Using bacterial population dynamics to count phages and their lysogens.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
06 Sep 2024
06 Sep 2024
Historique:
received:
17
10
2023
accepted:
20
08
2024
medline:
7
9
2024
pubmed:
7
9
2024
entrez:
6
9
2024
Statut:
epublish
Résumé
Traditional assays for counting bacteriophages and their lysogens are labor-intensive and perturbative to the host cells. Here, we present a high-throughput infection method in a microplate reader, where the growth dynamics of the infected culture is measured using the optical density (OD). We find that the OD at which the culture lyses scales linearly with the logarithm of the initial phage concentration, providing a way of measuring phage numbers over nine orders of magnitude and down to single-phage sensitivity. Interpreting the measured dynamics using a mathematical model allows us to infer the phage growth rate, which is a function of the phage-cell encounter rate, latent period, and burst size. Adding antibiotic selection provides the ability to measure the rate of host lysogenization. Using this method, we found that when E. coli growth slows down, the lytic growth rate of lambda phages decreases, and the propensity for lysogeny increases, demonstrating how host physiology influences the viral developmental program.
Identifiants
pubmed: 39242585
doi: 10.1038/s41467-024-51913-6
pii: 10.1038/s41467-024-51913-6
doi:
Substances chimiques
Anti-Bacterial Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7814Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM140709
Pays : United States
Organisme : Alfred P. Sloan Foundation
ID : G-2023-19649
Organisme : National Science Foundation (NSF)
ID : 2243257
Informations de copyright
© 2024. The Author(s).
Références
Adams, M. H. Bacteriophages. (Interscience Publishers, New York, 1959).
Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, 2001).
Clokie, M. R. J. & Kropinski, A. M. Bacteriophages: Methods and Protocols. (Humana Press, New York, 2009).
Dennehy, J. J. What ecologists can tell virologists. Annu. Rev. Microbiol. 68, 117–135 (2014).
pubmed: 24847957
doi: 10.1146/annurev-micro-091313-103436
Correa, A. M. S. et al. Revisiting the rules of life for viruses of microorganisms. Nat. Rev. Microbiol. 19, 501–513 (2021).
pubmed: 33762712
doi: 10.1038/s41579-021-00530-x
Silveira, C. B., Luque, A. & Rohwer, F. The landscape of lysogeny across microbial community density, diversity and energetics. Environ. Microbiol. 23, 4098–4111 (2021).
pubmed: 34121301
doi: 10.1111/1462-2920.15640
Casjens, S. R. & Hendrix, R. W. Bacteriophage lambda: early pioneer and still relevant. Virology 479–480, 310–330 (2015).
pubmed: 25742714
doi: 10.1016/j.virol.2015.02.010
Zeng, L. et al. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141, 682–691 (2010).
pubmed: 20478257
pmcid: 2873970
doi: 10.1016/j.cell.2010.03.034
Golding, I. Single-cell studies of phage λ: hidden treasures under Occam’s rug. Annu. Rev. Virol. 3, 453–472 (2016).
pubmed: 27482899
doi: 10.1146/annurev-virology-110615-042127
Yao, T., Coleman, S., Nguyen, T. V. P., Golding, I. & Igoshin, O. A. Bacteriophage self-counting in the presence of viral replication. Proc. Natl Acad. Sci. USA 118, e2104163118 (2021).
pubmed: 34916284
pmcid: 8713767
doi: 10.1073/pnas.2104163118
Zong, C., So, L., Sepúlveda, L. A., Skinner, S. O. & Golding, I. Lysogen stability is determined by the frequency of activity bursts from the fate‐determining gene. Mol. Syst. Biol. 6, 440 (2010).
pubmed: 21119634
pmcid: 3010116
doi: 10.1038/msb.2010.96
Allen, J. P. Biophysical Chemistry. (Wiley-Blackwell Pub, Oxford; Hoboken, NJ, 2008).
Sezonov, G., Joseleau-Petit, D. & D’Ari, R. Escherichia coli Physiology in Luria-Bertani Broth. J. Bacteriol. 189, 8746–8749 (2007).
pubmed: 17905994
pmcid: 2168924
doi: 10.1128/JB.01368-07
Hendrix, R. W. Lambda II. (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y, 1983).
Young, R. Bacteriophage lysis: mechanism and regulation. Microbiol Rev. 56, 430–481 (1992).
pubmed: 1406491
pmcid: 372879
doi: 10.1128/mr.56.3.430-481.1992
Maynard, N. D. et al. A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy. PLoS Genet 6, e1001017 (2010).
pubmed: 20628568
pmcid: 2900299
doi: 10.1371/journal.pgen.1001017
Weitz, J. Quantitative Viral Ecology: Dynamics of Viruses and Their Microbial Hosts. (Princeton University Press, Princeton; Oxford, 2015).
Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949).
doi: 10.1146/annurev.mi.03.100149.002103
Aidelberg, G. et al. Hierarchy of non-glucose sugars in Escherichia coli. BMC Syst. Biol. 8, 133 (2014).
pubmed: 25539838
pmcid: 4304618
doi: 10.1186/s12918-014-0133-z
Pokhilko, A. Monitoring of nutrient limitation in growing E. coli: a mathematical model of a ppGpp-based biosensor. BMC Syst. Biol. 11, 106 (2017).
pubmed: 29157236
pmcid: 5697348
doi: 10.1186/s12918-017-0490-5
Stevenson, K., McVey, A. F., Clark, I. B. N., Swain, P. S. & Pilizota, T. General calibration of microbial growth in microplate readers. Sci. Rep. 6, 38828 (2016).
pubmed: 27958314
pmcid: 5153849
doi: 10.1038/srep38828
Mitarai, N., Brown, S. & Sneppen, K. Population dynamics of phage and bacteria in spatially structured habitats using phage λ and Escherichia coli. J. Bacteriol. 198, 1783–1793 (2016).
pubmed: 27068593
pmcid: 4886755
doi: 10.1128/JB.00965-15
Brown, S., Mitarai, N. & Sneppen, K. Protection of bacteriophage-sensitive Escherichia coli by lysogens. Proc. Natl Acad. Sci. USA 119, e2106005119 (2022).
pubmed: 35344423
pmcid: 9168506
doi: 10.1073/pnas.2106005119
Hazan, R., Que, Y.-A., Maura, D. & Rahme, L. G. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 12, 259 (2012).
pubmed: 23148795
pmcid: 3534621
doi: 10.1186/1471-2180-12-259
Kirkpatrick, S., Gelatt Jr, C.D. & Vecchi, M.P. Optimization by simulated annealing. Science 220, 671–680 (1983).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. Preprint at https://doi.org/10.48550/ARXIV.1202.3665 (2012).
Nabergoj, D., Modic, P. & Podgornik, A. Effect of bacterial growth rate on bacteriophage population growth rate. MicrobiologyOpen 7, e00558 (2018).
pubmed: 29195013
doi: 10.1002/mbo3.558
Hadas, H., Einav, M., Fishov, I. & Zaritsky, A. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143, 179–185 (1997).
pubmed: 9025292
doi: 10.1099/00221287-143-1-179
You, L., Suthers, P. F. & Yin, J. Effects of Escherichia coli physiology on growth of phage T7 in vivo and in silico. J. Bacteriol. 184, 1888–1894 (2002).
pubmed: 11889095
pmcid: 134924
doi: 10.1128/JB.184.7.1888-1894.2002
Wang, I.-N. Lysis timing and bacteriophage fitness. Genetics 172, 17–26 (2006).
pubmed: 16219778
pmcid: 1456144
doi: 10.1534/genetics.105.045922
Shao, Y. & Wang, I.-N. Effect of late promoter activity on bacteriophage λ fitness. Genetics 181, 1467–1475 (2009).
pubmed: 19171945
pmcid: 2666513
doi: 10.1534/genetics.108.098624
Gutenkunst, R. N. et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3, e189 (2007).
pubmed: 17922568
pmcid: 2000971
doi: 10.1371/journal.pcbi.0030189
Bohannan, B. J. M. & Lenski, R. E. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol. Lett. 3, 362–377 (2000).
doi: 10.1046/j.1461-0248.2000.00161.x
Chaudhry, W. N. et al. Leaky resistance and the conditions for the existence of lytic bacteriophage. PLoS Biol. 16, e2005971 (2018).
pubmed: 30114198
pmcid: 6112682
doi: 10.1371/journal.pbio.2005971
Hao, N., Agnew, D., Krishna, S., Dodd, I. B. & Shearwin, K. E. Analysis of infection time courses shows CII levels determine the frequency of lysogeny in phage 186. Pharmaceuticals 14, 998 (2021).
pubmed: 34681220
pmcid: 8538670
doi: 10.3390/ph14100998
Kourilsky, P. Lysogenization by bacteriophage lambda: I. Multiple infection and the lysogenic response. Molec. Gen. Genet. 122, 183–195 (1973).
pubmed: 4573866
doi: 10.1007/BF00435190
St-Pierre, F. & Endy, D. Determination of cell fate selection during phage lambda infection. Proc. Natl Acad. Sci. 105, 20705–20710 (2008).
pubmed: 19098103
pmcid: 2605630
doi: 10.1073/pnas.0808831105
Moldovan, R., Chapman-McQuiston, E. & Wu, X. L. On kinetics of phage adsorption. Biophys. J. 93, 303–315 (2007).
pubmed: 17434950
pmcid: 1914437
doi: 10.1529/biophysj.106.102962
Kobiler, O., Koby, S., Teff, D., Court, D. & Oppenheim, A. B. The phage λ CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis. Proc. Natl Acad. Sci. USA 99, 14964–14969 (2002).
pubmed: 12397182
pmcid: 137528
doi: 10.1073/pnas.222172499
Reichardt, L. F. Control of bacteriophage lambda repressor synthesis after phage infection: the role of the N, cII, cIII and cro products. J. Mol. Biol. 93, 267–288 (1975).
pubmed: 1152053
doi: 10.1016/0022-2836(75)90132-1
Ptashne, M. A Genetic Switch: Phage Lambda Revisited. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, 2004).
Schwartz, M. The adsorption of coliphage lambda to its host: effect of variations in the surface density of receptor and in phage-receptor affinity. J. Mol. Biol. 103, 521–536 (1976).
pubmed: 181582
doi: 10.1016/0022-2836(76)90215-1
Jaramillo‐Riveri, S. et al. Growth‐dependent heterogeneity in the DNA damage response in Escherichia coli. Mol. Syst. Biol. 18, e10441 (2022).
pubmed: 35620827
pmcid: 9136515
doi: 10.15252/msb.202110441
Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).
pubmed: 32669712
pmcid: 7442741
doi: 10.1038/s41586-020-2505-4
Lin, W.-H. & Jacobs-Wagner, C. Connecting single-cell ATP dynamics to overflow metabolism, cell growth, and the cell cycle in Escherichia coli. Curr. Biol. 32, 3911–3924.e4 (2022).
pubmed: 35961315
doi: 10.1016/j.cub.2022.07.035
Lazazzera, B. A. Quorum sensing and starvation: signals for entry into stationary phase. Curr. Opin. Microbiol. 3, 177–182 (2000).
pubmed: 10744996
doi: 10.1016/S1369-5274(00)00072-2
Xavier, K. B. & Bassler, B. L. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol. 187, 238–248 (2005).
pubmed: 15601708
pmcid: 538819
doi: 10.1128/JB.187.1.238-248.2005
Sánchez-Clemente, R. et al. Study of pH changes in media during bacterial growth of several environmental strains. In Proceedings 2, 1297 (2018).
Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 16, e2004248 (2018).
pubmed: 29538378
pmcid: 5868856
doi: 10.1371/journal.pbio.2004248
Golding, I., Coleman, S., Nguyen, T. V. P. & Yao, T. Decision making by temperate phages. in Encyclopedia of Virology 88–97 (Elsevier, 2021).
Golding, I. Decision making in living cells: lessons from a simple system. Annu. Rev. Biophys. 40, 63–80 (2011).
pubmed: 21545284
pmcid: 4465489
doi: 10.1146/annurev-biophys-042910-155227
Ofir, G. & Sorek, R. Contemporary phage biology: from classic models to new insights. Cell 172, 1260–1270 (2018).
pubmed: 29522746
doi: 10.1016/j.cell.2017.10.045
Schrag, S. J. & Mittler, J. E. Host-parasite coexistence: the role of spatial refuges in stabilizing bacteria-phage interactions. Am. Naturalist 148, 348–377 (1996).
doi: 10.1086/285929
Pearl, S., Gabay, C., Kishony, R., Oppenheim, A. & Balaban, N. Q. Nongenetic individuality in the host–phage interaction. PLoS Biol. 6, e120 (2008).
pubmed: 18494559
pmcid: 2386839
doi: 10.1371/journal.pbio.0060120
Erez, Z. et al. Communication between viruses guides lysis–lysogeny decisions. Nature 541, 488–493 (2017).
pubmed: 28099413
pmcid: 5378303
doi: 10.1038/nature21049
Silpe, J. E. & Bassler, B. L. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 176, 268–280.e13 (2019).
pubmed: 30554875
doi: 10.1016/j.cell.2018.10.059
Aframian, N. et al. Dormant phages communicate via arbitrium to control exit from lysogeny. Nat. Microbiol. 7, 145–153 (2021).
pubmed: 34887546
doi: 10.1038/s41564-021-01008-5
Kronheim, S. et al. A chemical defence against phage infection. Nature 564, 283–286 (2018).
pubmed: 30518855
doi: 10.1038/s41586-018-0767-x
Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).
pubmed: 31942051
doi: 10.1038/s41586-019-1894-8
Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol. 21, 686–700 (2023).
Bonhivers, M. & Letellier, L. Calcium controls phage T5 infection at the level of the Escherichia coli cytoplasmic membrane. FEBS Lett. 374, 169–173 (1995).
pubmed: 7589527
doi: 10.1016/0014-5793(95)01101-J
Zhang, K., Young, R. & Zeng, L. Bacteriophage P1 does not show spatial preference when infecting Escherichia coli. Virology 542, 1–7 (2020).
pubmed: 31957661
doi: 10.1016/j.virol.2019.12.012
Min, T. L. et al. High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat. Methods 6, 831–835 (2009).
pubmed: 19801991
pmcid: 2784139
doi: 10.1038/nmeth.1380
Zeng, L. & Golding, I. Following Cell-fate in E. coli After Infection by Phage Lambda. JoVE 3363. https://doi.org/10.3791/3363-v (2011).
Moat, A. G., Foster, J. W. & Spector, M. P. Microbial Physiology. (Wiley-Liss, New York, 2002).
Sprent, P. & Smeeton, N. C. Applied Nonparametric Statistical Methods. (Chapman & Hall/CRC, Boca Raton, 2007).
Ellis, E. L. & Delbrück, M. The growth of bacteriophage. J. Gen. Physiol. 22, 365–384 (1939).
pubmed: 19873108
pmcid: 2141994
doi: 10.1085/jgp.22.3.365
Bull, J. J. Optimality models of phage life history and parallels in disease evolution. J. Theor. Biol. 241, 928–938 (2006).
pubmed: 16616205
doi: 10.1016/j.jtbi.2006.01.027
Campbell, A. Conditions for the existence of bacteriophage. Evolution 15, 153 (1961).
doi: 10.2307/2406076
Kaplan, S., Bren, A., Zaslaver, A., Dekel, E. & Alon, U. Diverse two-dimensional input functions control bacterial sugar genes. Mol. Cell 29, 786–792 (2008).
pubmed: 18374652
pmcid: 2366073
doi: 10.1016/j.molcel.2008.01.021