastian T Kunte (ST)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.

Leonie Beyer (L)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.

Carolin Meyer (C)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.

Desirée Brösamle (D)

German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany.
Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.
Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), LMU Munich, Munich, Germany.

Ann-Christin Wendeln (AC)

German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany.
Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.

Collins Osei-Sarpong (C)

Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseasesand , University of Bonn and West German Genome Center, Bonn, Germany.
German Center for Neurodegenerative Diseases (DZNE), Immunogenomics & Neurodegeneration, Bonn, Germany.

Steffanie Heindl (S)

Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.

Arthur Liesz (A)

Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.

Sophia Stoecklein (S)

Department of Radiology, University Hospital, LMU Munich, Munich, Germany.

Gloria Biechele (G)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
Department of Radiology, University Hospital, LMU Munich, Munich, Germany.

Anika Finze (A)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.

Florian Eckenweber (F)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.

Simon Lindner (S)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.

Axel Rominger (A)

Department of Nuclear Medicine, Inselpital, Bern University Hospital, University of Bern, Bern, Switzerland.

Peter Bartenstein (P)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.

Michael Willem (M)

Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany.

Sabina Tahirovic (S)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.

Jochen Herms (J)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany.

Katharina Buerger (K)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.

Mikael Simons (M)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.

Christian Haass (C)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany.

Rainer Rupprecht (R)

Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, Regensburg, Germany.

Markus J Riemenschneider (MJ)

Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany.

Nathalie L Albert (NL)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Munich, 69120, Heidelberg, Germany.
Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany.

Marc Beyer (M)

Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseasesand , University of Bonn and West German Genome Center, Bonn, Germany.
German Center for Neurodegenerative Diseases (DZNE), Immunogenomics & Neurodegeneration, Bonn, Germany.

Jonas J Neher (JJ)

Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany.
Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.
Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), LMU Munich, Munich, Germany.

Lars Paeger (L)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.

Johannes Levin (J)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
Department of Neurology, University Hospital, LMU Munich, Munich, Germany.

Günter U Höglinger (GU)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
Department of Neurology, University Hospital, LMU Munich, Munich, Germany.
Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.

Robert Perneczky (R)

German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, W6 8RP, UK.
Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK.

Sibylle I Ziegler (SI)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.

Matthias Brendel (M)

Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH