Acyl-coenzyme a binding protein (ACBP) - a risk factor for cancer diagnosis and an inhibitor of immunosurveillance.
Immunosurveillance
Immunotherapy
Neuroendocrine factors
Non-small cell lung cancer
Precocious detection
Journal
Molecular cancer
ISSN: 1476-4598
Titre abrégé: Mol Cancer
Pays: England
ID NLM: 101147698
Informations de publication
Date de publication:
06 Sep 2024
06 Sep 2024
Historique:
received:
27
05
2024
accepted:
21
08
2024
medline:
7
9
2024
pubmed:
7
9
2024
entrez:
6
9
2024
Statut:
epublish
Résumé
The plasma concentrations of acyl coenzyme A binding protein (ACBP, also known as diazepam-binding inhibitor, DBI, or 'endozepine') increase with age and obesity, two parameters that are also amongst the most important risk factors for cancer. We measured ACBP/DBI in the plasma from cancer-free individuals, high-risk patients like the carriers of TP53 or BRCA1/2 mutations, and non-syndromic healthy subjects who later developed cancer. In mice, the neutralization of ACBP/DBI was used in models of non-small cell lung cancer (NSCLC) and breast cancer development and as a combination treatment with chemoimmunotherapy (chemotherapy + PD-1 blockade) in the context of NSCLC and sarcomas. The anticancer T cell response upon ACBP/DBI neutralization was characterized by flow cytometry and single-cell RNA sequencing. Circulating levels of ACBP/DBI were higher in patients with genetic cancer predisposition (BRCA1/2 or TP53 germline mutations) than in matched controls. In non-syndromic cases, high ACBP/DBI levels were predictive of future cancer development, and especially elevated in patients who later developed lung cancer. In preclinical models, ACBP/DBI neutralization slowed down breast cancer and NSCLC development and enhanced the efficacy of chemoimmunotherapy in NSCLC and sarcoma models. When combined with chemoimmunotherapy, the neutralizing monoclonal antibody against ACBP/DBI reduced the frequency of regulatory T cells in the tumor bed, modulated the immune checkpoint profile, and increased activation markers. These findings suggest that ACBP/DBI acts as an endogenous immune suppressor. We conclude that elevation of ACBP/DBI constitutes a risk factor for the development of cancer and that ACBP/DBI is an actionable target for improving cancer immunosurveillance.
Sections du résumé
BACKGROUND
BACKGROUND
The plasma concentrations of acyl coenzyme A binding protein (ACBP, also known as diazepam-binding inhibitor, DBI, or 'endozepine') increase with age and obesity, two parameters that are also amongst the most important risk factors for cancer.
METHODS
METHODS
We measured ACBP/DBI in the plasma from cancer-free individuals, high-risk patients like the carriers of TP53 or BRCA1/2 mutations, and non-syndromic healthy subjects who later developed cancer. In mice, the neutralization of ACBP/DBI was used in models of non-small cell lung cancer (NSCLC) and breast cancer development and as a combination treatment with chemoimmunotherapy (chemotherapy + PD-1 blockade) in the context of NSCLC and sarcomas. The anticancer T cell response upon ACBP/DBI neutralization was characterized by flow cytometry and single-cell RNA sequencing.
RESULTS
RESULTS
Circulating levels of ACBP/DBI were higher in patients with genetic cancer predisposition (BRCA1/2 or TP53 germline mutations) than in matched controls. In non-syndromic cases, high ACBP/DBI levels were predictive of future cancer development, and especially elevated in patients who later developed lung cancer. In preclinical models, ACBP/DBI neutralization slowed down breast cancer and NSCLC development and enhanced the efficacy of chemoimmunotherapy in NSCLC and sarcoma models. When combined with chemoimmunotherapy, the neutralizing monoclonal antibody against ACBP/DBI reduced the frequency of regulatory T cells in the tumor bed, modulated the immune checkpoint profile, and increased activation markers.
CONCLUSION
CONCLUSIONS
These findings suggest that ACBP/DBI acts as an endogenous immune suppressor. We conclude that elevation of ACBP/DBI constitutes a risk factor for the development of cancer and that ACBP/DBI is an actionable target for improving cancer immunosurveillance.
Identifiants
pubmed: 39242519
doi: 10.1186/s12943-024-02098-5
pii: 10.1186/s12943-024-02098-5
doi:
Substances chimiques
Biomarkers, Tumor
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
187Subventions
Organisme : Xunta de Galicia
ID : IN606B-2021/015
Organisme : Ministerio de Ciencia, Innovación y Universidades
ID : FPU17/04473
Organisme : Agencia Estatal de Investigación
ID : 10.13039/501100011033
Organisme : Ministerio de Ciencia e Innovación
ID : PID2021-122695OB-I00
Informations de copyright
© 2024. The Author(s).
Références
Alquier T, Christian-Hinman CA, Alfonso J, Færgeman NJ. From benzodiazepines to fatty acids and beyond: revisiting the role of ACBP/DBI. Trends Endocrinol Metab. 2021;32(11):890–903.
pubmed: 34565656
pmcid: 8785413
doi: 10.1016/j.tem.2021.08.009
Costa E, Guidotti A. Diazepam binding inhibitor (DBI): a peptide with multiple biological actions. Life Sci. 1991;49(5):325–44.
pubmed: 1649940
doi: 10.1016/0024-3205(91)90440-M
Montégut L, Abdellatif M, Motiño O, Madeo F, Martins I, Quesada V et al. Acyl coenzyme A binding protein (ACBP): an aging- and disease‐relevant autophagy checkpoint. Aging Cell. 2023.
Marquardt H, Todaro GJ, Shoyab M. Complete amino acid sequences of bovine and human endozepines. Homology with rat diazepam binding inhibitor. J Biol Chem. 1986;261(21):9727–31.
pubmed: 3525533
doi: 10.1016/S0021-9258(18)67575-1
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, et al. Endozepines and their receptors: structure, functions and pathophysiological significance. Pharmacol Ther. 2020;208:107386.
pubmed: 31283949
doi: 10.1016/j.pharmthera.2019.06.008
Bravo-San Pedro JM, Sica V, Martins I, Pol J, Loos F, Maiuri MC, et al. Acyl-CoA-Binding protein is a lipogenic factor that Triggers Food Intake and obesity. Cell Metab. 2019;30(4):754–e679.
pubmed: 31422903
doi: 10.1016/j.cmet.2019.07.010
Joseph A, Moriceau S, Sica V, Anagnostopoulos G, Pol J, Martins I, et al. Metabolic and psychiatric effects of acyl coenzyme A binding protein (ACBP)/diazepam binding inhibitor (DBI). Cell Death Dis. 2020;11(7):502.
pubmed: 32632162
pmcid: 7338362
doi: 10.1038/s41419-020-2716-5
Joseph A, Chen H, Anagnostopoulos G, Montégut L, Lafarge A, Motiño O, et al. Effects of acyl-coenzyme A binding protein (ACBP)/diazepam-binding inhibitor (DBI) on body mass index. Cell Death Dis. 2021;12(6):599.
pubmed: 34108446
pmcid: 8190068
doi: 10.1038/s41419-021-03864-9
Montégut L, Joseph A, Chen H, Abdellatif M, Ruckenstuhl C, Motiño O, et al. High plasma concentrations of acyl-coenzyme A binding protein (ACBP) predispose to cardiovascular disease: evidence for a phylogenetically conserved proaging function of ACBP. Aging Cell. 2023;22(1):e13751.
pubmed: 36510662
doi: 10.1111/acel.13751
Li M, Cao S-M, Dimou N, Wu L, Li J-B, Yang J. Association of metabolic syndrome with risk of Lung Cancer: a Population-based prospective cohort study. Chest. 2024;165(1):213–23.
pubmed: 37572975
doi: 10.1016/j.chest.2023.08.003
Booth LN, Shi C, Tantilert C, Yeo RW, Miklas JW, Hebestreit K, et al. Males induce premature demise of the opposite sex by multifaceted strategies. Nat Aging. 2022;2(9):809–23.
