The circadian clock in enamel development.
Journal
International journal of oral science
ISSN: 2049-3169
Titre abrégé: Int J Oral Sci
Pays: India
ID NLM: 101504351
Informations de publication
Date de publication:
06 Sep 2024
06 Sep 2024
Historique:
received:
13
03
2024
accepted:
12
06
2024
revised:
02
06
2024
medline:
7
9
2024
pubmed:
7
9
2024
entrez:
6
9
2024
Statut:
epublish
Résumé
Circadian rhythms are self-sustaining oscillations within biological systems that play key roles in a diverse multitude of physiological processes. The circadian clock mechanisms in brain and peripheral tissues can oscillate independently or be synchronized/disrupted by external stimuli. Dental enamel is a type of mineralized tissue that forms the exterior surface of the tooth crown. Incremental Retzius lines are readily observable microstructures of mature tooth enamel that indicate the regulation of amelogenesis by circadian rhythms. Teeth enamel is formed by enamel-forming cells known as ameloblasts, which are regulated and orchestrated by the circadian clock during amelogenesis. This review will first examine the key roles of the circadian clock in regulating ameloblasts and amelogenesis. Several physiological processes are involved, including gene expression, cell morphology, metabolic changes, matrix deposition, ion transportation, and mineralization. Next, the potential detrimental effects of circadian rhythm disruption on enamel formation are discussed. Circadian rhythm disruption can directly lead to Enamel Hypoplasia, which might also be a potential causative mechanism of amelogenesis imperfecta. Finally, future research trajectory in this field is extrapolated. It is hoped that this review will inspire more intensive research efforts and provide relevant cues in formulating novel therapeutic strategies for preventing tooth enamel developmental abnormalities.
Identifiants
pubmed: 39242565
doi: 10.1038/s41368-024-00317-9
pii: 10.1038/s41368-024-00317-9
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
56Informations de copyright
© 2024. The Author(s).
Références
Albrecht, U. & Eichele, G. The mammalian circadian clock. Curr. Opin. Genet. Dev. 13, 271–277 (2003).
pubmed: 12787789
doi: 10.1016/S0959-437X(03)00055-8
Pittendrigh C. S. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev. Physiol. 55, 16–54 (1993).
pubmed: 8466172
doi: 10.1146/annurev.ph.55.030193.000313
Pei, J.-F. et al. Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. Nat. Cell Biol. 21, 1553–1564 (2019).
pubmed: 31768048
doi: 10.1038/s41556-019-0420-4
Rusak, B. & Zucker, I. Neural regulation of circadian rhythms. Physiol. Rev. 59, 449–526 (1979).
pubmed: 379886
doi: 10.1152/physrev.1979.59.3.449
Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).
pubmed: 9635423
doi: 10.1016/S0092-8674(00)81199-X
Buijs, R. M. & Kalsbeek, A. Hypothalamic integration of central and peripheral clocks. Nat. Rev. Neurosci. 2, 521–526 (2001).
pubmed: 11433377
doi: 10.1038/35081582
Hastings, M. H., Reddy, A. B. & Maywood, E. S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649–661 (2003).
pubmed: 12894240
doi: 10.1038/nrn1177
Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).
pubmed: 11114885
doi: 10.1101/gad.183500
Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev. Physiol. 72, 517–549 (2010).
pubmed: 20148687
doi: 10.1146/annurev-physiol-021909-135821
Sinturel, F. et al. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev. 35, 329–334 (2021).
pubmed: 33602874
doi: 10.1101/gad.346460.120
Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).
pubmed: 9988221
doi: 10.1016/S0092-8674(00)80566-8
Richards, J. & Gumz, M. L. Mechanism of the circadian clock in physiology. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R1053–R1064 (2013).
pubmed: 23576606
pmcid: 4073891
doi: 10.1152/ajpregu.00066.2013
Brown, S. A. & Schibler, U. The ins and outs of circadian timekeeping. Curr. Opin. Genet. Dev. 9, 588–594, https://pubmed.ncbi.nlm.nih.gov/10508692/ (1999). Accessed: Sep. 13, 2023.
Peek, C. B. et al. Circadian Clock Interaction with HIF1α Mediates Oxygenic Metabolism and Anaerobic Glycolysis in Skeletal Muscle. Cell Metab. 25, 86–92 (2017).
pubmed: 27773696
doi: 10.1016/j.cmet.2016.09.010
Schibler, U., Ripperger, J. & Brown, S. A. Peripheral circadian oscillators in mammals: time and food. J. Biol. rhythms 18, 250–260, https://pubmed.ncbi.nlm.nih.gov/12828282/ (2003). Accessed: Sep. 13, 2023.
Saner, N. J., Bishop, D. J. & Bartlett, J. D. Is exercise a viable therapeutic intervention to mitigate mitochondrial dysfunction and insulin resistance induced by sleep loss? Sleep. Med. Rev. 37, 60–68 (2018).
pubmed: 29056415
doi: 10.1016/j.smrv.2017.01.001
Wolff, G. & Esser, K. A. Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med Sci. Sports Exerc. 44, 1663–1670 (2012).
pubmed: 22460470
pmcid: 3414645
doi: 10.1249/MSS.0b013e318255cf4c
Tognini, P. et al. Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. Proc. Natl. Acad. Sci. USA 117, 29904–29913 (2020).
pubmed: 33172990
doi: 10.1073/pnas.2016589117
Zheng, L. et al. Circadian rhythms regulate amelogenesis. Bone 55, 158–165 (2013).
pubmed: 23486183
doi: 10.1016/j.bone.2013.02.011
Buhr, E. D., Yoo, S.-H. & Takahashi, J. S. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330, 379–385 (2010).
pubmed: 20947768
pmcid: 3625727
doi: 10.1126/science.1195262
Reiter, R. J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12, 151–180 (1991).
pubmed: 1649044
doi: 10.1210/edrv-12-2-151
Slominski, A., Tobin, D. J., Zmijewski, M. A., Wortsman, J. & Paus, R. Melatonin in the skin: synthesis, metabolism and functions. Trends Endocrinol. Metab. 19, 17–24 (2008).
pubmed: 18155917
doi: 10.1016/j.tem.2007.10.007
Pandi-Perumal, S. R. et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog. Neurobiol. 85, 335–353 (2008).
pubmed: 18571301
doi: 10.1016/j.pneurobio.2008.04.001
Bubenik, G. A. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig. Dis. Sci. 47, 2336–2348 (2002).
pubmed: 12395907
doi: 10.1023/A:1020107915919
Kumasaka, S. et al. Possible involvement of melatonin in tooth development: expression of melatonin 1a receptor in human and mouse tooth germs. Histochem Cell Biol. 133, 577–584 (2010).
pubmed: 20372918
doi: 10.1007/s00418-010-0698-6
Balsalobre A., Marcacci L., Schibler U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Current Biol. 10, Accessed: Sep. 13, 2023. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/11069111/ (2000).
O’Byrne, N. A., Yuen, F., Butt, W. Z. & Liu, P. Y. Sleep and Circadian Regulation of Cortisol: A Short Review. Curr. Opin. Endocr. Metab. Res. 18, 178–186 (2021).
pubmed: 35128146
pmcid: 8813037
doi: 10.1016/j.coemr.2021.03.011
Klein, D. C. et al. The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog. Horm. Res. 52, 307–357 (1997).
pubmed: 9238858
Chrousos, G. P. Ultradian, circadian, and stress-related hypothalamic-pituitary-adrenal axis activity–a dynamic digital-to-analog modulation. Endocrinology 139, 437–440 (1998).
pubmed: 9449607
doi: 10.1210/endo.139.2.5857
Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).
pubmed: 27990019
doi: 10.1038/nrg.2016.150
Pan, X., Mota, S. & Zhang, B. Circadian Clock Regulation on Lipid Metabolism and Metabolic Diseases. Adv. Exp. Med Biol. 1276, 53–66 (2020).
pubmed: 32705594
pmcid: 8593891
doi: 10.1007/978-981-15-6082-8_5
Raza, G. S., Sodum, N., Kaya, Y. & Herzig, K.-H. Role of Circadian Transcription Factor Rev-Erb in Metabolism and Tissue Fibrosis. Int J. Mol. Sci. 23, 12954 (2022).
pubmed: 36361737
pmcid: 9655416
doi: 10.3390/ijms232112954
Kaur, P., Mohamed, N. E., Archer, M., Figueiro, M. G. & Kyprianou, N. Impact of Circadian Rhythms on the Development and Clinical Management of Genitourinary Cancers. Front Oncol. 12, 759153 (2022).
pubmed: 35356228
pmcid: 8959649
doi: 10.3389/fonc.2022.759153
Hansen, J. & Stevens, R. G. Case-control study of shift-work and breast cancer risk in Danish nurses: impact of shift systems. Eur. J. Cancer 48, 1722–1729 (2012).
pubmed: 21852111
doi: 10.1016/j.ejca.2011.07.005
Liu, A. C., Lewis, W. G. & Kay, S. A. Mammalian circadian signaling networks and therapeutic targets. Nat. Chem. Biol. 3, 630–639 (2007).
pubmed: 17876320
doi: 10.1038/nchembio.2007.37
Wang, C. et al. Dendritic cells direct circadian anti-tumour immune responses. Nature 614, 136–143 (2023).
pubmed: 36470303
doi: 10.1038/s41586-022-05605-0
Gabriel, B. M. & Zierath, J. R. Circadian rhythms and exercise - re-setting the clock in metabolic disease. Nat. Rev. Endocrinol. 15, 197–206 (2019).
pubmed: 30655625
doi: 10.1038/s41574-018-0150-x
DeRocher, K. A. et al. Chemical gradients in human enamel crystallites. Nature 583, 66–71 (2020).
pubmed: 32612224
doi: 10.1038/s41586-020-2433-3
Gordon, L. M. et al. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 347, 746–750 (2015).
pubmed: 25678658
doi: 10.1126/science.1258950
Smith, T. M. Experimental determination of the periodicity of incremental features in enamel. J. Anat. 208, 99–113 (2006).
pubmed: 16420383
pmcid: 2100182
doi: 10.1111/j.1469-7580.2006.00499.x
Kierdorf, H., Kierdorf, U., Frölich, K. & Witzel, C. Lines of evidence-incremental markings in molar enamel of Soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study. PLoS One 8, e74597 (2013).
pubmed: 24040293
pmcid: 3765360
doi: 10.1371/journal.pone.0074597
Boyde, A. Enamel, in Teeth, B. K. B. Berkovitz, et al. Eds., in Handbook of Microscopic Anatomy., Berlin, Heidelberg: Springer, 1989, 309–473. Accessed: Sep. 17. [Online]. Available: https://doi.org/10.1007/978-3-642-83496-7_6 (2023).
Smith, T. M., Martin, L. B. & Leakey, M. G. Enamel thickness, microstructure and development in Afropithecus turkanensis. J. Hum. Evol. 44, 283–306 (2003).
pubmed: 12657518
doi: 10.1016/S0047-2484(03)00006-X
Risnes, S. Structural characteristics of staircase-type Retzius lines in human dental enamel analyzed by scanning electron microscopy. Anat. Rec. 226, 135–146 (1990).
pubmed: 2301733
doi: 10.1002/ar.1092260203
Osborn, J. W. A relationship between the striae of retzius and prism directions in the transverse plane of the human tooth. Arch. Oral. Biol. 16, 1061–1070 (1971).
pubmed: 5293407
doi: 10.1016/0003-9969(71)90211-1
Smith, T. M., Martin, L. B., Reid, D. J., de Bonis, L. & Koufos, G. D. An examination of dental development in Graecopithecus freybergi (=Ouranopithecus macedoniensis). J. Hum. Evol. 46, 551–577 (2004).
pubmed: 15120265
doi: 10.1016/j.jhevol.2004.01.006
Mountain, R. V. et al. Association of Maternal Stress and Social Support During Pregnancy With Growth Marks in Children’s Primary Tooth Enamel. JAMA Netw. Open. 4, e2129129 (2021).
pubmed: 34751761
doi: 10.1001/jamanetworkopen.2021.29129
Lacruz, R. S., Habelitz, S., Wright, J. T. & Paine, M. L. Dental enamel formation and implications for oral health and disease. Physiol. Rev. 97, 939–993 (2017).
pubmed: 28468833
pmcid: 6151498
doi: 10.1152/physrev.00030.2016
Robinson, C., Brookes, S. J., Shore, R. C. & Kirkham, J. The developing enamel matrix: nature and function. Eur. J. Oral. Sci. 106, 282–291 (1998).
pubmed: 9541238
doi: 10.1111/j.1600-0722.1998.tb02188.x
Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D. & Stupp, S. I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 108, 4754–4783 (2008).
pubmed: 19006400
pmcid: 2593885
doi: 10.1021/cr8004422
Pandya, M. & Diekwisch, T. G. H. Amelogenesis: Transformation of a protein-mineral matrix into tooth enamel. J. Struct. Biol. 213, 107809 (2021).
pubmed: 34748943
pmcid: 8665087
doi: 10.1016/j.jsb.2021.107809
Nanci A., Ed. Chapter 7 - enamel: Composition, formation, and structure, in Ten cate’s oral histology (eighth edition), Eighth Edition., St. Louis (MO): Mosby, 122–164. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780323078467000070 (2013).
Bartlett, J. D. Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent. 2013, 684607 (2013).
pubmed: 24159389
Josephsen, K. & Fejerskov, O. Ameloblast modulation in the maturation zone of the rat incisor enamel organ. A light and electron microscopic study. J. Anat. 124, 45–70 (1977).
pubmed: 914705
pmcid: 1235513
Reith, E. J. & Boyde, A. The arrangement of ameloblasts on the surface of maturing enamel of the rat incisor tooth. J. Anat. 133, 381–388 (1981).
pubmed: 7328044
pmcid: 1167609
Garant, P. R., Nagy, A. & Cho, M. I. A freeze-fracture study of ruffle-ended post-secretory ameloblasts. J. Dent. Res. 63, 622–628 (1984).
pubmed: 6584463
doi: 10.1177/00220345840630050301
Jessen, H. The morphology and distribution of mitochondria in ameloblasts with special reference to a helix-containing type. J. Ultrastruct. Res. 22, 120–135 (1968).
pubmed: 5653893
doi: 10.1016/S0022-5320(68)90052-X
Elwood, W. K. & Bernstein, M. H. The ultrastructure of the enamel organ related to enamel formation. Am. J. Anat. 122, 73–93 (1968).
pubmed: 5654503
doi: 10.1002/aja.1001220105
Eckstein, M., Aulestia, F. J., Nurbaeva, M. K. & Lacruz, R. S. Altered Ca2+ signaling in enamelopathies. Biochim Biophys. Acta Mol. Cell Res. 1865, 1778–1785 (2018).
pubmed: 29750989
pmcid: 9469027
doi: 10.1016/j.bbamcr.2018.04.013
Kallenbach, E. Fine structure of rat incisor enamel organ during late pigmentation and regression stages. J. Ultrastruct. Res. 30, 38–63 (1970).
pubmed: 5411814
doi: 10.1016/S0022-5320(70)90063-8
Arai, H. et al. Energy metabolic shift contributes to the phenotype modulation of maturation stage ameloblasts. Front Physiol. 13, 1062042 (2022).
pubmed: 36523561
doi: 10.3389/fphys.2022.1062042
Bronckers, A. L. J. J. Ion Transport by Ameloblasts during Amelogenesis. J. Dent. Res. 96, 243–253 (2017).
pubmed: 28221098
doi: 10.1177/0022034516681768
Smith, C. E. Cellular and chemical events during enamel maturation. Crit. Rev. Oral. Biol. Med. 9, 128–161 (1998).
pubmed: 9603233
doi: 10.1177/10454411980090020101
Lacruz, R. S., Nanci, A., Kurtz, I., Wright, J. T. & Paine, M. L. Regulation of pH During Amelogenesis. Calcif. Tissue Int. 86, 91–103 (2010).
pubmed: 20016979
doi: 10.1007/s00223-009-9326-7
Hu, Y., Hu, J. C.-C., Smith, C. E., Bartlett, J. D. & Simmer, J. P. Kallikrein-related peptidase 4, matrix metalloproteinase 20, and the maturation of murine and porcine enamel. Eur. J. Oral. Sci. 119, 217–225 (2011).
pubmed: 22243249
pmcid: 3281808
doi: 10.1111/j.1600-0722.2011.00859.x
Bronckers, A. L. J. J. et al. Ameloblast Modulation and Transport of Cl
pubmed: 26403673
doi: 10.1177/0022034515606900
Bartlett, J. D. & Simmer, J. P. Proteinases in developing dental enamel. Crit. Rev. Oral. Biol. Med. 10, 425–441 (1999).
pubmed: 10634581
doi: 10.1177/10454411990100040101
Termine, J. D., Belcourt, A. B., Christner, P. J., Conn, K. M. & Nylen, M. U. Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel. J. Biol. Chem. 255, 9760–9768 (1980).
pubmed: 7430099
doi: 10.1016/S0021-9258(18)43458-8
Habelitz, S. Materials engineering by ameloblasts. J. Dent. Res. 94, 759–767 (2015).
pubmed: 25800708
doi: 10.1177/0022034515577963
Fukumoto, S. et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J. Cell Biol. 167, 973–983 (2004).
pubmed: 15583034
doi: 10.1083/jcb.200409077
Hu,J. C.-C. et al. Enamel defects and ameloblast-specific expression in Enam knock-out/lacz knock-in mice. J. Biol. Chem. 283, 10858–10871 (2008).
pubmed: 18252720
doi: 10.1074/jbc.M710565200
Smith, C. E., Issid, M., Margolis, H. C. & Moreno, E. C. Developmental changes in the pH of enamel fluid and its effects on matrix-resident proteinases. Adv. Dent. Res. 10, 159–169 (1996).
pubmed: 9206332
doi: 10.1177/08959374960100020701
Bartlett, J. D., Ryu, O. H., Xue, J., Simmer, J. P. & Margolis, H. C. Enamelysin mRNA displays a developmentally defined pattern of expression and encodes a protein which degrades amelogenin. Connect Tissue Res. 39, 101–109 (1998). discussion 141-149.
pubmed: 11062992
doi: 10.3109/03008209809023916
Bourd-Boittin, K., Septier, D., Hall, R., Goldberg, M. & Menashi, S. Immunolocalization of enamelysin (matrix metalloproteinase-20) in the forming rat incisor. J. Histochem Cytochem. 52, 437–445 (2004).
pubmed: 15033995
doi: 10.1177/002215540405200402
Lu, Y. et al. Functions of KLK4 and MMP-20 in dental enamel formation. Biol. Chem. 389, 695–700 (2008).
pubmed: 18627287
pmcid: 2688471
doi: 10.1515/BC.2008.080
Zhu, L. et al. Preferential and selective degradation and removal of amelogenin adsorbed on hydroxyapatites by MMP20 and KLK4 in vitro. Front Physiol. 5, 268 (2014).
pubmed: 25104939
doi: 10.3389/fphys.2014.00268
Nirvani, M. et al. Circadian rhythms and gene expression during mouse molar tooth development. Acta Odontol. Scand. 75, 144–153 (2017).
pubmed: 28030993
doi: 10.1080/00016357.2016.1271999
Lacruz, R. S. et al. The circadian clock modulates enamel development. J. Biol. Rhythms 27, 237–245 (2012).
pubmed: 22653892
doi: 10.1177/0748730412442830
Smith, C. E. Ameloblasts: secretory and resorptive functions. J. Dent. Res. 58, 695–707 (1979).
pubmed: 283112
doi: 10.1177/002203457905800221011
Bori E., et al. Evidence for Bicarbonate Secretion by Ameloblasts in a Novel Cellular Model. J. Dent. Res. 95, 588–596 (2016).
pubmed: 26792171
pmcid: 4841280
doi: 10.1177/0022034515625939
Bronckers, A. L. J. J. et al. Developmental expression of solute carrier family 26 A member 4 (SLC26A4/pendrin) during amelogenesis in developing rodent teeth. Eur. J. Oral. Sci. 119, 185–192 (2011).
pubmed: 22243245
doi: 10.1111/j.1600-0722.2011.00901.x
Lacruz, R. S., Smith, C. E., Kurtz, I., Hubbard, M. J. & Paine, M. L. New paradigms on the transport functions of maturation-stage ameloblasts. J. Dent. Res. 92, 122–129 (2013).
pubmed: 23242231
doi: 10.1177/0022034512470954
Nurbaeva, M. K. et al. Dental enamel cells express functional SOCE channels. Sci. Rep. 5, 15803 (2015).
pubmed: 26515404
doi: 10.1038/srep15803
O’Neill, J. S. & Reddy, A. B. The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping. Biochem Soc. Trans. 40, 44–50 (2012).
pubmed: 22260664
pmcid: 3399769
doi: 10.1042/BST20110691
Reppert, S. M. & Weaver, D. R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).
pubmed: 12198538
doi: 10.1038/nature00965
Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998).
pubmed: 9616112
doi: 10.1126/science.280.5369.1564
Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).
pubmed: 10807566
doi: 10.1126/science.288.5468.1013
Aguilar-Arnal, L. et al. Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat. Struct. Mol. Biol. 20, 1206–1213 (2013).
pubmed: 24056944
doi: 10.1038/nsmb.2667
Sato, T. K. et al. Feedback repression is required for mammalian circadian clock function. Nat. Genet. 38, 312–319 (2006).
pubmed: 16474406
doi: 10.1038/ng1745
Sangoram, A. M. et al. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21, 1101–1113 (1998).
pubmed: 9856465
doi: 10.1016/S0896-6273(00)80627-3
Harding, H. P., Atkins, G. B., Jaffe, A. B., Seo, W. J. & Lazar, M. A. Transcriptional activation and repression by RORalpha, an orphan nuclear receptor required for cerebellar development. Mol. Endocrinol. 11, 1737–1746 (1997).
pubmed: 9328355
Harding, H. P. & Lazar, M. A. The orphan receptor Rev-ErbA alpha activates transcription via a novel response element. Mol. Cell Biol. 13, 3113–3121 (1993).
pubmed: 8474464
pmcid: 359704
Ueda, H. R. et al. A transcription factor response element for gene expression during circadian night. Nature 418, 534–539 (2002).
pubmed: 12152080
doi: 10.1038/nature00906
Sato, T. K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).
pubmed: 15312651
doi: 10.1016/j.neuron.2004.07.018
Akashi, M. & Takumi, T. The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 12, 441–448 (2005).
pubmed: 15821743
doi: 10.1038/nsmb925
Crumbley, C. & Burris, T. P. Direct regulation of CLOCK expression by REV-ERB. PLoS One 6, e17290 (2011).
pubmed: 21479263
pmcid: 3066191
doi: 10.1371/journal.pone.0017290
Liu, A. C. et al. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet. 4, e1000023 (2008).
pubmed: 18454201
doi: 10.1371/journal.pgen.1000023
Ikeda, R. et al. REV-ERBα and REV-ERBβ function as key factors regulating Mammalian Circadian Output. Sci. Rep. 9, 10171 (2019).
pubmed: 31308426
doi: 10.1038/s41598-019-46656-0
Preitner, N. et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).
pubmed: 12150932
doi: 10.1016/S0092-8674(02)00825-5
Schmutz, I., Ripperger, J. A., Baeriswyl-Aebischer, S. & Albrecht, U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24, 345–357 (2010).
pubmed: 20159955
pmcid: 2816734
doi: 10.1101/gad.564110
Wuarin, J. et al. The role of the transcriptional activator protein DBP in circadian liver gene expression. J. Cell Sci. Suppl. 16, 123–127 (1992).
pubmed: 1297647
doi: 10.1242/jcs.1992.Supplement_16.15
Ohno, T., Onishi, Y. & Ishida, N. The negative transcription factor E4BP4 is associated with circadian clock protein PERIOD2. Biochem. Biophys. Res Commun. 354, 1010–1015 (2007).
pubmed: 17274955
doi: 10.1016/j.bbrc.2007.01.084
Ohno, T., Onishi, Y. & Ishida, N. A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res. 35, 648–655 (2007).
pubmed: 17182630
doi: 10.1093/nar/gkl868
Cox, K. H. & Takahashi, J. S. Introduction to the Clock System. Adv. Exp. Med Biol. 1344, 3–20 (2021).
pubmed: 34773223
doi: 10.1007/978-3-030-81147-1_1
Morishita, Y., Miura, D. & Kida, S. PI3K regulates BMAL1/CLOCK-mediated circadian transcription from the Dbp promoter. Biosci. Biotechnol. Biochem. 80, 1131–1140 (2016).
pubmed: 27022680
doi: 10.1080/09168451.2015.1136885
Greco, C. M. et al. S-adenosyl-l-homocysteine hydrolase links methionine metabolism to the circadian clock and chromatin remodeling. Sci. Adv. 6, eabc5629 (2020).
pubmed: 33328229
doi: 10.1126/sciadv.abc5629
Said, R., Lobanova, L., Papagerakis, S. & Papagerakis, P. Calcium Sets the Clock in Ameloblasts. Front Physiol. 11, 920 (2020).
pubmed: 32848861
pmcid: 7411184
doi: 10.3389/fphys.2020.00920
Honma, S. & Honma, K. I. The biological clock: Ca2+ links the pendulum to the hands. Trends Neurosci. 26, 650–653 (2003).
pubmed: 14624847
doi: 10.1016/j.tins.2003.09.012
Zheng, L., Papagerakis, S., Schnell, S. D., Hoogerwerf, W. A. & Papagerakis, P. Expression of Clock Proteins in Developing Tooth. Gene Expr. Patterns 11, 202–206 (2011).
pubmed: 21156215
doi: 10.1016/j.gep.2010.12.002
Yuan, H. et al. A potential role of p75NTR in the regulation of circadian rhythm and incremental growth lines during tooth development. Front Physiol. 13, 981311 (2022).
pubmed: 36213234
doi: 10.3389/fphys.2022.981311
Huang, W., Zheng, X., Yang, M., Li, R. & Song, Y. PER2-mediated ameloblast differentiation via PPARγ/AKT1/β-catenin axis. Int J. Oral. Sci. 13, 16 (2021).
pubmed: 34011974
pmcid: 8134554
doi: 10.1038/s41368-021-00123-7
Tao, J. et al. Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar. PLoS One 11, e0159946 (2016).
pubmed: 27494172
doi: 10.1371/journal.pone.0159946
Athanassiou-Papaefthymiou M., et al. Molecular and circadian controls of ameloblasts. Eur. J. Oral. Sci. 119, 35–40 (2011).
pubmed: 22243224
pmcid: 3516856
doi: 10.1111/j.1600-0722.2011.00918.x
Giro, C. M. Enamel hypoplasia in human teeth; an examination of its causes. J. Am. Dent. Assoc. 34, 310–317 (1947).
pubmed: 20285098
doi: 10.14219/jada.archive.1947.0073
Smith, C. E. L. et al. Amelogenesis Imperfecta; Genes, Proteins, and Pathways. Front Physiol. 8, 435 (2017).
pubmed: 28694781
doi: 10.3389/fphys.2017.00435
Elhennawy, K. & Schwendicke, F. Managing molar-incisor hypomineralization: A systematic review. J. Dent. 55, 16–24 (2016).
pubmed: 27693779
doi: 10.1016/j.jdent.2016.09.012
Lygidakis, N. A., et al. Best Clinical Practice Guidance for clinicians dealing with children presenting with Molar-Incisor-Hypomineralisation (MIH): An EAPD Policy Document. Eur. Arch. Paediatr. Dent. 11, 75–81 (2010).
pubmed: 20403301
doi: 10.1007/BF03262716
Hashem, A., Kelly, A., O’Connell, B. & O’Sullivan, M. Impact of moderate and severe hypodontia and amelogenesis imperfecta on quality of life and self-esteem of adult patients. J. Dent. 41, 689–694 (2013).
pubmed: 23778130
doi: 10.1016/j.jdent.2013.06.004
Coffield, K. D. et al. The psychosocial impact of developmental dental defects in people with hereditary amelogenesis imperfecta. J. Am. Dent. Assoc. 136, 620–630 (2005).
pubmed: 15966649
doi: 10.14219/jada.archive.2005.0233
Taji, S. S., Seow, W. K., Townsend, G. C. & Holcombe, T. Enamel hypoplasia in the primary dentition of monozygotic and dizygotic twins compared with singleton controls. Int J. Paediatr. Dent. 21, 175–184 (2011).
pubmed: 20961345
doi: 10.1111/j.1365-263X.2010.01106.x
Wright, J. T. et al. Human enamel phenotype associated with amelogenesis imperfecta and a kallikrein-4 (g.2142 G > A) proteinase mutation. Eur. J. Oral. Sci. 114, 13–17 (2006).
pubmed: 16674656
doi: 10.1111/j.1600-0722.2006.00291.x
Caterina, J. J. et al. Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J. Biol. Chem. 277, 49598–49604 (2002).
pubmed: 12393861
doi: 10.1074/jbc.M209100200
Simmer, J. P., Hu, Y., Lertlam, R., Yamakoshi, Y. & Hu, J. C.-C. Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J. Biol. Chem. 284, 19110–19121 (2009).
pubmed: 19578120
pmcid: 2707199
doi: 10.1074/jbc.M109.013623
Zhang, Z. et al. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis. PLoS One 10, e0121288 (2015).
pubmed: 25815730
doi: 10.1371/journal.pone.0121288
Papakyrikos,A. M. et al. Biological clocks and incremental growth line formation in dentine. J. Anat. 237, 367–378 (2020).
pubmed: 32266720
doi: 10.1111/joa.13198
Patel, M., McDonnell, S. T., Iram, S. & Chan, M. F. W.-Y. Amelogenesis imperfecta - lifelong management. Restorative management of the adult patient. Br. Dent. J. 215, 449–457 (2013).
pubmed: 24201615
doi: 10.1038/sj.bdj.2013.1045
Pasini, M., Giuca, M. R., Scatena, M., Gatto, R. & Caruso, S. Molar incisor hypomineralization treatment with casein phosphopeptide and amorphous calcium phosphate in children. Minerva Stomatol. 67, 20–25 (2018).
pubmed: 28975773
Bakkal, M., Abbasoglu, Z. & Kargul, B. The Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate on Molar-Incisor Hypomineralisation: A Pilot Study. Oral. Health Prev. Dent. 15, 163–167 (2017).
pubmed: 28322360
Dashash, M., Yeung, C. A., Jamous, I. & Blinkhorn, A. Interventions for the restorative care of amelogenesis imperfecta in children and adolescents. Cochrane Database Syst. Rev. 2013, CD007157 (2013).
pubmed: 23744349
pmcid: 8935374