Extra-abdominal and intra-abdominal FET::CREM fusion mesenchymal neoplasms: comparative clinicopathological study of 9 new cases further supporting a distinct potentially aggressive sarcoma and report of novel sites.
Constitutional symptoms
Ewing sarcoma
Genetic landscape
Next generation sequencing
Precision medicine
Profiling
Journal
Virchows Archiv : an international journal of pathology
ISSN: 1432-2307
Titre abrégé: Virchows Arch
Pays: Germany
ID NLM: 9423843
Informations de publication
Date de publication:
09 Sep 2024
09 Sep 2024
Historique:
received:
03
08
2024
accepted:
28
08
2024
revised:
22
08
2024
medline:
9
9
2024
pubmed:
9
9
2024
entrez:
9
9
2024
Statut:
aheadofprint
Résumé
With the wide use of RNA sequencing technologies, the family of FET::CREB fusion mesenchymal neoplasms has expanded rapidly to include potentially aggressive neoplasms, not fitting any well established WHO entity. Recently, a group of intra-abdominal FET(EWSR1/FUS)::CREB(CREM/ATF1) fused unclassified neoplasms has been reported followed by recent recognition of an analogous extra-abdominal category of unclassified neoplasms carrying EWSR1::ATF1 fusions. We describe 9 additional tumors (5 extra-abdominal and 4 abdominal) carrying an EWSR1::CREM (n = 8) and FUS::CREM (n = 1) fusion. Patients were 7 females and 2 males aged 10 to 75 years (median, 34). Extra-abdominal tumors originated in the head and neck (2 sinonasal, 1 orbital) and soft tissues (1 gluteal, 1 inguinal). Abdominal tumors involved stomach (2), mesentery (1), and kidney (1). Tumor size ranged from 3.5 to 11 cm (median, 6). Treatment was radical surgery with (5) or without (2) neo/adjuvant radio/chemotherapy. Extended follow-up of 5 patients (21-52 months; median, 24) showed an aggressive course in two (40%); one died of disseminated metastases 52 months after several intensified chemotherapy regimens, and one was alive with progressive abdominal disease at 21 months. The immunophenotype of the two subcohorts was significantly overlapping with variable expression of EMA (7 of 8), keratin AE1/AE3 (5 of 9), CD99 (4 of 7), MUC4 (2 of 8), ALK (3 of 8), synaptophysin (3 of 9), chromogranin (1 of 8), CD34 (3 of 6), CD30 (1 of 6), PAX8 (1 of 7), and inhibin (1 of 7), but no reactivity with desmin (0 of 8), S100 (0 of 8), and SOX10 (0 of 8). This series further solidifies the notion that FET::CREB fusions are not limited to the triad of angiomatoid fibrous histiocytoma, clear cell sarcoma, and malignant gastrointestinal neuroectodermal tumor, but characterize an emerging family of potentially aggressive neoplasms occurring at both intra- and extra-abdominal sites. These tumors underscore the promiscuity of the FET::CREB fusions and highlight the pivotal role of phenotype-oriented classification of these neoplasms that share the same genotype, still featuring significant biological and behavioral distinctness.
Identifiants
pubmed: 39249507
doi: 10.1007/s00428-024-03917-2
pii: 10.1007/s00428-024-03917-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Schwartz JC, Cech TR, Parker RR (2015) Biochemical properties and biological functions of FET proteins. Annu Rev Biochem 84:355–379
doi: 10.1146/annurev-biochem-060614-034325
pubmed: 25494299
Thomson DM, Herway ST, Fillmore N, Kim H, Brown JD, Barrow JR, Winder WW (1985) AMP-activated protein kinase phosphorylates transcription factors of the CREB family. J Appl Physiol 2008(104):429–438
Sassone-Corsi P (1998) Coupling gene expression to cAMP signalling: role of CREB and CREM. Int J Biochem Cell Biol 30:27–38
doi: 10.1016/S1357-2725(97)00093-9
pubmed: 9597751
Yoshida A, Wakai S, Ryo E, Miyata K, Miyazawa M, Yoshida KI, Motoi T, Ogawa C, Iwata S, Kobayashi E, Watanabe SI, Kawai A, Mori T (2019) Expanding the phenotypic spectrum of mesenchymal tumors harboring the EWSR1-CREM fusion. Am J Surg Pathol 43:1622–1630
doi: 10.1097/PAS.0000000000001331
pubmed: 31305268
Wang WL, Mayordomo E, Zhang W, Hernandez VS, Tuvin D, Garcia L, Lev DC, Lazar AJ, López-Terrada D (2009) Detection and characterization of EWSR1/ATF1 and EWSR1/CREB1 chimeric transcripts in clear cell sarcoma (melanoma of soft parts). Mod Pathol 22:1201–1209
doi: 10.1038/modpathol.2009.85
pubmed: 19561568
Rossi S, Szuhai K, Ijszenga M, Tanke HJ, Zanatta L, Sciot R, Fletcher CD, Dei Tos AP, Hogendoorn PC (2007) EWSR1-CREB1 and EWSR1-ATF1 fusion genes in angiomatoid fibrous histiocytoma. Clin Cancer Res 13:7322–7328
doi: 10.1158/1078-0432.CCR-07-1744
pubmed: 18094413
Stockman DL, Miettinen M, Suster S, Spagnolo D, Dominguez-Malagon H, Hornick JL, Adsay V, Chou PM, Amanuel B, Vantuinen P, Zambrano EV (2012) Malignant gastrointestinal neuroectodermal tumor: clinicopathologic, immunohistochemical, ultrastructural, and molecular analysis of 16 cases with a reappraisal of clear cell sarcoma-like tumors of the gastrointestinal tract. Am J Surg Pathol 36:857–868
doi: 10.1097/PAS.0b013e31824644ac
pubmed: 22592145
pmcid: 7479544
Thway K, Nicholson AG, Lawson K, Gonzalez D, Rice A, Balzer B, Swansbury J, Min T, Thompson L, Adu-Poku K, Campbell A, Fisher C (2011) Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a new tumor entity. Am J Surg Pathol 35:1722–1732
doi: 10.1097/PAS.0b013e318227e4d2
pubmed: 21997693
Kao YC, Sung YS, Zhang L, Chen CL, Vaiyapuri S, Rosenblum MK, Antonescu CR (2017) EWSR1 fusions with CREB family transcription factors define a novel myxoid mesenchymal tumor with predilection for intracranial location. Am J Surg Pathol 41:482–490
doi: 10.1097/PAS.0000000000000788
pubmed: 28009602
pmcid: 5350023
Ulici V, Hornick JL, Davis JL, Mehrotra S, Meis JM, Halling KC, Fletcher CDM, Kao E, Folpe AL (2023) Extraenteric malignant gastrointestinal neuroectodermal tumor-a clinicopathologic and molecular genetic study of 11 cases. Mod Pathol 36:100160
doi: 10.1016/j.modpat.2023.100160
pubmed: 36934861
Argani P, Harvey I, Nielsen GP, Takano A, Suurmeijer AJH, Voltaggio L, Zhang L, Sung YS, Stenzinger A, Mechtersheimer G, Dickson BC, Antonescu CR (2020) EWSR1/FUS-CREB fusions define a distinctive malignant epithelioid neoplasm with predilection for mesothelial-lined cavities. Mod Pathol 33:2233–2243
doi: 10.1038/s41379-020-0646-5
pubmed: 32770123
pmcid: 7584759
Shibayama T, Shimoi T, Mori T, Noguchi E, Honma Y, Hijioka S, Yoshida M, Ogawa C, Yonemori K, Yatabe Y, Yoshida A (2022) Cytokeratin-positive malignant tumor in the abdomen with EWSR1/FUS-CREB fusion: a clinicopathologic study of 8 cases. Am J Surg Pathol 46:134–146
doi: 10.1097/PAS.0000000000001742
pubmed: 34049318
Trecourt A, Macagno N, Ngo C, Philip CA, Lopez J, Ferreira J, Alves-Vale C, Ray-Coquard I, Genestie C, Agaimy A, Devouassoux-Shisheboran M (2023) CREB fusion-associated epithelioid mesenchymal neoplasms of the female adnexa: three cases documenting a novel location of an emerging entity and further highlighting an ambiguous misleading immunophenotype. Virchows Arch 482:967–974
doi: 10.1007/s00428-023-03546-1
pubmed: 37097347
pmcid: 10247840
Acosta AM, Bridge JA, Dal Cin PS, Sholl LM, Cornejo KM, Fletcher CDM, Ulbright TM (2023) Inflammatory and nested testicular sex cord tumor: a novel neoplasm with aggressive clinical behavior and frequent EWSR1::ATF1 gene fusions. Am J Surg Pathol 47:504–517
doi: 10.1097/PAS.0000000000002022
pubmed: 36791251
Rekhi B, Dermawan JK, Fritchie KJ, Zimpfer A, Mohammad TM, Ali FS, Nandy K, Zou Y, Stoehr R, Agaimy A (2024) EWSR1::ATF1 fusions characterize a group of extra-abdominal epithelioid and round cell mesenchymal neoplasms, phenotypically overlapping with sclerosing epithelioid fibrosarcomas, and intra-abdominal FET::CREB fusion neoplasms. Virchows Arch. https://doi.org/10.1007/s00428-024-03879-5 . Online ahead of print
WHO Classification of Tumours Editorial Board (2020) Soft tissue and bone tumours. WHO classification of tumours series, 5th ed. vol. 3. International Agency for Research on Cancer, Lyon (France). https://publications.Iarc.fr/588
Agaimy A, Clarke BA, Kolin DL, Lee CH, Lee JC, McCluggage WG, Pöschke P, Stoehr R, Swanson D, Turashvili G, Beckmann MW, Hartmann A, Antonescu CR, Dickson BC (2022) Recurrent KAT6B/A::KANSL1 fusions characterize a potentially aggressive uterine sarcoma morphologically overlapping with low-grade endometrial stromal sarcoma. Am J Surg Pathol 46:1298–1308
doi: 10.1097/PAS.0000000000001915
pubmed: 35575789
pmcid: 9388494
Hehir-Kwa JY, Koudijs MJ, Verwiel ETP, Kester LA, van Tuil M, Strengman E, Buijs A, Kranendonk MEG, Hiemcke-Jiwa LS, de Haas V, van de Geer E, de Leng W, van der Lugt J, Lijnzaad P, Holstege FCP, Kemmeren P, Tops BBJ (2022) Improved gene fusion detection in childhood cancer diagnostics using RNA sequencing. JCO Precis Oncol 6:e2000504
doi: 10.1200/PO.20.00504
pubmed: 35085008
pmcid: 8830514
Bishop JA, Gagan J, Baumhoer D, McLean-Holden AL, Oliai BR, Couce M, Thompson LDR (2020) Sclerosing polycystic “adenosis" of salivary glands: a neoplasm characterized by PI3K pathway alterations more correctly named sclerosing polycystic adenoma. Head Neck Pathol 14:630–636
doi: 10.1007/s12105-019-01088-0
pubmed: 31605313
Enzinger FM (1979) Angiomatoid malignant fibrous histiocytoma: a distinct fibrohistiocytic tumor of children and young adults simulating a vascular neoplasm. Cancer 44:2147–2157
doi: 10.1002/1097-0142(197912)44:6<2147::AID-CNCR2820440627>3.0.CO;2-8
pubmed: 228836
Costa MJ, Weiss SW (1990) Angiomatoid malignant fibrous histiocytoma. A follow-up study of 108 cases with evaluation of possible histologic predictors of outcome. Am J Surg Pathol. 14:1126–32
doi: 10.1097/00000478-199012000-00004
pubmed: 2174650
Fanburg-Smith JC, Miettinen M (1999) Angiomatoid, “malignant” fibrous histiocytoma: a clinicopathologic study of 158 cases and further exploration of the myoid phenotype. Hum Pathol 30:1336–1343
doi: 10.1016/S0046-8177(99)90065-5
pubmed: 10571514
Rekhi B, Antonescu CR, Chen G (2020) Angiomatoid fibrous histiocytoma. In: WHO Classification of Tumours Editorial Board. Soft tissue and bone tumours. WHO classification of tumours series, 5th ed. vol. 3. International Agency for Research on Cancer, Lyon (France). https://publications.Iarc.fr/588
Cheah AL, Zou Y, Lanigan C, Billings SD, Rubin BP, Hornick JL, Goldblum JR (2019) ALK expression in angiomatoid fibrous histiocytoma: a potential diagnostic pitfall. Am J Surg Pathol 43:93–101
doi: 10.1097/PAS.0000000000001103
pubmed: 29877921
Abrahao-Machado LF, Bacchi LM, Fernandes IL, Costa FD, Bacchi CE (2020) MUC4 expression in angiomatoid fibrous histiocytoma. Appl Immunohistochem Mol Morphol 28:641–645
doi: 10.1097/PAI.0000000000000816
pubmed: 31652145
Vargas AC, Joy C, Maclean FM, Bonar F, Wong DD, Gill AJ, Cheah AL (2024) Kinase expression in angiomatoid fibrous histiocytoma: panTRK is commonly expressed in the absence of TRK rearrangement. J Clin Pathol 77:251–254
doi: 10.1136/jcp-2023-209225
pubmed: 38053271
Dehner CA, Broski SM, Meis JM, Murugan P, Chrisinger JSA, Sosa C, Petersen M, Halling KC, Gupta S, Folpe AL (2023) Fusion-driven spindle cell rhabdomyosarcomas of bone and soft tissue: a clinicopathologic and molecular genetic study of 25 cases. Mod Pathol 36:100271
doi: 10.1016/j.modpat.2023.100271
pubmed: 37422156
Kojima N, Mori T, Motoi T, Kobayashi E, Yoshida M, Yatabe Y, Ichikawa H, Kawai A, Yonemori K, Antonescu CR, Yoshida A (2023) Frequent CD30 expression in an emerging group of mesenchymal tumors with NTRK, BRAF, RAF1, or RET fusions. Mod Pathol 36:100083
doi: 10.1016/j.modpat.2022.100083
pubmed: 36788089
pmcid: 10373933
Papke DJ Jr, Odintsov I, Dickson BC, Nucci MR, Agaimy A, Fletcher CDM (2024) Myxoid inflammatory myofibroblastic sarcoma: clinicopathologic analysis of 25 cases of a distinctive sarcoma with deceptively bland morphology and aggressive clinical behavior. Am J Surg Pathol 48:1005–1016
doi: 10.1097/PAS.0000000000002231
pubmed: 38717131