Acyl-coenzyme a binding protein (ACBP) - a risk factor for cancer diagnosis and an inhibitor of immunosurveillance.


Journal

Molecular cancer
ISSN: 1476-4598
Titre abrégé: Mol Cancer
Pays: England
ID NLM: 101147698

Informations de publication

Date de publication:
06 Sep 2024
Historique:
received: 27 05 2024
accepted: 21 08 2024
medline: 7 9 2024
pubmed: 7 9 2024
entrez: 6 9 2024
Statut: epublish

Résumé

The plasma concentrations of acyl coenzyme A binding protein (ACBP, also known as diazepam-binding inhibitor, DBI, or 'endozepine') increase with age and obesity, two parameters that are also amongst the most important risk factors for cancer. We measured ACBP/DBI in the plasma from cancer-free individuals, high-risk patients like the carriers of TP53 or BRCA1/2 mutations, and non-syndromic healthy subjects who later developed cancer. In mice, the neutralization of ACBP/DBI was used in models of non-small cell lung cancer (NSCLC) and breast cancer development and as a combination treatment with chemoimmunotherapy (chemotherapy + PD-1 blockade) in the context of NSCLC and sarcomas. The anticancer T cell response upon ACBP/DBI neutralization was characterized by flow cytometry and single-cell RNA sequencing. Circulating levels of ACBP/DBI were higher in patients with genetic cancer predisposition (BRCA1/2 or TP53 germline mutations) than in matched controls. In non-syndromic cases, high ACBP/DBI levels were predictive of future cancer development, and especially elevated in patients who later developed lung cancer. In preclinical models, ACBP/DBI neutralization slowed down breast cancer and NSCLC development and enhanced the efficacy of chemoimmunotherapy in NSCLC and sarcoma models. When combined with chemoimmunotherapy, the neutralizing monoclonal antibody against ACBP/DBI reduced the frequency of regulatory T cells in the tumor bed, modulated the immune checkpoint profile, and increased activation markers. These findings suggest that ACBP/DBI acts as an endogenous immune suppressor. We conclude that elevation of ACBP/DBI constitutes a risk factor for the development of cancer and that ACBP/DBI is an actionable target for improving cancer immunosurveillance.

Sections du résumé

BACKGROUND BACKGROUND
The plasma concentrations of acyl coenzyme A binding protein (ACBP, also known as diazepam-binding inhibitor, DBI, or 'endozepine') increase with age and obesity, two parameters that are also amongst the most important risk factors for cancer.
METHODS METHODS
We measured ACBP/DBI in the plasma from cancer-free individuals, high-risk patients like the carriers of TP53 or BRCA1/2 mutations, and non-syndromic healthy subjects who later developed cancer. In mice, the neutralization of ACBP/DBI was used in models of non-small cell lung cancer (NSCLC) and breast cancer development and as a combination treatment with chemoimmunotherapy (chemotherapy + PD-1 blockade) in the context of NSCLC and sarcomas. The anticancer T cell response upon ACBP/DBI neutralization was characterized by flow cytometry and single-cell RNA sequencing.
RESULTS RESULTS
Circulating levels of ACBP/DBI were higher in patients with genetic cancer predisposition (BRCA1/2 or TP53 germline mutations) than in matched controls. In non-syndromic cases, high ACBP/DBI levels were predictive of future cancer development, and especially elevated in patients who later developed lung cancer. In preclinical models, ACBP/DBI neutralization slowed down breast cancer and NSCLC development and enhanced the efficacy of chemoimmunotherapy in NSCLC and sarcoma models. When combined with chemoimmunotherapy, the neutralizing monoclonal antibody against ACBP/DBI reduced the frequency of regulatory T cells in the tumor bed, modulated the immune checkpoint profile, and increased activation markers.
CONCLUSION CONCLUSIONS
These findings suggest that ACBP/DBI acts as an endogenous immune suppressor. We conclude that elevation of ACBP/DBI constitutes a risk factor for the development of cancer and that ACBP/DBI is an actionable target for improving cancer immunosurveillance.

Identifiants

pubmed: 39242519
doi: 10.1186/s12943-024-02098-5
pii: 10.1186/s12943-024-02098-5
doi:

Substances chimiques

Biomarkers, Tumor 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

187

Subventions

Organisme : Xunta de Galicia
ID : IN606B-2021/015
Organisme : Ministerio de Ciencia, Innovación y Universidades
ID : FPU17/04473
Organisme : Agencia Estatal de Investigación
ID : 10.13039/501100011033
Organisme : Ministerio de Ciencia e Innovación
ID : PID2021-122695OB-I00

Informations de copyright

© 2024. The Author(s).

Références

Alquier T, Christian-Hinman CA, Alfonso J, Færgeman NJ. From benzodiazepines to fatty acids and beyond: revisiting the role of ACBP/DBI. Trends Endocrinol Metab. 2021;32(11):890–903.
pubmed: 34565656 pmcid: 8785413 doi: 10.1016/j.tem.2021.08.009
Costa E, Guidotti A. Diazepam binding inhibitor (DBI): a peptide with multiple biological actions. Life Sci. 1991;49(5):325–44.
pubmed: 1649940 doi: 10.1016/0024-3205(91)90440-M
Montégut L, Abdellatif M, Motiño O, Madeo F, Martins I, Quesada V et al. Acyl coenzyme A binding protein (ACBP): an aging- and disease‐relevant autophagy checkpoint. Aging Cell. 2023.
Marquardt H, Todaro GJ, Shoyab M. Complete amino acid sequences of bovine and human endozepines. Homology with rat diazepam binding inhibitor. J Biol Chem. 1986;261(21):9727–31.
pubmed: 3525533 doi: 10.1016/S0021-9258(18)67575-1
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, et al. Endozepines and their receptors: structure, functions and pathophysiological significance. Pharmacol Ther. 2020;208:107386.
pubmed: 31283949 doi: 10.1016/j.pharmthera.2019.06.008
Bravo-San Pedro JM, Sica V, Martins I, Pol J, Loos F, Maiuri MC, et al. Acyl-CoA-Binding protein is a lipogenic factor that Triggers Food Intake and obesity. Cell Metab. 2019;30(4):754–e679.
pubmed: 31422903 doi: 10.1016/j.cmet.2019.07.010
Joseph A, Moriceau S, Sica V, Anagnostopoulos G, Pol J, Martins I, et al. Metabolic and psychiatric effects of acyl coenzyme A binding protein (ACBP)/diazepam binding inhibitor (DBI). Cell Death Dis. 2020;11(7):502.
pubmed: 32632162 pmcid: 7338362 doi: 10.1038/s41419-020-2716-5
Joseph A, Chen H, Anagnostopoulos G, Montégut L, Lafarge A, Motiño O, et al. Effects of acyl-coenzyme A binding protein (ACBP)/diazepam-binding inhibitor (DBI) on body mass index. Cell Death Dis. 2021;12(6):599.
pubmed: 34108446 pmcid: 8190068 doi: 10.1038/s41419-021-03864-9
Montégut L, Joseph A, Chen H, Abdellatif M, Ruckenstuhl C, Motiño O, et al. High plasma concentrations of acyl-coenzyme A binding protein (ACBP) predispose to cardiovascular disease: evidence for a phylogenetically conserved proaging function of ACBP. Aging Cell. 2023;22(1):e13751.
pubmed: 36510662 doi: 10.1111/acel.13751
Li M, Cao S-M, Dimou N, Wu L, Li J-B, Yang J. Association of metabolic syndrome with risk of Lung Cancer: a Population-based prospective cohort study. Chest. 2024;165(1):213–23.
pubmed: 37572975 doi: 10.1016/j.chest.2023.08.003
Booth LN, Shi C, Tantilert C, Yeo RW, Miklas JW, Hebestreit K, et al. Males induce premature demise of the opposite sex by multifaceted strategies. Nat Aging. 2022;2(9):809–23.
pubmed: 37118502 pmcid: 10154206 doi: 10.1038/s43587-022-00276-y
Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G, et al. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet. 2010;6(7):e1001024.
pubmed: 20657825 pmcid: 2904796 doi: 10.1371/journal.pgen.1001024
Shamalnasab M, Dhaoui M, Thondamal M, Harvald EB, Faergeman NJ, Aguilaniu H, et al. HIF-1-dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA-binding protein MAA-1. Aging. 2017;9(7):1745–69.
pubmed: 28758895 pmcid: 5559173 doi: 10.18632/aging.101267
Lamtahri R, Hazime M, Gowing EK, Nagaraja RY, Maucotel J, Alasoadura M, et al. The gliopeptide ODN, a Ligand for the Benzodiazepine site of GABA(A) receptors, boosts functional recovery after Stroke. J Neurosci. 2021;41(33):7148–59.
pubmed: 34210784 pmcid: 8372017 doi: 10.1523/JNEUROSCI.2255-20.2021
Motiño O, Lambertucci F, Anagnostopoulos G, Li S, Nah J, Castoldi F et al. ACBP/DBI protein neutralization confers autophagy-dependent organ protection through inhibition of cell loss, inflammation, and fibrosis. Proceedings of the National Academy of Sciences. 2022;119(41).
Harris FT, Rahman SMJ, Hassanein M, Qian J, Hoeksema MD, Chen H, et al. Acyl-coenzyme A-Binding protein regulates Beta-oxidation required for growth and survival of Non-small Cell Lung Cancer. Cancer Prev Res. 2014;7(7):748–57.
doi: 10.1158/1940-6207.CAPR-14-0057
Duman C, Di Marco B, Nevedomskaya E, Ulug B, Lesche R, Christian S, et al. Targeting fatty acid oxidation via Acyl-CoA binding protein hinders glioblastoma invasion. Cell Death Dis. 2023;14(4):296.
pubmed: 37120445 pmcid: 10148872 doi: 10.1038/s41419-023-05813-0
Duman C, Yaqubi K, Hoffmann A, Acikgoz AA, Korshunov A, Bendszus M, et al. Acyl-CoA-Binding protein drives Glioblastoma Tumorigenesis by sustaining fatty acid oxidation. Cell Metab. 2019;30(2):274–89. e5.
pubmed: 31056285 doi: 10.1016/j.cmet.2019.04.004
Caron O, Eleni K, Foulon S, Benusiglio P, Bonadona V, Faivre L, et al. Evaluation of whole body MRI for early detection of cancer in TP53 mutation carriers: final results of the LIFSCREEN study. J Clin Oncol. 2018;36(15suppl):1527.
doi: 10.1200/JCO.2018.36.15_suppl.1527
Caron O, Frebourg T, Benusiglio P, Foulon S, Brugières L. Lung adenocarcinoma as part of the Li-Fraumeni Syndrome Spectrum: Preliminary Data of the LIFSCREEN Randomized Clinical Trial. JAMA Oncol. 2017;3(12):1736–7.
pubmed: 28772306 pmcid: 5824279 doi: 10.1001/jamaoncol.2017.1358
Hercberg S, Preziosi P, Briançon S, Galan P, Triol I, Malvy D, et al. A primary prevention trial using nutritional doses of antioxidant vitamins and minerals in cardiovascular diseases and cancers in a general population: the SU.VI.MAX study–design, methods, and participant characteristics. SUpplementation en VItamines et Minéraux AntioXydants. Control Clin Trials. 1998;19(4):336–51.
pubmed: 9683310 doi: 10.1016/S0197-2456(98)00015-4
Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, Malvy D, et al. The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med. 2004;164(21):2335–42.
pubmed: 15557412 doi: 10.1001/archinte.164.21.2335
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):77.
pubmed: 21414208 pmcid: 3068975 doi: 10.1186/1471-2105-12-77
Montégut L, Chen H, Bravo-San Pedro JM, Motiño O, Martins I, Kroemer G. Immunization of mice with the self-peptide ACBP coupled to keyhole limpet hemocyanin. STAR Protocols. 2022;3(1):101095.
pubmed: 35059656 pmcid: 8760546 doi: 10.1016/j.xpro.2021.101095
Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14(8):994–1004.
pubmed: 10783170 pmcid: 316543 doi: 10.1101/gad.14.8.994
Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G, et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell. 2007;1(1):113–26.
pubmed: 18371340 pmcid: 2920603 doi: 10.1016/j.stem.2007.03.002
García-Cao I, García-Cao M, Martín-Caballero J, Criado LM, Klatt P, Flores JM, et al. Super p53 mice exhibit enhanced DNA damage response, are tumor resistant and age normally. Embo j. 2002;21(22):6225–35.
pubmed: 12426394 pmcid: 137187 doi: 10.1093/emboj/cdf595
Buqué A, Bloy N, Perez-Lanzón M, Iribarren K, Humeau J, Pol JG et al. Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat Commun. 2020;11(1).
Bruchard M, Geindreau M, Perrichet A, Truntzer C, Ballot E, Boidot R, et al. Recruitment and activation of type 3 innate lymphoid cells promote antitumor immune responses. Nat Immunol. 2022;23(2):262–74.
pubmed: 35102345 doi: 10.1038/s41590-021-01120-y
Liu P, Zhao L, Senovilla L, Kepp O, Kroemer G. In vivo imaging of Orthotopic Lung Cancer models in mice. Methods Mol Biol. 2021;2279:199–212.
pubmed: 33683696 doi: 10.1007/978-1-0716-1278-1_16
Van Eenige R, Verhave PS, Koemans PJ, Tiebosch IACW, Rensen PCN, Kooijman S. RandoMice, a novel, user-friendly randomization tool in animal research. PLoS ONE. 2020;15(8):e0237096.
pubmed: 32756603 pmcid: 7406044 doi: 10.1371/journal.pone.0237096
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14(10):979–82.
pubmed: 28825705 pmcid: 5764547 doi: 10.1038/nmeth.4402
Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020;20(8):471–80.
pubmed: 32404993 doi: 10.1038/s41568-020-0262-1
Anagnostopoulos G, Motiño O, Li S, Carbonnier V, Chen H, Sica V, et al. An obesogenic feedforward loop involving PPARγ, acyl-CoA binding protein and GABAA receptor. Cell Death Dis. 2022;13(4):356.
pubmed: 35436993 pmcid: 9016078 doi: 10.1038/s41419-022-04834-5
Lahalle A, Lacroix M, De Blasio C, Cissé MY, Linares LK, Le Cam L. The p53 pathway and metabolism: the Tree that hides the forest. Cancers (Basel). 2021;13(1).
Yang H, Xia L, Chen J, Zhang S, Martin V, Li Q, et al. Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med. 2019;25(9):1428–41.
pubmed: 31501614 doi: 10.1038/s41591-019-0566-4
Liu P, Chen J, Zhao L, Hollebecque A, Kepp O, Zitvogel L, et al. PD-1 blockade synergizes with oxaliplatin-based, but not cisplatin-based, chemotherapy of gastric cancer. Oncoimmunology. 2022;11(1):2093518.
pubmed: 35769948 pmcid: 9235886 doi: 10.1080/2162402X.2022.2093518
Gonzalez-Granado JM, Silvestre-Roig C, Rocha-Perugini V, Trigueros-Motos L, Cibrian D, Morlino G, et al. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal. 2014;7(322):ra37.
pubmed: 24757177 pmcid: 4337980 doi: 10.1126/scisignal.2004872
Saez A, Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Rius C, Gonzalez-Granado JM. Lamin A/C and the Immune System: one Intermediate Filament, many faces. Int J Mol Sci. 2020;21(17).
Hanahan D. Hallmarks of Cancer: New dimensions. Cancer Discov. 2022;12(1):31–46.
pubmed: 35022204 doi: 10.1158/2159-8290.CD-21-1059
Kroemer G, McQuade JL, Merad M, André F, Zitvogel L. Bodywide ecological interventions on cancer. Nat Med. 2023;29(1):59–74.
pubmed: 36658422 doi: 10.1038/s41591-022-02193-4
Weeden CE, Hill W, Lim EL, Grönroos E, Swanton C. Impact of risk factors on early cancer evolution. Cell. 2023;186(8):1541–63.
pubmed: 37059064 doi: 10.1016/j.cell.2023.03.013
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab. 2023;35(1):12–35.
pubmed: 36599298 doi: 10.1016/j.cmet.2022.11.001
The global burden of cancer attributable to risk factors. 2010-19: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10352):563 – 91.
Correa H. Li-Fraumeni Syndrome. J Pediatr Genet. 2016;5(2):84–8.
pubmed: 27617148 pmcid: 4918696 doi: 10.1055/s-0036-1579759
Mascaux C, Angelova M, Vasaturo A, Beane J, Hijazi K, Anthoine G, et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature. 2019;571(7766):570–5.
pubmed: 31243362 doi: 10.1038/s41586-019-1330-0
Petitprez F, de Reyniès A, Keung EZ, Chen TW, Sun CM, Calderaro J, et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020;577(7791):556–60.
pubmed: 31942077 doi: 10.1038/s41586-019-1906-8
Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, et al. Immune checkpoint therapy-current perspectives and future directions. Cell. 2023;186(8):1652–69.
pubmed: 37059068 doi: 10.1016/j.cell.2023.03.006
Folli F, Guzzi V, Perego L, Coletta DK, Finzi G, Placidi C, et al. Proteomics reveals novel oxidative and glycolytic mechanisms in type 1 diabetic patients’ skin which are normalized by kidney-pancreas transplantation. PLoS ONE. 2010;5(3):e9923.
pubmed: 20360867 pmcid: 2848014 doi: 10.1371/journal.pone.0009923
Arendt BM, Comelli EM, Ma DW, Lou W, Teterina A, Kim T, et al. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology. 2015;61(5):1565–78.
pubmed: 25581263 doi: 10.1002/hep.27695
Styrkarsdottir U, Lund SH, Thorleifsson G, Saevarsdottir S, Gudbjartsson DF, Thorsteinsdottir U, et al. Cartilage acidic protein 1 in plasma associates with prevalent osteoarthritis and predicts future risk as Well as Progression to Joint replacements: results from the UK Biobank Resource. Arthritis Rheumatol. 2023;75(4):544–52.
pubmed: 36239377 doi: 10.1002/art.42376
Isnard S, Royston L, Lin J, Fombuena B, Bu S, Kant S et al. Distinct plasma concentrations of Acyl-CoA-Binding protein (ACBP) in HIV progressors and Elite controllers. Viruses. 2022;14(3).
Nie X, Qian L, Sun R, Huang B, Dong X, Xiao Q, et al. Multi-organ proteomic landscape of COVID-19 autopsies. Cell. 2021;184(3):775–e9114.
pubmed: 33503446 pmcid: 7794601 doi: 10.1016/j.cell.2021.01.004
Clavier T, Tonon MC, Foutel A, Besnier E, Lefevre-Scelles A, Morin F, et al. Increased plasma levels of endozepines, endogenous ligands of benzodiazepine receptors, during systemic inflammation: a prospective observational study. Crit Care. 2014;18(6):633.
pubmed: 25407756 pmcid: 4326502 doi: 10.1186/s13054-014-0633-7
Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10105):1833–42.
pubmed: 28855077 doi: 10.1016/S0140-6736(17)32247-X
Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol. 2017;18(10):595–609.
pubmed: 28792007 pmcid: 6290461 doi: 10.1038/nrm.2017.68
Montégut L, López-Otín C, Kroemer G. Aging and cancer. Mol Cancer. 2024;23(1):106.
pubmed: 38760832 pmcid: 11102267 doi: 10.1186/s12943-024-02020-z

Auteurs

Léa Montégut (L)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.
Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France.

Peng Liu (P)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.

Liwei Zhao (L)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.

María Pérez-Lanzón (M)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.

Hui Chen (H)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.
Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France.

Misha Mao (M)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.

Shuai Zhang (S)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.
Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Lisa Derosa (L)

Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France.
Equipe Labellisée Par la Ligue Contre le Cancer, Inserm U1015, Gustave Roussy, Villejuif, France.

Julie Le Naour (JL)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.
Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France.

Flavia Lambertucci (F)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.

Silvia Mingoia (S)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Department of Pharmacological sciences, University of Piemonte Orientale, Novara, Italia.

Uxía Nogueira-Recalde (U)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.
Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Profesor Novoa Santos, A Coruña, Spain.

Rafael Mena-Osuna (R)

Department of Translational Research, Institute Curie Research Center, INSERM U932, PSL Research University, Paris, France.

Irene Herranz-Montoya (I)

Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, 28029, Spain.

Nabil Djouder (N)

Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, 28029, Spain.

Sylvain Baulande (S)

Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, PSL Research University, Paris, France.

Hui Pan (H)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.
Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France.

Adrien Joseph (A)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Service de Réanimation Médicale, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France.

Meriem Messaoudene (M)

Axe cancer, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada.

Bertrand Routy (B)

Axe cancer, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada.
Hemato-oncology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada.

Marine Fidelle (M)

Equipe Labellisée Par la Ligue Contre le Cancer, Inserm U1015, Gustave Roussy, Villejuif, France.
Pharmacology Department, Gustave Roussy, Villejuif, France.

Tarek Ben Ahmed (TB)

Department of Cancer Medicine, Gustave Roussy, Villejuif, France.
Department of cancer Medicine, « INTERCEPTION » Program for Cancer Prevention, Institut Gustave-Roussy, Villejuif, France.

Olivier Caron (O)

Department of Cancer Medicine, Gustave Roussy, Villejuif, France.
Department of cancer Medicine, « INTERCEPTION » Program for Cancer Prevention, Institut Gustave-Roussy, Villejuif, France.

Pierre Busson (P)

CNRS UMR 9018-METSY, Gustave Roussy and Université Paris-Saclay, Villejuif, France.

David Boulate (D)

Department of Thoracic Surgery, Lung Transplantation and Esophageal Diseases, Hôpital Nord, Marseille, France.
Faculté des sciences médicales et paramédicales, Aix-Marseille Université, Marseille, France.
COMPutational Oncology and pharmacology, Centre de Recherche en Cancérologie de Marseille (CRCM), INRIA-INSERM, Marseille, France.

Mélanie Deschasaux-Tanguy (M)

INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Université Sorbonne Paris Nord and Université Paris Cité, Centre of Research in Epidemiology and StatisticS (CRESS), Inserm, Bobigny, F-93017, France.
Nutrition, Physical Activity And Cancer Research Network (NACRe Network), Jouy-en-Josas, France.

Nathalie Arnault (N)

INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Université Sorbonne Paris Nord and Université Paris Cité, Centre of Research in Epidemiology and StatisticS (CRESS), Inserm, Bobigny, F-93017, France.
Nutrition, Physical Activity And Cancer Research Network (NACRe Network), Jouy-en-Josas, France.

Jonathan G Pol (JG)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.

Eliane Piaggio (E)

Department of Translational Research, Institute Curie Research Center, INSERM U932, PSL Research University, Paris, France.

Mathilde Touvier (M)

INRAE, CNAM, Nutritional Epidemiology Research Team (EREN), Université Sorbonne Paris Nord and Université Paris Cité, Centre of Research in Epidemiology and StatisticS (CRESS), Inserm, Bobigny, F-93017, France.
Nutrition, Physical Activity And Cancer Research Network (NACRe Network), Jouy-en-Josas, France.

Laurence Zitvogel (L)

Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.
Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France.
Equipe Labellisée Par la Ligue Contre le Cancer, Inserm U1015, Gustave Roussy, Villejuif, France.
Department of Biology, Center of Clinical Investigations in Biotherapies of Cancer (CICBT), BIOTHERIS, Villejuif, France.

Suzette Delaloge (S)

Equipe Labellisée Par la Ligue Contre le Cancer, Inserm U1015, Gustave Roussy, Villejuif, France.
Department of cancer Medicine, « INTERCEPTION » Program for Cancer Prevention, Institut Gustave-Roussy, Villejuif, France.

Isabelle Martins (I)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France. isabelle.martins@inserm.fr.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France. isabelle.martins@inserm.fr.

Guido Kroemer (G)

Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Paris, France. kroemer@orange.fr.
Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France. kroemer@orange.fr.
Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. kroemer@orange.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH