Glutathione peroxidase 3 is a potential biomarker for konzo.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
06 Sep 2024
Historique:
received: 08 02 2024
accepted: 27 08 2024
medline: 7 9 2024
pubmed: 7 9 2024
entrez: 6 9 2024
Statut: epublish

Résumé

Konzo is a neglected paralytic neurological disease associated with food (cassava) poisoning that affects the world's poorest children and women of childbearing ages across regions of sub-Saharan Africa. Despite understanding the dietary factors that lead to konzo, the molecular markers and mechanisms that trigger this disease remain unknown. To identify potential protein biomarkers associated with a disease status, plasma was collected from two independent Congolese cohorts, a discovery cohort (n = 60) and validation cohort (n = 204), sampled 10 years apart and subjected to multiple high-throughput assays. We identified that Glutathione Peroxidase 3 (GPx3), a critical plasma-based antioxidant enzyme, was the sole protein examined that was both significantly and differentially abundant between affected and non-affected participants in both cohorts, with large reductions observed in those affected with konzo. Our findings raise the notion that reductions in key antioxidant mechanisms may be the biological risk factor for the development of konzo, particularly those mediated through pathways involving the glutathione peroxidase family.

Identifiants

pubmed: 39242582
doi: 10.1038/s41467-024-52136-5
pii: 10.1038/s41467-024-52136-5
doi:

Substances chimiques

Biomarkers 0
Glutathione Peroxidase EC 1.11.1.9
GPX3 protein, human EC 1.11.1.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7811

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | Fogarty International Center (FIC)
ID : 5K01TW011772-03
Organisme : U.S. Department of Health & Human Services | NIH | Fogarty International Center (FIC)
ID : 5R01ES019841-10

Informations de copyright

© 2024. The Author(s).

Références

Kashala-Abotnes, E. et al. Konzo: a distinct neurological disease associated with food (cassava) cyanogenic poisoning. Brain Res. Bull. 145, 87–91 (2019).
pubmed: 29981837 doi: 10.1016/j.brainresbull.2018.07.001
Mwanza, J. C., Tshala-Katumbay, D. & Tylleskär, T. Neuro-ophthalmologic manifestations of konzo. Environ. Toxicol. Pharm. 19, 491–496 (2005).
doi: 10.1016/j.etap.2004.12.012
Boivin, M. J. et al. Neuropsychological effects of konzo: a neuromotor disease associated with poorly processed cassava. Pediatrics 131, e1231–e1239 (2013).
pubmed: 23530166 pmcid: 3608487 doi: 10.1542/peds.2012-3011
Tylleskär, T. et al. Epidemiological evidence from Zaire for a dietary etiology of konzo, an upper motor neuron disease. Bull. World Health Organ. 69, 581–589 (1991).
pubmed: 1959159 pmcid: 2393256
Cliff, J. et al. Konzo and continuing cyanide intoxication from cassava in Mozambique. Food Chem. Toxicol. 49, 631–635 (2011).
pubmed: 20654676 doi: 10.1016/j.fct.2010.06.056
Bramble, M. S. et al. The gut microbiome in konzo. Nat. Commun. 12, 5371 (2021).
pubmed: 34508085 pmcid: 8433213 doi: 10.1038/s41467-021-25694-1
Oluwole, O. S. Cyclical konzo epidemics and climate variability. Ann. Neurol. 77, 371–380 (2015).
pubmed: 25523348 doi: 10.1002/ana.24334
Hendry-Hofer, T. B. et al. A Review on Ingested Cyanide: Risks, Clinical Presentation, Diagnostics, and Treatment Challenges. J. Med Toxicol. 15, 128–133 (2019).
pubmed: 30539383 doi: 10.1007/s13181-018-0688-y
Swenne, I. et al. Cyanide detoxification in rats exposed to acetonitrile and fed a low protein diet. Fundam. Appl Toxicol. 32, 66–71 (1996).
pubmed: 8812227 doi: 10.1006/faat.1996.0107
Baguma, M. et al. Konzo risk factors, determinants and etiopathogenesis: What is new? A systematic review. Neurotoxicology 85, 54–67 (2021).
pubmed: 33964344 doi: 10.1016/j.neuro.2021.05.001
Cliff, J. et al. Association of high cyanide and low sulphur intake in cassava-induced spastic paraparesis. Lancet 2, 1211–1213 (1985).
pubmed: 2866292 doi: 10.1016/S0140-6736(85)90742-1
Nzwalo, H. & Cliff, J. Konzo: from poverty, cassava, and cyanogen intake to toxico-nutritional neurological disease. PLoS Negl. Trop. Dis. 5, e1051 (2011).
pubmed: 21738800 pmcid: 3125150 doi: 10.1371/journal.pntd.0001051
Nunn, P. B., Lyddiard, J. R. & Christopher Perera, K. P. Brain glutathione as a target for aetiological factors in neurolathyrism and konzo. Food Chem. Toxicol. 49, 662–667 (2011).
pubmed: 20816718 doi: 10.1016/j.fct.2010.08.037
Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 3, 461–491 (2013).
pubmed: 24252804 pmcid: 4135313 doi: 10.3233/JPD-130230
Kumar, A. & Ratan, R. R. Oxidative Stress and Huntington’s Disease: The Good, The Bad, and The Ugly. J. Huntingt. Dis. 5, 217–237 (2016).
doi: 10.3233/JHD-160205
Huang, W. J., Zhang, X. & Chen, W. W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 4, 519–522 (2016).
pubmed: 27123241 pmcid: 4840676 doi: 10.3892/br.2016.630
Hemerková, P. & Vališ, M. Role of Oxidative Stress in the Pathogenesis of Amyotrophic Lateral Sclerosis: Antioxidant Metalloenzymes and Therapeutic Strategies. Biomolecules 11, 437 (2021).
Bumoko, G. M. et al. Lower serum levels of selenium, copper, and zinc are related to neuromotor impairments in children with konzo. J. Neurol. Sci. 349, 149–153 (2015).
pubmed: 25592410 pmcid: 4323625 doi: 10.1016/j.jns.2015.01.007
Makila-Mabe, B. G. et al. Serum 8,12-iso-iPF2α-VI isoprostane marker of oxidative damage and cognition deficits in children with konzo. PLoS One 9, e107191 (2014).
pubmed: 25222616 pmcid: 4164531 doi: 10.1371/journal.pone.0107191
Tanaka, H. et al. ITIH4 and Gpx3 are potential biomarkers for amyotrophic lateral sclerosis. J. Neurol. 260, 1782–1797 (2013).
pubmed: 23436019 doi: 10.1007/s00415-013-6877-3
Restuadi, R. et al. Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Med 14, 7 (2022).
pubmed: 35042540 pmcid: 8767698 doi: 10.1186/s13073-021-01006-6
Chang, C. et al. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer. Cancers, 12, 2197 (2020).
Trolli, G., Résumé des observations réunies, au Kwango, au sujet de deux affections d’origine indéterminée. (1938).
Banea, M. et al. [High prevalence of konzo associated with a food shortage crisis in the Bandundu region of zaire]. Ann. Soc. Belg. Med Trop. 72, 295–309 (1992).
pubmed: 1292426
Tshala-Katumbay, D. et al. Cassava food toxins, konzo disease, and neurodegeneration in sub-Sahara Africans. Neurology 80, 949–951 (2013).
pubmed: 23460617 pmcid: 3653209 doi: 10.1212/WNL.0b013e3182840b81
Tshala Katumbay, D., Lukusa, V. M. & Eeg-Olofsson, K. E. EEG findings in Konzo: a spastic para/tetraparesis of acute onset. Clin. Electroencephalogr. 31, 196–200 (2000).
pubmed: 11056842 doi: 10.1177/155005940003100408
Tshala-Katumbay, D. et al. Analysis of motor pathway involvement in konzo using transcranial electrical and magnetic stimulation. Muscle Nerve 25, 230–235 (2002).
pubmed: 11870691 doi: 10.1002/mus.10029
Tylleskär, T. et al. Konzo: a distinct disease entity with selective upper motor neuron damage. J. Neurol. Neurosurg. Psychiatry 56, 638–643 (1993).
pubmed: 8509777 pmcid: 489613 doi: 10.1136/jnnp.56.6.638
Rwatambuga, F. A. et al. Motor control and cognition deficits associated with protein carbamoylation in food (cassava) cyanogenic poisoning: Neurodegeneration and genomic perspectives. Food Chem. Toxicol. 148, 111917 (2021).
pubmed: 33296712 doi: 10.1016/j.fct.2020.111917
Brigelius-Flohé, R. & Maiorino, M. Glutathione peroxidases. Biochim Biophys. Acta 1830, 3289–3303 (2013).
pubmed: 23201771 doi: 10.1016/j.bbagen.2012.11.020
Nirgude, S. & Choudhary, B. Insights into the role of GPX3, a highly efficient plasma antioxidant, in cancer. Biochem Pharm. 184, 114365 (2021).
pubmed: 33310051 doi: 10.1016/j.bcp.2020.114365
Moghadaszadeh, B. & Beggs, A. H. Selenoproteins and their impact on human health through diverse physiological pathways. Physiology 21, 307–315 (2006).
pubmed: 16990451 doi: 10.1152/physiol.00021.2006
Hill, K. E. et al. Selenoprotein P concentration in plasma is an index of selenium status in selenium-deficient and selenium-supplemented Chinese subjects. J. Nutr. 126, 138–145 (1996).
pubmed: 8558294 doi: 10.1093/jn/126.1.138
Huang, W. et al. Selenoprotein P and glutathione peroxidase (EC 1.11.1.9) in plasma as indices of selenium status in relation to the intake of fish. Br. J. Nutr. 73, 455–461 (1995).
pubmed: 7766568 doi: 10.1079/BJN19950047
Lopes, S. O. et al. Food Insecurity and Micronutrient Deficiency in Adults: A Systematic Review and Meta-Analysis. Nutrients, 15, 1074 (2023).
Haug, A. et al. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Micro. Ecol. Health Dis. 19, 209–228 (2007).
Singh, A. et al. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules, 24, 1583 (2019).
Benyamin, B. et al. Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nat. Commun. 8, 611 (2017).
pubmed: 28931804 pmcid: 5606989 doi: 10.1038/s41467-017-00471-1
Wang, J. Y. et al. Functional glutathione peroxidase 3 polymorphisms associated with increased risk of Taiwanese patients with gastric cancer. Clin. Chim. Acta 411, 1432–1436 (2010).
pubmed: 20576521 doi: 10.1016/j.cca.2010.05.026
Liu, C. et al. Effects of GSTA1 and GPX3 Polymorphisms on the Risk of Schizophrenia in Chinese Han Population. Neuropsychiatr. Dis. Treat. 16, 113–118 (2020).
pubmed: 32021204 pmcid: 6957098 doi: 10.2147/NDT.S236298
Grond-Ginsbach, C. et al. GPx-3 gene promoter variation and the risk of arterial ischemic stroke. Stroke 38, e23 (2007). author reply e24.
pubmed: 17463310 doi: 10.1161/STROKEAHA.106.479444
Tshala-Katumbay, D. et al. Impairments, disabilities and handicap pattern in konzo–a non-progressive spastic para/tetraparesis of acute onset. Disabil. Rehabil. 23, 731–736 (2001).
pubmed: 11732562 doi: 10.1080/09638280110055075
Salim, S. Oxidative Stress and the Central Nervous System. J. Pharm. Exp. Ther. 360, 201–205 (2017).
doi: 10.1124/jpet.116.237503
Seeber, B. E. et al. The vitamin E-binding protein afamin is altered significantly in the peritoneal fluid of women with endometriosis. Fertil. Steril. 94, 2923–2926 (2010).
pubmed: 20858448 pmcid: 2996608 doi: 10.1016/j.fertnstert.2010.05.008
Jo, M. et al. Astrocytic Orosomucoid-2 Modulates Microglial Activation and Neuroinflammation. J. Neurosci. 37, 2878–2894 (2017).
pubmed: 28193696 pmcid: 6596722 doi: 10.1523/JNEUROSCI.2534-16.2017
Luo, Z. et al. Orosomucoid, an acute response protein with multiple modulating activities. J. Physiol. Biochem 71, 329–340 (2015).
pubmed: 25711902 doi: 10.1007/s13105-015-0389-9
Biswas, S. K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med Cell Longev. 2016, 5698931 (2016).
pubmed: 26881031 pmcid: 4736408 doi: 10.1155/2016/5698931
Leung, L. L. K., J. Morser, J. Carboxypeptidase B2 and carboxypeptidase N in the crosstalk between coagulation, thrombosis, inflammation, and innate immunity. J. Thromb. Haemost., 16, 1474–1486 (2018).
Zhou, Q. et al. Both plasma basic carboxypeptidases, carboxypeptidase B2 and carboxypeptidase N, regulate vascular leakage activity in mice. J. Thromb. Haemost. 20, 238–244 (2022).
pubmed: 34626062 doi: 10.1111/jth.15551
Liu, Y. et al. Overexpression of zinc-α2-glycoprotein suppressed seizures and seizure-related neuroflammation in pentylenetetrazol-kindled rats. J. Neuroinflammation 15, 92 (2018).
pubmed: 29566716 pmcid: 5863804 doi: 10.1186/s12974-018-1132-6
Stipanuk, M. H. et al. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J. Nutr. 136, 1652s–1659s (2006).
pubmed: 16702335 doi: 10.1093/jn/136.6.1652S
Kimani, S. et al. Carbamoylation correlates of cyanate neuropathy and cyanide poisoning: relevance to the biomarkers of cassava cyanogenesis and motor system toxicity. Springerplus 2, 647 (2013).
pubmed: 24349951 pmcid: 3862856 doi: 10.1186/2193-1801-2-647
Tor-Agbidye, J. et al. Sodium cyanate alters glutathione homeostasis in rodent brain: relationship to neurodegenerative diseases in protein-deficient malnourished populations in Africa. Brain Res. 820, 12–19 (1999).
pubmed: 10023026 doi: 10.1016/S0006-8993(98)01343-2
Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).
pubmed: 12585499 doi: 10.1021/ac026117i
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910 doi: 10.1038/nbt.1511
Rohart, F. et al. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 13, e1005752 (2017).
pubmed: 29099853 pmcid: 5687754 doi: 10.1371/journal.pcbi.1005752
Pino, L. K. et al. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244 (2020).