pubmed: 37118502
pmcid: 10154206
doi: 10.1038/s43587-022-00276-y
Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G, et al. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet. 2010;6(7):e1001024.
pubmed: 20657825
pmcid: 2904796
doi: 10.1371/journal.pgen.1001024
Shamalnasab M, Dhaoui M, Thondamal M, Harvald EB, Faergeman NJ, Aguilaniu H, et al. HIF-1-dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA-binding protein MAA-1. Aging. 2017;9(7):1745–69.
pubmed: 28758895
pmcid: 5559173
doi: 10.18632/aging.101267
Lamtahri R, Hazime M, Gowing EK, Nagaraja RY, Maucotel J, Alasoadura M, et al. The gliopeptide ODN, a Ligand for the Benzodiazepine site of GABA(A) receptors, boosts functional recovery after Stroke. J Neurosci. 2021;41(33):7148–59.
pubmed: 34210784
pmcid: 8372017
doi: 10.1523/JNEUROSCI.2255-20.2021
Motiño O, Lambertucci F, Anagnostopoulos G, Li S, Nah J, Castoldi F et al. ACBP/DBI protein neutralization confers autophagy-dependent organ protection through inhibition of cell loss, inflammation, and fibrosis. Proceedings of the National Academy of Sciences. 2022;119(41).
Harris FT, Rahman SMJ, Hassanein M, Qian J, Hoeksema MD, Chen H, et al. Acyl-coenzyme A-Binding protein regulates Beta-oxidation required for growth and survival of Non-small Cell Lung Cancer. Cancer Prev Res. 2014;7(7):748–57.
doi: 10.1158/1940-6207.CAPR-14-0057
Duman C, Di Marco B, Nevedomskaya E, Ulug B, Lesche R, Christian S, et al. Targeting fatty acid oxidation via Acyl-CoA binding protein hinders glioblastoma invasion. Cell Death Dis. 2023;14(4):296.
pubmed: 37120445
pmcid: 10148872
doi: 10.1038/s41419-023-05813-0
Duman C, Yaqubi K, Hoffmann A, Acikgoz AA, Korshunov A, Bendszus M, et al. Acyl-CoA-Binding protein drives Glioblastoma Tumorigenesis by sustaining fatty acid oxidation. Cell Metab. 2019;30(2):274–89. e5.
pubmed: 31056285
doi: 10.1016/j.cmet.2019.04.004
Caron O, Eleni K, Foulon S, Benusiglio P, Bonadona V, Faivre L, et al. Evaluation of whole body MRI for early detection of cancer in TP53 mutation carriers: final results of the LIFSCREEN study. J Clin Oncol. 2018;36(15suppl):1527.
doi: 10.1200/JCO.2018.36.15_suppl.1527
Caron O, Frebourg T, Benusiglio P, Foulon S, Brugières L. Lung adenocarcinoma as part of the Li-Fraumeni Syndrome Spectrum: Preliminary Data of the LIFSCREEN Randomized Clinical Trial. JAMA Oncol. 2017;3(12):1736–7.
pubmed: 28772306
pmcid: 5824279
doi: 10.1001/jamaoncol.2017.1358
Hercberg S, Preziosi P, Briançon S, Galan P, Triol I, Malvy D, et al. A primary prevention trial using nutritional doses of antioxidant vitamins and minerals in cardiovascular diseases and cancers in a general population: the SU.VI.MAX study–design, methods, and participant characteristics. SUpplementation en VItamines et Minéraux AntioXydants. Control Clin Trials. 1998;19(4):336–51.
pubmed: 9683310
doi: 10.1016/S0197-2456(98)00015-4
Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, Malvy D, et al. The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med. 2004;164(21):2335–42.
pubmed: 15557412
doi: 10.1001/archinte.164.21.2335
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):77.
pubmed: 21414208
pmcid: 3068975
doi: 10.1186/1471-2105-12-77
Montégut L, Chen H, Bravo-San Pedro JM, Motiño O, Martins I, Kroemer G. Immunization of mice with the self-peptide ACBP coupled to keyhole limpet hemocyanin. STAR Protocols. 2022;3(1):101095.
pubmed: 35059656
pmcid: 8760546
doi: 10.1016/j.xpro.2021.101095
Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14(8):994–1004.
pubmed: 10783170
pmcid: 316543
doi: 10.1101/gad.14.8.994
Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G, et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell. 2007;1(1):113–26.
pubmed: 18371340
pmcid: 2920603
doi: 10.1016/j.stem.2007.03.002
García-Cao I, García-Cao M, Martín-Caballero J, Criado LM, Klatt P, Flores JM, et al. Super p53 mice exhibit enhanced DNA damage response, are tumor resistant and age normally. Embo j. 2002;21(22):6225–35.
pubmed: 12426394
pmcid: 137187
doi: 10.1093/emboj/cdf595
Buqué A, Bloy N, Perez-Lanzón M, Iribarren K, Humeau J, Pol JG et al. Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat Commun. 2020;11(1).
Bruchard M, Geindreau M, Perrichet A, Truntzer C, Ballot E, Boidot R, et al. Recruitment and activation of type 3 innate lymphoid cells promote antitumor immune responses. Nat Immunol. 2022;23(2):262–74.
pubmed: 35102345
doi: 10.1038/s41590-021-01120-y
Liu P, Zhao L, Senovilla L, Kepp O, Kroemer G. In vivo imaging of Orthotopic Lung Cancer models in mice. Methods Mol Biol. 2021;2279:199–212.
pubmed: 33683696
doi: 10.1007/978-1-0716-1278-1_16
Van Eenige R, Verhave PS, Koemans PJ, Tiebosch IACW, Rensen PCN, Kooijman S. RandoMice, a novel, user-friendly randomization tool in animal research. PLoS ONE. 2020;15(8):e0237096.
pubmed: 32756603
pmcid: 7406044
doi: 10.1371/journal.pone.0237096
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.
pubmed: 29608179
pmcid: 6700744
doi: 10.1038/nbt.4096
Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14(10):979–82.
pubmed: 28825705
pmcid: 5764547
doi: 10.1038/nmeth.4402
Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020;20(8):471–80.
pubmed: 32404993
doi: 10.1038/s41568-020-0262-1
Anagnostopoulos G, Motiño O, Li S, Carbonnier V, Chen H, Sica V, et al. An obesogenic feedforward loop involving PPARγ, acyl-CoA binding protein and GABAA receptor. Cell Death Dis. 2022;13(4):356.
pubmed: 35436993
pmcid: 9016078
doi: 10.1038/s41419-022-04834-5
Lahalle A, Lacroix M, De Blasio C, Cissé MY, Linares LK, Le Cam L. The p53 pathway and metabolism: the Tree that hides the forest. Cancers (Basel). 2021;13(1).
Yang H, Xia L, Chen J, Zhang S, Martin V, Li Q, et al. Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med. 2019;25(9):1428–41.
pubmed: 31501614
doi: 10.1038/s41591-019-0566-4
Liu P, Chen J, Zhao L, Hollebecque A, Kepp O, Zitvogel L, et al. PD-1 blockade synergizes with oxaliplatin-based, but not cisplatin-based, chemotherapy of gastric cancer. Oncoimmunology. 2022;11(1):2093518.
pubmed: 35769948
pmcid: 9235886
doi: 10.1080/2162402X.2022.2093518
Gonzalez-Granado JM, Silvestre-Roig C, Rocha-Perugini V, Trigueros-Motos L, Cibrian D, Morlino G, et al. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal. 2014;7(322):ra37.
pubmed: 24757177
pmcid: 4337980
doi: 10.1126/scisignal.2004872
Saez A, Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Rius C, Gonzalez-Granado JM. Lamin A/C and the Immune System: one Intermediate Filament, many faces. Int J Mol Sci. 2020;21(17).
Hanahan D. Hallmarks of Cancer: New dimensions. Cancer Discov. 2022;12(1):31–46.
pubmed: 35022204
doi: 10.1158/2159-8290.CD-21-1059
Kroemer G, McQuade JL, Merad M, André F, Zitvogel L. Bodywide ecological interventions on cancer. Nat Med. 2023;29(1):59–74.
pubmed: 36658422
doi: 10.1038/s41591-022-02193-4
Weeden CE, Hill W, Lim EL, Grönroos E, Swanton C. Impact of risk factors on early cancer evolution. Cell. 2023;186(8):1541–63.
pubmed: 37059064
doi: 10.1016/j.cell.2023.03.013
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab. 2023;35(1):12–35.
pubmed: 36599298
doi: 10.1016/j.cmet.2022.11.001
The global burden of cancer attributable to risk factors. 2010-19: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10352):563 – 91.
Correa H. Li-Fraumeni Syndrome. J Pediatr Genet. 2016;5(2):84–8.
pubmed: 27617148
pmcid: 4918696
doi: 10.1055/s-0036-1579759
Mascaux C, Angelova M, Vasaturo A, Beane J, Hijazi K, Anthoine G, et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature. 2019;571(7766):570–5.
pubmed: 31243362
doi: 10.1038/s41586-019-1330-0
Petitprez F, de Reyniès A, Keung EZ, Chen TW, Sun CM, Calderaro J, et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020;577(7791):556–60.
pubmed: 31942077
doi: 10.1038/s41586-019-1906-8
Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, et al. Immune checkpoint therapy-current perspectives and future directions. Cell. 2023;186(8):1652–69.
pubmed: 37059068
doi: 10.1016/j.cell.2023.03.006
Folli F, Guzzi V, Perego L, Coletta DK, Finzi G, Placidi C, et al. Proteomics reveals novel oxidative and glycolytic mechanisms in type 1 diabetic patients’ skin which are normalized by kidney-pancreas transplantation. PLoS ONE. 2010;5(3):e9923.
pubmed: 20360867
pmcid: 2848014
doi: 10.1371/journal.pone.0009923
Arendt BM, Comelli EM, Ma DW, Lou W, Teterina A, Kim T, et al. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology. 2015;61(5):1565–78.
pubmed: 25581263
doi: 10.1002/hep.27695
Styrkarsdottir U, Lund SH, Thorleifsson G, Saevarsdottir S, Gudbjartsson DF, Thorsteinsdottir U, et al. Cartilage acidic protein 1 in plasma associates with prevalent osteoarthritis and predicts future risk as Well as Progression to Joint replacements: results from the UK Biobank Resource. Arthritis Rheumatol. 2023;75(4):544–52.
pubmed: 36239377
doi: 10.1002/art.42376
Isnard S, Royston L, Lin J, Fombuena B, Bu S, Kant S et al. Distinct plasma concentrations of Acyl-CoA-Binding protein (ACBP) in HIV progressors and Elite controllers. Viruses. 2022;14(3).
Nie X, Qian L, Sun R, Huang B, Dong X, Xiao Q, et al. Multi-organ proteomic landscape of COVID-19 autopsies. Cell. 2021;184(3):775–e9114.
pubmed: 33503446
pmcid: 7794601
doi: 10.1016/j.cell.2021.01.004
Clavier T, Tonon MC, Foutel A, Besnier E, Lefevre-Scelles A, Morin F, et al. Increased plasma levels of endozepines, endogenous ligands of benzodiazepine receptors, during systemic inflammation: a prospective observational study. Crit Care. 2014;18(6):633.
pubmed: 25407756
pmcid: 4326502
doi: 10.1186/s13054-014-0633-7
Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10105):1833–42.
pubmed: 28855077
doi: 10.1016/S0140-6736(17)32247-X
Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol. 2017;18(10):595–609.
pubmed: 28792007
pmcid: 6290461
doi: 10.1038/nrm.2017.68
Montégut L, López-Otín C, Kroemer G. Aging and cancer. Mol Cancer. 2024;23(1):106.
pubmed: 38760832
pmcid: 11102267
doi: 10.1186/s12943-024-02020-z