Differential expression of the type III secretion system genes in Yersinia ruckeri: Preliminary investigations in different environmental conditions.

Yersinia ruckeri Q‐PCR environmental challenges fish pathogen gene modulation type III secretion system

Journal

Journal of fish diseases
ISSN: 1365-2761
Titre abrégé: J Fish Dis
Pays: England
ID NLM: 9881188

Informations de publication

Date de publication:
06 Sep 2024
Historique:
revised: 29 07 2024
received: 27 05 2024
accepted: 05 08 2024
medline: 6 9 2024
pubmed: 6 9 2024
entrez: 6 9 2024
Statut: aheadofprint

Résumé

Type III secretion system (T3SS) is an important virulence system in Gram-negative bacteria. In this investigation, different environmental conditions that regulate the expression of T3SS genes in Yersinia ruckeri were investigated aimed at obtaining a better understanding about its modulation after various environmental challenges. Four isolates of Y. ruckeri CSF007-82, ATCC29473, A7959-11 and YRNC10 were cultivated under the diverse in vitro challenges iron depletion, high salt, low pH and in the presence of fish serum or in the fish cell culture (Chinook Salmon Embryo - CHSE). The transcriptional modulation of the chromosomal genes ysaV, ysaC, ysaJ and prgH of ysa were investigated using quantitative real-time PCR. The expression of prgH, ysaV, ysaC and ysaJ was differentially expressed in all four strains under evaluation. The highest gene expression levels were observed for Y. ruckeri YRNC10 AN after addition of 0.3 M NaCl in Luria Bertani broth. The results obtained from this study provide initial insights into T3SS responses in Y. ruckeri, which pave the way for further studies aimed at expanding our knowledge on the functional roles of the T3SS genes in Y. ruckeri.

Identifiants

pubmed: 39239795
doi: 10.1111/jfd.14007
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14007

Informations de copyright

© 2024 The Author(s). Journal of Fish Diseases published by John Wiley & Sons Ltd.

Références

Barnes, A. C., Delamare‐Deboutteville, J., Gudkovs, N., Brosnahan, C., Morrison, R., & Carson, J. (2016). Whole genome analysis of Yersinia ruckeri isolated over 27 years in Australia and New Zealand reveals geographical endemism over multiple lineages and recent evolution under host selection. Microbial Genomics, 2, e000095. https://doi.org/10.1099/mgen.0.000095
Bastardo, A., Ravelo, C., & Romalde, J. L. (2012). Highly sensitive detection and quantification of the pathogen Yersinia ruckeri in fish tissues by using real‐time PCR. Applied Microbiology and Biotechnology, 96(2), 511–520. https://doi.org/10.1007/s00253‐012‐4328‐1
Beaumont, H., Gallie, J., Kost, C., et al. (2009). Experimental evolution of bet hedging. Nature, 462, 90–93. https://doi.org/10.1038/nature08504
Calvez, S., Gantelet, H., Blanc, G., Douet, D. G., & Daniel, P. (2014). Yersinia ruckeri biotypes 1 and 2 in France: Presence and antibiotic susceptibility. Diseases of Aquatic Organisms, 109(2), 117–126. https://doi.org/10.3354/dao02725
Dean, P. (2011). Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiology Reviews, 35(6), 1100–1125. https://doi.org/10.1111/j.1574‐6976.2011.00271.x
Guijarro, J. A., García‐torrico, A. I., Cascales, D., & Méndez, J. (2018). The infection process of Yersinia ruckeri: Reviewing the pieces of the jigsaw puzzle. Frontiers in Cellular and Infection Microbiology, 8, 1–10. https://doi.org/10.3389/fcimb.2018.00218
Haller, J. C., Carlson, S., Pederson, K. J., & Pierson, D. E. (2000). A chromosomally encoded type III secretion pathway in Yersinia enterocolitica is important in virulence. Molecular Microbiology, 36(6), 1436–1446. https://doi.org/10.1046/j.1365‐2958.2000.01964.x
Klein, J. R., Fahlen, T. F., & Jones, B. D. (2000). Transcriptional organization and function of invasion genes within Salmonella enterica Serovar Typhimurium Pathogenicity orgA, orgB. And orgC Genes, 68(6), 3368–3376.
Kumar, G., Menanteau‐Ledouble, S., Saleh, M., & El‐Matbouli, M. (2015). Yersinia ruckeri, the causative agent of enteric redmouth disease in fish. Veterinary Research, 46(1), 1–10. https://doi.org/10.1186/s13567‐015‐0238‐4
Lee, M. C., & Marx, C. J. (2012). Repeated, selection‐driven genome reduction of accessory genes in experimental populations. PLoS Genetics, 8(5), e1002651. https://doi.org/10.1371/journal.pgen.1002651
Liu, T., Wang, K. Y., Wang, J., Chen, D. F., Huang, X. L., Ouyang, P., Geng, Y., He, Y., Zhou, Y., & Min, J. (2016). Genome sequence of the fish pathogen yersinia ruckeri SC09 provides insights into niche adaptation and pathogenic mechanism. International Journal of Molecular Sciences, 17(4), 1–21. https://doi.org/10.3390/ijms17040557
Ma, I., & Guijarro, J. A. (2004). Identification of specific in vivo‐induced (ivi) genes in yersinia ruckeri and analysis of ruckerbactin, a catecholate siderophore iron acquisition. System, 70(9), 5199–5207. https://doi.org/10.1128/AEM.70.9.5199
Matsumoto, H., & Young, G. M. (2006). Proteomic and Functional Analysis of the Suite of Ysp Proteins Exported by the Ysa Type III Secretion System of Yersinia Enterocolitica Biovar 1B. Molecular Microbiology, 59, 689–706. https://doi.org/10.1111/j.1365‐2958.2005.04973.x
Menanteau‐Ledouble, S., Lawrence, M. L., & El‐Matbouli, M. (2018). Invasion and replication of Yersinia ruckeri in fish cell cultures. BMC Veterinary Research, 14(1), 1–11. https://doi.org/10.1186/s12917‐018‐1408‐1
Moest, T. P., & Méresse, S. (2013). Salmonella T3SSs: Successful mission of the secret(ion) agents. Current Opinion in Microbiology, 16(1), 38–44. https://doi.org/10.1016/j.mib.2012.11.006
Monjarás Feria, J. V., Lefebre, M. D., Stierhof, Y. D., Galán, J. E., & Wagner, S. (2015). Role of autocleavage in the function of a type iii secretion specificity switch protein in salmonella enterica serovar typhimurium. MBio, 6(5), 1–8. https://doi.org/10.1128/mBio.01459‐15
Nelson, M. C., LaPatra, S. E., Welch, T. J., & Graf, J. (2015). Complete genome sequence of Yersinia ruckeri strain CSF007‐82, etiologic agent of red mouth disease in salmonid fish. Genome Announcements, 3(1), 4–5. https://doi.org/10.1128/genomeA.01491‐14
Pinaud, L., Sansonetti, P. J., & Phalipon, A. (2018). Host cell targeting by enteropathogenic bacteria T3SS effectors. Trends in Microbiology, 26(4), 266–283. https://doi.org/10.1016/j.tim.2018.01.010
Rahmatelahi, H., Matbouli, M. E., & Ledouble, S. M. (2021). Delivering the pain: An overview of the type III secretion system with special consideration for aquatic pathogens. Veterinary Research, 1–18, 146. https://doi.org/10.1186/s13567‐021‐01015‐8
Rappl, C., Deiwick, J., & Hensel, M. (2003). Acidic pH is required for the functional assembly of the type III secretion system encoded by salmonella pathogenicity Island 2. FEMS Microbiology Letters, 226(2), 363–372. https://doi.org/10.1016/S0378‐1097(03)00638‐4
Riborg, A., Colquhoun, D. J., & Gulla, S. (2022). Biotyping reveals loss of motility in two distinct Yersinia ruckeri lineages exclusive to Norwegian aquaculture. Journal of Fish Diseases, 45, 641–653. https://doi.org/10.1111/jfd.13590
Russo, B. C., Duncan, J. K., Wiscovitch, A. L., Hachey, C., & Id, M. B. G. (2019). Activation of shigella flexneri type 3 secretion requires a host‐induced conformational change to the translocon pore. PLoS Pathogens, 15, 1–20. https://doi.org/10.1371/journal.ppat.1007928
Spreter, T., Yip, C. K., Sanowar, S., André, I., Kimbrough, T. G., Vuckovic, M., Pfuetzner, R. A., Deng, W., Yu, A. C., Finlay, B. B., Baker, D., Miller, S. I., & Strynadka, N. C. J. (2009). A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nature Structural and Molecular Biology, 16(5), 468–476. https://doi.org/10.1038/nsmb.1603
Troisfontaines, P., & Cornelis, G. R. (2005). Type III secretion: More systems than you think. Physiology, 20(5), 326–339. https://doi.org/10.1152/physiol.00011.2005
Venecia, K., & Young, G. M. (2005). Environmental regulation and virulence attributes of the Ysa type III secretion system of Yersinia enterocolitica biovar 1B. Infection and Immunity, 73(9), 5961–5977. https://doi.org/10.1128/IAI.73.9.5961‐5977.2005
Wrobel, A., Leo, J. C., & Linke, D. (2019). Overcoming fish defences: The virulence factors of Yersinia ruckeri. Genes, 10(9), 700. https://doi.org/10.3390/genes10090700

Auteurs

Hadis Rahmatelahi (H)

Division of Fish Health, Department for Farm Animals & Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.

Simon Menanteau-Ledouble (S)

Norce, Nygårdsgaten, Bergen, Norway.

Astrid S Holzer (AS)

Division of Fish Health, Department for Farm Animals & Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.

Mansour El-Matbouli (M)

Division of Fish Health, Department for Farm Animals & Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.

Mona Saleh (M)

Division of Fish Health, Department for Farm Animals & Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.

Classifications MeSH