Auteurs

Matthew S Bramble (MS)

Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA. mbramble@childrensnational.org.
Department of Genomics and Precision Medicine, The George Washington University of Medicine and Health Sciences, Washington, DC, USA. mbramble@childrensnational.org.

Victor Fourcassié (V)

Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada.

Neerja Vashist (N)

Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.

Florence Roux-Dalvai (F)

Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada.

Yun Zhou (Y)

Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.

Guy Bumoko (G)

Department of Neurology, Kinshasa University, Kinshasa, Democratic Republic of the Congo.

Michel Lupamba Kasendue (ML)

Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo.

D'Andre Spencer (D)

Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.

Hilaire Musasa Hanshi-Hatuhu (H)

Department of Neurology, Kinshasa University, Kinshasa, Democratic Republic of the Congo.
Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo.

Vincent Kambale-Mastaki (V)

Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo.

Rafael Vincent M Manalo (RVM)

Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Ermita, Manila, Philippines.

Aliyah Mohammed (A)

Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.

David R McIlwain (DR)

Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA.

Gary Cunningham (G)

Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.

Marshall Summar (M)

Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.

Michael J Boivin (MJ)

Departments of Psychiatry and Neurology & Ophthalmology, Michigan State University, East Lansing, MI, USA.

Ljubica Caldovic (L)

Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.
Department of Genomics and Precision Medicine, The George Washington University of Medicine and Health Sciences, Washington, DC, USA.

Eric Vilain (E)

Institute for Clinical and Translational Science, University of California, Irvine, CA, USA.

Dieudonne Mumba-Ngoyi (D)

Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo.

Desire Tshala-Katumbay (D)

Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo. tshalad@OHSU.edu.
Department of Neurology, Oregon Health & Science University, Portland, OR, USA. tshalad@OHSU.edu.

Arnaud Droit (A)

Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada. arnaud.droit@crchudequebec.ulaval.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH