Elevated risk of adverse effects from foodborne contaminants and drugs in inflammatory bowel disease: a review.

Chemically-induced disorders Crohn’s disease Drug-related side effects and adverse reactions Foodborne illnesses Inflammatory bowel disease Ulcerative colitis

Journal

Archives of toxicology
ISSN: 1432-0738
Titre abrégé: Arch Toxicol
Pays: Germany
ID NLM: 0417615

Informations de publication

Date de publication:
09 Sep 2024
Historique:
received: 04 06 2024
accepted: 19 08 2024
medline: 9 9 2024
pubmed: 9 9 2024
entrez: 9 9 2024
Statut: aheadofprint

Résumé

The global burden of Inflammatory bowel disease (IBD) has been rising over the last decades. IBD is an intestinal disorder with a complex and largely unknown etiology. The disease is characterized by a chronically inflamed gastrointestinal tract, with intermittent phases of exacerbation and remission. This compromised intestinal barrier can contribute to, enhance, or even enable the toxicity of drugs, food-borne chemicals and particulate matter. This review discusses whether the rising prevalence of IBD in our society warrants the consideration of IBD patients as a specific population group in toxicological safety assessment. Various in vivo, ex vivo and in vitro models are discussed that can simulate hallmarks of IBD and may be used to study the effects of prevalent intestinal inflammation on the hazards of these various toxicants. In conclusion, risk assessments based on healthy individuals may not sufficiently cover IBD patient safety and it is suggested to consider this susceptible subgroup of the population in future toxicological assessments.

Identifiants

pubmed: 39249550
doi: 10.1007/s00204-024-03844-w
pii: 10.1007/s00204-024-03844-w
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek
ID : NWO-TTW P19-03

Informations de copyright

© 2024. The Author(s).

Références

Ahmad SY, Friel J, Mackay D (2020) The effects of non-nutritive artificial sweeteners, aspartame and sucralose, on the Gut microbiome in healthy adults: secondary outcomes of a randomized double-blinded crossover clinical trial. Nutrients 12(11):3408. https://doi.org/10.3390/nu12113408
doi: 10.3390/nu12113408 pubmed: 33171964 pmcid: 7694690
Alasfar RH, Isaifan RJ (2021) Aluminum environmental pollution: the silent killer. Environ Sci Pollut Res Int 28(33):44587–44597. https://doi.org/10.1007/s11356-021-14700-0
doi: 10.1007/s11356-021-14700-0 pubmed: 34196863 pmcid: 8364537
Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, Sadeghi A, Nixon MR, Abdoli A, Abolhassani H et al (2020) The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 5(1):17–30. https://doi.org/10.1016/S2468-1253(19)30333-4
doi: 10.1016/S2468-1253(19)30333-4
Amamou A, Rouland M, Yaker L, Goichon A, Guérin C, Aziz M, Savoye G, Marion-Letellier R (2021) Dietary salt exacerbates intestinal fibrosis in chronic TNBS colitis via fibroblasts activation. Sci Rep 11(1):15055. https://doi.org/10.1038/s41598-021-94280-8
doi: 10.1038/s41598-021-94280-8 pubmed: 34301970 pmcid: 8302708
Amirabadi HE, Donkers JM, Wierenga E, Ingenhut B, Pieters L, Stevens L, Donkers T, Westerhout J, Masereeuw R, Bobeldijk-Pastorova I et al (2022) Intestinal explant barrier chip: long-term intestinal absorption screening in a novel microphysiological system using tissue explants. Lab Chip 22(2):326–342. https://doi.org/10.1039/D1LC00669J
doi: 10.1039/D1LC00669J
Ananthakrishnan AN, McGinley EL, Binion DG, Saeian K (2011) Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: an ecologic analysis. Inflamm Bowel Dis 17(5):1138–1145. https://doi.org/10.1002/ibd.21455
doi: 10.1002/ibd.21455 pubmed: 20806342
Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M, Taylor KD, Lee JC, Goyette P, Imielinski M, Latiano A et al (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43(3):246–252. https://doi.org/10.1038/ng.764
doi: 10.1038/ng.764 pubmed: 21297633 pmcid: 3084597
Antoniou E, Margonis GA, Angelou A, Pikouli A, Argiri P, Karavokyros I, Papalois A, Pikoulis E (2016) The TNBS-induced colitis animal model: an overview. Ann Med Surg (lond) 11:9–15. https://doi.org/10.1016/j.amsu.2016.07.019
doi: 10.1016/j.amsu.2016.07.019 pubmed: 27656280
Araki Y, Sugihara H, Hattori T (2006) In vitro effects of dextran sulfate sodium on a Caco-2 cell line and plausible mechanisms for dextran sulfate sodium-induced colitis. Oncol Rep 16(6):1357–1362
pubmed: 17089061
Authority (EFSA) EFS (2019) Statement on the available outcomes of the human health assessment in the context of the pesticides peer review of the active substance chlorpyrifos. EFSA J 17(8):e05809. https://doi.org/10.2903/j.efsa.2019.5809
doi: 10.2903/j.efsa.2019.5809
Authority (EFSA) EFS, Carrasco Cabrera L, Di Piazza G, Dujardin B, Medina Pastor P (2023) The 2021 European Union report on pesticide residues in food. EFSA J 21(4):e07939. https://doi.org/10.2903/j.efsa.2023.7939
doi: 10.2903/j.efsa.2023.7939
Bancil AS, Sandall AM, Rossi M, Chassaing B, Lindsay JO, Whelan K (2021) Food Additive Emulsifiers and Their Impact on Gut Microbiome, Permeability, and Inflammation: Mechanistic Insights in Inflammatory Bowel Disease. J Crohn’s Colitis 15(6):1068–1079. https://doi.org/10.1093/ecco-jcc/jjaa254
doi: 10.1093/ecco-jcc/jjaa254
Barciela P, Perez-Vazquez A, Prieto MA (2023) Azo dyes in the food industry: features, classification, toxicity, alternatives, and regulation. Food Chem Toxicol 178:113935. https://doi.org/10.1016/j.fct.2023.113935
doi: 10.1016/j.fct.2023.113935 pubmed: 37429408
Bauer C, Duewell P, Lehr H-A, Endres S, Schnurr M (2012) Protective and aggravating effects of Nlrp3 inflammasome activation in IBD models: influence of genetic and environmental factors. Dig Dis 30(Suppl 1):82–90. https://doi.org/10.1159/000341681
doi: 10.1159/000341681 pubmed: 23075874
Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43(3):597–603. https://doi.org/10.1021/es801845a
Bernstein CN, Rawsthorne P, Cheang M, Blanchard JF (2006) A population-based case control study of potential risk factors for IBD. Am J Gastroenterol 101(5):993–1002. https://doi.org/10.1111/j.1572-0241.2006.00381.x
doi: 10.1111/j.1572-0241.2006.00381.x pubmed: 16696783
Bischoff SC, Mailer R, Pabst O, Weier G, Sedlik W, Li Z, Chen JJ, Murphy DL, Gershon MD (2009) Role of serotonin in intestinal inflammation: knockout of serotonin reuptake transporter exacerbates 2, 4, 6-trinitrobenzene sulfonic acid colitis in mice. Am J Physiol-Gastroint Liver Physiol 296(3):G685–G695
Biskou O, Meira de-Faria F, Walter SM, Winberg ME, Haapaniemi S, Myrelid P, Söderholm JD, Keita ÅV. (2022) Increased Numbers of Enteric Glial Cells in the Peyer’s Patches and Enhanced Intestinal Permeability by Glial Cell Mediators in Patients with Ileal Crohn’s Disease. Cells 11(3):335. https://doi.org/10.3390/cells11030335
doi: 10.3390/cells11030335 pubmed: 35159145 pmcid: 8833935
Bitton A, Dobkin PL, Edwardes MD, Sewitch MJ, Meddings JB, Rawal S, Cohen A, Vermeire S, Dufresne L, Franchimont D, Wild GE (2008) Predicting relapse in Crohn’s disease: a biopsychosocial model. Gut 57(10):1386–1392. https://doi.org/10.1136/gut.2007.134817
doi: 10.1136/gut.2007.134817 pubmed: 18390994
Bovard D, Iskandar A, Luettich K, Hoeng J, Peitsch MC (2017) Organs-on-a-chip: a new paradigm for toxicological assessment and preclinical drug development. Toxicol Res Appl 1:2397847317726351. https://doi.org/10.1177/2397847317726351
doi: 10.1177/2397847317726351
Brand S (2009) Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 58(8):1152–1167. https://doi.org/10.1136/gut.2008.163667
doi: 10.1136/gut.2008.163667 pubmed: 19592695
Bredeck G, Busch M, Rossi A, Stahlmecke B, Fomba KW, Herrmann H, Schins RPF (2023) Inhalable Saharan dust induces oxidative stress, NLRP3 inflammasome activation, and inflammatory cytokine release. Environ Int 172:107732. https://doi.org/10.1016/j.envint.2023.107732
doi: 10.1016/j.envint.2023.107732 pubmed: 36680803
Busch M, Bredeck G, Kämpfer AAM, Schins RPF (2021) Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine. Environ Res 193:110536. https://doi.org/10.1016/j.envres.2020.110536
doi: 10.1016/j.envres.2020.110536 pubmed: 33253701
Busch M, Bredeck G, Waag F, Rahimi K, Ramachandran H, Bessel T, Barcikowski S, Herrmann A, Rossi A, Schins RPF (2022a) Assessing the NLRP3 inflammasome activating potential of a large panel of micro- and nanoplastics in THP-1 cells. Biomolecules 12(8):1095. https://doi.org/10.3390/biom12081095
doi: 10.3390/biom12081095 pubmed: 36008988 pmcid: 9406042
Busch M, Ramachandran H, Wahle T, Rossi A, Schins RPF (2022b) Investigating the role of the NLRP3 inflammasome pathway in acute intestinal inflammation: use of THP-1 knockout cell lines in an advanced triple culture model. Front Immunol. https://doi.org/10.3389/fimmu.2022.898039
doi: 10.3389/fimmu.2022.898039 pubmed: 36275704 pmcid: 9582129
Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF, Bouwmeester H (2023) Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. Front Toxicol [Internet]. [accessed 2024 Mar 13] 5. https://doi.org/10.3389/ftox.2023.1112212
Cano PM, Seeboth J, Meurens F, Cognie J, Abrami R, Oswald IP, Guzylack-Piriou L (2013) Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases: an emerging hypothesis through possible modulation of Th17-mediated Response. PLoS ONE 8(1):e53647. https://doi.org/10.1371/journal.pone.0053647
doi: 10.1371/journal.pone.0053647 pubmed: 23326479 pmcid: 3542340
Chandrasekaran R, Lacy DB (2017) The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 41(6):723–750
doi: 10.1093/femsre/fux048 pubmed: 29048477 pmcid: 5812492
Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519(7541):92–96. https://doi.org/10.1038/nature14232
doi: 10.1038/nature14232 pubmed: 25731162 pmcid: 4910713
Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 104:Unit-15.25. https://doi.org/10.1002/0471142735.im1525s104
Chen KG, Mallon BS, McKay RDG, Robey PG (2014) Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14(1):13–26. https://doi.org/10.1016/j.stem.2013.12.005
doi: 10.1016/j.stem.2013.12.005 pubmed: 24388173 pmcid: 3915741
Chen H, Zhao R, Wang B, Cai C, Zheng L, Wang H, Wang M, Ouyang H, Zhou X, Chai Z et al (2017) The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact 8:80–88. https://doi.org/10.1016/j.impact.2017.07.005
doi: 10.1016/j.impact.2017.07.005
Chen D, Parks CG, Hofmann JN, Beane Freeman LE, Sandler DP (2024) Pesticide use and inflammatory bowel disease in licensed pesticide applicators and spouses in the Agricultural Health Study. Environ Res 249:118464. https://doi.org/10.1016/j.envres.2024.118464
doi: 10.1016/j.envres.2024.118464 pubmed: 38354883
Chen X, Wang S, Mao X, Xiang X, Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S et al. (2023) Adverse health effects of emerging contaminants on inflammatory bowel disease. Front Public Health. https://doi.org/10.3389/fpubh.2023.1140786
Cherwin AE, Templeton HN, Ehrlich AT, Patlin BH, Henry CS, Tobet SA (2023) Microfluidic organotypic device to test intestinal mucosal barrier permeability ex vivo. Lab Chip 23(18):4126–4133. https://doi.org/10.1039/D3LC00615H
doi: 10.1039/D3LC00615H pubmed: 37655621 pmcid: 10498942
Chiocchetti GM, Vélez D, Devesa V (2019) Inorganic arsenic causes intestinal barrier disruption. Metallomics 11(8):1411–1418. https://doi.org/10.1039/C9MT00144A
doi: 10.1039/C9MT00144A pubmed: 31313790
Choi E-K, Aring L, Das NK, Solanki S, Inohara N, Iwase S, Samuelson LC, Shah YM, Seo YA (2020) Impact of dietary manganese on experimental colitis in mice. FASEB J 34(2):2929–2943. https://doi.org/10.1096/fj.201902396R
doi: 10.1096/fj.201902396R pubmed: 31908045
Choi T-Y, Choi T-I, Lee Y-R, Choe S-K, Kim C-H (2021) Zebrafish as an animal model for biomedical research. Exp Mol Med 53(3):310–317. https://doi.org/10.1038/s12276-021-00571-5
doi: 10.1038/s12276-021-00571-5 pubmed: 33649498 pmcid: 8080808
Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, Blaszyk H, Crowell MD, Sharkey KA, Gershon MD, Mawe GM (2004) Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 126(7):1657–1664
doi: 10.1053/j.gastro.2004.03.013 pubmed: 15188158
Coates M, Tekin I, Vrana K, Mawe G (2017) the many potential roles of intestinal serotonin (5-hydroxytryptamine, 5-HT) signalling in inflammatory bowel disease. Aliment Pharmacol Ther 46(6):569–580
doi: 10.1111/apt.14226 pubmed: 28737264
Cominelli F, Arseneau KO, Rodriguez-Palacios A, Pizarro TT (2017) Uncovering pathogenic mechanisms of inflammatory bowel disease using mouse models of Crohn’s disease-like ileitis: what is the right model? Cell Mol Gastroenterol Hepatol 4(1):19–32. https://doi.org/10.1016/j.jcmgh.2017.02.010
doi: 10.1016/j.jcmgh.2017.02.010 pubmed: 28560286 pmcid: 5439236
Coward S, Benchimol EI, Bernstein CN, Avina-Zubieta A, Bitton A, Carroll MW, Cui Y, Hoentjen F, Hracs L, Jacobson K et al (2022) Forecasting the Incidence and Prevalence of Inflammatory Bowel Disease: A Canadian nationwide analysis. Off J Am Coll Gastroenterol ACG. https://doi.org/10.14309/ajg.0000000000002687
d’Aldebert E, Quaranta M, Sébert M, Bonnet D, Kirzin S, Portier G, Duffas J-P, Chabot S, Lluel P, Allart S et al (2020) Characterization of human colon organoids from inflammatory bowel disease patients. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.00363
da Costa GG, da Conceição NG, da Silva PA, Simões BFT (2022) Worldwide dietary patterns and their association with socioeconomic data: an ecological exploratory study. Glob Health 18(1):31. https://doi.org/10.1186/s12992-022-00820-w
doi: 10.1186/s12992-022-00820-w
Dawson A, Dyer C, Macfie J, Davies J, Karsai L, Greenman J, Jacobsen M (2016) A microfluidic chip based model for the study of full thickness human intestinal tissue using dual flow. Biomicrofluidics 10(6):064101. https://doi.org/10.1063/1.4964813
doi: 10.1063/1.4964813 pubmed: 27822333 pmcid: 5097047
de Oliveira MJ, Galea R, Nag R, Cummins E, Gatt R, Valdramidis V (2022) Nanoparticle food applications and their toxicity: current trends and needs in risk assessment strategies. J Food Prot 85(2):355–372. https://doi.org/10.4315/JFP-21-184
doi: 10.4315/JFP-21-184
Dekkers S, Krystek P, Peters RJB, Lankveld DPK, Bokkers BGH, van Hoeven-Arentzen PH, Bouwmeester H, Oomen AG (2011) Presence and risks of nanosilica in food products. Nanotoxicology 5(3):393–405. https://doi.org/10.3109/17435390.2010.519836
doi: 10.3109/17435390.2010.519836 pubmed: 20868236
DeLuca JA, Allred KF, Menon R, Riordan R, Weeks BR, Jayaraman A, Allred CD (2018) Bisphenol-A alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis. Exp Biol Med (maywood) 243(10):864–875. https://doi.org/10.1177/1535370218782139
doi: 10.1177/1535370218782139 pubmed: 29874946
Dieleman LA, Peña AS, Meuwissen SG, van RE. (1997) Role of animal models for the pathogenesis and treatment of inflammatory bowel disease. Scand J Gastroenterol Suppl 223:99–104
pubmed: 9200314
Djouina M, Waxin C, Leprêtre F, Tardivel M, Tillement O, Vasseur F, Figeac M, Bongiovanni A, Sebda S, Desreumaux P et al (2022) Gene/environment interaction in the susceptibility of Crohn’s disease patients to aluminum. Sci Total Environ 850:158017. https://doi.org/10.1016/j.scitotenv.2022.158017
doi: 10.1016/j.scitotenv.2022.158017 pubmed: 35973536
Donkers JM, Eslami Amirabadi H, van de Steeg E (2021) Intestine-on-a-chip: next level in vitro research model of the human intestine. Curr Opin Toxicol 25:6–14. https://doi.org/10.1016/j.cotox.2020.11.002
doi: 10.1016/j.cotox.2020.11.002
Donkers JM, Steeg E van de, Wiese M (2024) A host-microbial metabolite interaction gut-on-a-chip model of the adult human intestine demonstrates beneficial effects upon inulin treatment of gut microbiome. Microb Res Rep 3(2):null-null. https://doi.org/10.20517/mrr.2023.79
Dosh RH, Jordan-Mahy N, Sammon C, Le Maitre CL (2019) Long-term in vitro 3D hydrogel co-culture model of inflammatory bowel disease. Sci Rep 9(1):1812. https://doi.org/10.1038/s41598-019-38524-8
doi: 10.1038/s41598-019-38524-8 pubmed: 30755679 pmcid: 6372635
Dotti I, Mayorgas A, Salas A (2022) Generation of human colon organoids from healthy and inflammatory bowel disease mucosa. PLoS ONE 17(10):e0276195. https://doi.org/10.1371/journal.pone.0276195
doi: 10.1371/journal.pone.0276195 pubmed: 36301950 pmcid: 9612551
Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314(5804):1461–1463. https://doi.org/10.1126/science.1135245
doi: 10.1126/science.1135245 pubmed: 17068223 pmcid: 4410764
Eckmann L, Kagnoff MF, Fierer J (1993) Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun 61(11):4569–4574. https://doi.org/10.1128/iai.61.11.4569-4574.1993
doi: 10.1128/iai.61.11.4569-4574.1993 pubmed: 8406853 pmcid: 281206
EFSA (2016) Re-evaluation of titanium dioxide (E 171) as a food additive. EFSA J 14(9):e04545. https://doi.org/10.2903/j.efsa.2016.4545
doi: 10.2903/j.efsa.2016.4545
EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, et al (2023) Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 21(4):e06857. https://doi.org/10.2903/j.efsa.2023.6857
doi: 10.2903/j.efsa.2023.6857
EFSA, Younes M, Aquilina G, Castle L, Engel K-H, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert-Remy U, Gürtler R, et al (2021) Safety assessment of titanium dioxide (E171) as a food additive. EFSA J 19(5):e06585. https://doi.org/10.2903/j.efsa.2021.6585
doi: 10.2903/j.efsa.2021.6585 pubmed: 33976718
Erdmann P, Bruckmueller H, Martin P, Busch D, Haenisch S, Müller J, Wiechowska-Kozlowska A, Partecke LI, Heidecke C-D, Cascorbi I (2019) Dysregulation of mucosal membrane transporters and drug-metabolizing enzymes in ulcerative colitis. J Pharm Sci 108(2):1035–1046
doi: 10.1016/j.xphs.2018.09.024 pubmed: 30267783
Ericsson AC, Franklin CL (2021) The gut microbiome of laboratory mice: considerations and best practices for translational research. Mamm Genome 32(4):239–250. https://doi.org/10.1007/s00335-021-09863-7
doi: 10.1007/s00335-021-09863-7 pubmed: 33689000 pmcid: 8295156
Estrada HQ, Patel S, Rabizadeh S, Casero D, Targan SR, Barrett RJ (2022) Development of a personalized intestinal fibrosis model using human intestinal organoids derived from induced pluripotent stem cells. Inflamm Bowel Dis 28(5):667–679. https://doi.org/10.1093/ibd/izab292
doi: 10.1093/ibd/izab292 pubmed: 34918082
Estudante M, Morais JG, Soveral G, Benet LZ (2013) Intestinal drug transporters: an overview. Adv Drug Deliv Rev 65(10):1340–1356
doi: 10.1016/j.addr.2012.09.042 pubmed: 23041352
Felder JB, Korelitz BI, Rajapakse R, Schwarz S, Horatagis AP, Gleim G (2000) Effects of nonsteroidal antiinflammatory drugs on inflammatory bowel disease: a case-control study. Am J Gastroenterol 95(8):1949–1954
doi: 10.1111/j.1572-0241.2000.02262.x pubmed: 10950041
Flight WG, Smith A, Paisey C, Marchesi JR, Bull MJ, Norville PJ, Mutton KJ, Webb AK, Bright-Thomas RJ, Jones AM, Mahenthiralingam E (2015) Rapid detection of emerging pathogens and loss of microbial diversity associated with severe lung disease in cystic fibrosis. J Clin Microbiol 53(7):2022–2029. https://doi.org/10.1128/jcm.00432-15
doi: 10.1128/jcm.00432-15 pubmed: 25878338 pmcid: 4473198
Foong SY, Ma NL, Lam SS, Peng W, Low F, Lee BHK, Alstrup AKO, Sonne C (2020) A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: prevalence, remediation and actions needed. J Hazard Mater 400:123006. https://doi.org/10.1016/j.jhazmat.2020.123006
doi: 10.1016/j.jhazmat.2020.123006 pubmed: 32947729
Forrest K, Symmons D, Foster P (2004) Systematic review: is ingestion of paracetamol or non-steroidal anti-inflammatory drugs associated with exacerbations of inflammatory bowel disease? Aliment Pharmacol Ther 20(10):1035–1043
doi: 10.1111/j.1365-2036.2004.02270.x pubmed: 15569105
Fort MM, Lesley R, Davidson NJ, Menon S, Brombacher F, Leach MW, Rennick DM (2001) IL-4 exacerbates disease in a Th1 cell transfer model of colitis1. J Immunol 166(4):2793–2800. https://doi.org/10.4049/jimmunol.166.4.2793
doi: 10.4049/jimmunol.166.4.2793 pubmed: 11160346
Furr AE, Ranganathan S, Finn OJ (2010) Aberrant expression of MUC1 mucin in pediatric inflammatory bowel disease. Pediatr Dev Pathol 13(1):24–31. https://doi.org/10.2350/08-06-0479.1
doi: 10.2350/08-06-0479.1 pubmed: 19025220
Gan F, Lin Z, Tang J, Chen X, Huang K (2023) Deoxynivalenol at no-observed adverse-effect levels aggravates DSS-induced colitis through the JAK2/STAT3 signaling pathway in mice. J Agric Food Chem 71(9):4144–4152. https://doi.org/10.1021/acs.jafc.3c00252
doi: 10.1021/acs.jafc.3c00252 pubmed: 36847760
Gangemi S, Gofita E, Costa C, Teodoro M, Briguglio G, Nikitovic D, Tzanakakis G, Tsatsakis AM, Wilks MF, Spandidos DA, Fenga C (2016) Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (Review). Int J Mol Med 38(4):1012–1020. https://doi.org/10.3892/ijmm.2016.2728
doi: 10.3892/ijmm.2016.2728 pubmed: 27600395 pmcid: 5029960
Geiss T, Schaefert RM, Berens S, Hoffmann P, Gauss A (2018) Risk of depression in patients with inflammatory bowel disease. J Dig Dis 19(8):456–467
doi: 10.1111/1751-2980.12644 pubmed: 29989345
Gijzen L, Marescotti D, Raineri E, Nicolas A, Lanz HL, Guerrera D, van Vught R, Joore J, Vulto P, Peitsch MC et al (2020) An intestine-on-a-chip model of plug-and-play modularity to study inflammatory processes. SLAS Technol: Transl Life Sci Innovat 25(6):585–597. https://doi.org/10.1177/2472630320924999
doi: 10.1177/2472630320924999
Gong D, Gong X, Wang L, Yu X, Dong Q (2016) Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterology Research and Practice 2016:e6951091. https://doi.org/10.1155/2016/6951091
doi: 10.1155/2016/6951091
Goodhart GL (1977) Effect of aminoglycosides on the chemotactic response of human polymorphonuclear leukocytes. Antimicrob Agents Chemother 12(4):540–542. https://doi.org/10.1128/AAC.12.4.540
doi: 10.1128/AAC.12.4.540 pubmed: 921250 pmcid: 429962
Grouls M, Janssen AWF, Duivenvoorde LPM, Hooiveld GJEJ, Bouwmeester H, van der Zande M (2022) Differential gene expression in iPSC-derived human intestinal epithelial cell layers following exposure to two concentrations of butyrate, propionate and acetate. Sci Rep 12(1). https://doi.org/10.1038/s41598-022-17296-8
Gunasekera DC, Ma J, Vacharathit V, Shah P, Ramakrishnan A, Uprety P, Shen Z, Sheh A, Brayton CF, Whary MT et al (2020) The development of colitis in Il10−/− mice is dependent on IL-22. Mucosal Immunol 13(3):493–506. https://doi.org/10.1038/s41385-019-0252-3
doi: 10.1038/s41385-019-0252-3 pubmed: 31932715 pmcid: 7566780
Guo M, Liu X, Tan Y, Kang F, Zhu X, Fan X, Wang C, Wang R, Liu Y, Qin X et al (2021) Sucralose enhances the susceptibility to dextran sulfate sodium (DSS) induced colitis in mice with changes in gut microbiota. Food Funct 12(19):9380–9390. https://doi.org/10.1039/D1FO01351C
doi: 10.1039/D1FO01351C pubmed: 34606537
Guo A, Ludvigsson J, Brantsæter AL, Klingberg S, Östensson M, Størdal K, Mårild K (2024) Early-life diet and risk of inflammatory bowel disease: a pooled study in two Scandinavian birth cohorts. Gut 73(4):590–600. https://doi.org/10.1136/gutjnl-2023-330971
doi: 10.1136/gutjnl-2023-330971 pubmed: 38290832
Halter F, Tarnawski A, Schmassmann A, Peskar B (2001) Cyclooxygenase 2—implications on maintenance of gastric mucosal integrity and ulcer healing: controversial issues and perspectives. Gut 49(3):443–453
doi: 10.1136/gut.49.3.443 pubmed: 11511570 pmcid: 1728453
Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39(2):207–211. https://doi.org/10.1038/ng1954
doi: 10.1038/ng1954 pubmed: 17200669
Hanyang L, Xuanzhe L, Xuyang C, Yujia Q, Jiarong F, Jun S, Zhihua R (2017) Application of zebrafish models in inflammatory bowel disease. Front Immunol 8:501. https://doi.org/10.3389/fimmu.2017.00501
doi: 10.3389/fimmu.2017.00501 pubmed: 28515725 pmcid: 5413514
Haub S, Ritze Y, Bergheim I, Pabst O, Gershon M, Bischoff S (2010) Enhancement of intestinal inflammation in mice lacking interleukin 10 by deletion of the serotonin reuptake transporter. Neurogastroenterol Motil 22(7):826-e229
doi: 10.1111/j.1365-2982.2010.01479.x pubmed: 20219086 pmcid: 3063458
He Z, Chen L, Catalan-Dibene J, Bongers G, Faith JJ, Suebsuwong C, DeVita RJ, Shen Z, Fox JG, Lafaille JJ et al (2021) Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23. Cell Metab 33(7):1358-1371.e5. https://doi.org/10.1016/j.cmet.2021.04.015
doi: 10.1016/j.cmet.2021.04.015 pubmed: 33989521 pmcid: 8266754
Hentschel V, Seufferlein T, Armacki M (2021) Intestinal organoids in coculture: redefining the boundaries of gut mucosa ex vivo modeling. Am J Physiol-Gastroint Liver Physiol 321(6):G693–G704. https://doi.org/10.1152/ajpgi.00043.2021
doi: 10.1152/ajpgi.00043.2021
Hirt N, Body-Malapel M (2020) Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Part Fibre Toxicol 17(1):57. https://doi.org/10.1186/s12989-020-00387-7
doi: 10.1186/s12989-020-00387-7 pubmed: 33183327 pmcid: 7661204
Hoffmann P, Burmester M, Langeheine M, Brehm R, Empl MT, Seeger B, Breves G (2021) Caco-2/HT29-MTX co-cultured cells as a model for studying physiological properties and toxin-induced effects on intestinal cells. PLoS ONE 16(10):e0257824. https://doi.org/10.1371/journal.pone.0257824
doi: 10.1371/journal.pone.0257824 pubmed: 34618824 pmcid: 8496855
Hongsibsong S, Prapamontol T, Xu T, Hammock BD, Wang H, Chen Z-J, Xu Z-L (2020) Monitoring of the organophosphate pesticide chlorpyrifos in vegetable samples from local markets in Northern Thailand by developed immunoassay. Int J Environ Res Public Health 17(13):4723. https://doi.org/10.3390/ijerph17134723
doi: 10.3390/ijerph17134723 pubmed: 32630084 pmcid: 7369984
Huang H-M, Pai M-H, Liu J-J, Yeh S-L, Hou Y-C (2019) Effects of dietary exposure to chlorpyrifos on immune cell populations and inflammatory responses in mice with dextran sulfate sodium-induced colitis. Food Chem Toxicol 131:110596. https://doi.org/10.1016/j.fct.2019.110596
doi: 10.1016/j.fct.2019.110596 pubmed: 31226429
Huang H-M, Pai M-H, Yeh S-L, Hou Y-C (2020) Dietary exposure to chlorpyrifos inhibits the polarization of regulatory T cells in C57BL/6 mice with dextran sulfate sodium-induced colitis. Arch Toxicol 94(1):141–150. https://doi.org/10.1007/s00204-019-02615-2
doi: 10.1007/s00204-019-02615-2 pubmed: 31807802
Hunt JJ, Ballard JD (2013) Variations in virulence and molecular biology among emerging strains of clostridium difficile. Microbiol Mol Biol Rev 77(4):567–581. https://doi.org/10.1128/mmbr.00017-13
doi: 10.1128/mmbr.00017-13 pubmed: 24296572 pmcid: 3973386
Hviid A, Svanström H, Frisch M (2011) Antibiotic use and inflammatory bowel diseases in childhood. Gut 60(1):49–54
doi: 10.1136/gut.2010.219683 pubmed: 20966024
Ingber DE (2022) Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet 23(8):467–491. https://doi.org/10.1038/s41576-022-00466-9
doi: 10.1038/s41576-022-00466-9 pubmed: 35338360 pmcid: 8951665
Jacobse J, Li J, Rings EHHM, Samsom JN, Goettel JA (2021) Intestinal regulatory t cells as specialized tissue-restricted immune cells in intestinal immune homeostasis and disease. Front Immunol. https://doi.org/10.3389/fimmu.2021.716499
Jahnel J, Fickert P, Hauer AC, Högenauer C, Avian A, Trauner M (2014) Inflammatory bowel disease alters intestinal bile acid transporter expression. Drug Metab Dispos 42(9):1423–1431
doi: 10.1124/dmd.114.058065 pubmed: 24965812
Jelinsky SA, Derksen M, Bauman E, Verissimo CS, van Dooremalen WTM, Roos JL, Higuera Barón C, Caballero-Franco C, Johnson BG, Rooks MG et al (2023) Molecular and functional characterization of human intestinal organoids and monolayers for modeling epithelial barrier. Inflamm Bowel Dis 29(2):195–206. https://doi.org/10.1093/ibd/izac212
doi: 10.1093/ibd/izac212 pubmed: 36356046
Jess T, Rungoe C, Peyrin-Biroulet L (2012) Risk of Colorectal Cancer in Patients With Ulcerative Colitis: A Meta-analysis of Population-Based Cohort Studies. Clin Gastroenterol Hepatol 10(6):639–645. https://doi.org/10.1016/j.cgh.2012.01.010
doi: 10.1016/j.cgh.2012.01.010 pubmed: 22289873
Johansson MEV, Gustafsson JK, Holmén-Larsson J, Jabbar KS, Xia L, Xu H, Ghishan FK, Carvalho FA, Gewirtz AT, Sjövall H, Hansson GC (2014) Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63(2):281–291. https://doi.org/10.1136/gutjnl-2012-303207
doi: 10.1136/gutjnl-2012-303207 pubmed: 23426893
Jones BJ, Blackburn TP (2002) The medical benefit of 5-HT research. Pharmacol Biochem Behav 71(4):555–568
doi: 10.1016/S0091-3057(01)00745-6 pubmed: 11888547
Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, Vandamme P, Vermeire S (2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60(5):631–637. https://doi.org/10.1136/gut.2010.223263
doi: 10.1136/gut.2010.223263 pubmed: 21209126
Joshi A, Soni A, Acharya S (2022) In vitro models and ex vivo systems used in inflammatory bowel disease. In Vitro Models 1(3):213–227. https://doi.org/10.1007/s44164-022-00017-w
doi: 10.1007/s44164-022-00017-w pubmed: 37519330 pmcid: 9036838
Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Philip Schumm L, Sharma Y, Anderson CA et al (2012) Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124. https://doi.org/10.1038/nature11582
doi: 10.1038/nature11582 pubmed: 23128233 pmcid: 3491803
Jr CAJ, Travers P, Walport M, Shlomchik MJ Jr, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology, 5th edn. Garland Science, New York
Kämpfer AAM, Urbán P, Gioria S, Kanase N, Stone V, Kinsner-Ovaskainen A (2017) Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state. Toxicol in Vitro 45:31–43. https://doi.org/10.1016/j.tiv.2017.08.011
doi: 10.1016/j.tiv.2017.08.011 pubmed: 28807632 pmcid: 5744654
Kämpfer AAM, Urbán P, La Spina R, Jiménez IO, Kanase N, Stone V, Kinsner-Ovaskainen A (2020) Ongoing inflammation enhances the toxicity of engineered nanomaterials: application of an in vitro co-culture model of the healthy and inflamed intestine. Toxicol in Vitro 63:104738. https://doi.org/10.1016/j.tiv.2019.104738
doi: 10.1016/j.tiv.2019.104738 pubmed: 31760064 pmcid: 6961208
Kämpfer AAM, Shah U-K, Chu SL, Busch M, Büttner V, He R, Rothen-Rutishauser B, Schins RPF, Jenkins GJ (2022) Interlaboratory comparison of an intestinal triple culture to confirm transferability and reproducibility. In Vitro Models. https://doi.org/10.1007/s44164-022-00025-w
doi: 10.1007/s44164-022-00025-w
Kasendra M, Tovaglieri A, Sontheimer-Phelps A, Jalili-Firoozinezhad S, Bein A, Chalkiadaki A, Scholl W, Zhang C, Rickner H, Richmond CA et al (2018) Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci Rep. https://doi.org/10.1038/s41598-018-21201-7
doi: 10.1038/s41598-018-21201-7 pubmed: 29440725 pmcid: 5811607
Katinios G, Casado-Bedmar M, Walter SA, Vicario M, González-Castro AM, Bednarska O, Söderholm JD, Hjortswang H, Keita ÅV (2020) Increased colonic epithelial permeability and mucosal eosinophilia in ulcerative colitis in remission compared with irritable bowel syndrome and health. Inflamm Bowel Dis 26(7):974–984. https://doi.org/10.1093/ibd/izz328
doi: 10.1093/ibd/izz328 pubmed: 31944236 pmcid: 7301402
Kaufmann HJ, Taubin HL (1987) Nonsteroidal anti-inflammatory drugs activate quiescent inflammatory bowel disease. Ann Intern Med 107(4):513–516. https://doi.org/10.7326/0003-4819-107-4-513
doi: 10.7326/0003-4819-107-4-513 pubmed: 3498419
Keubler LM, Buettner M, Häger C, Bleich A (2015) A multihit model: colitis lessons from the interleukin-10–deficient mouse. Inflamm Bowel Dis 21(8):1967–1975. https://doi.org/10.1097/MIB.0000000000000468
doi: 10.1097/MIB.0000000000000468 pubmed: 26164667
Khan MA, Howden CW (2018) The role of proton pump inhibitors in the management of upper gastrointestinal disorders. Gastroenterol Hepatol (n y) 14(3):169–175
Khan AJ, Evans HE, Glass L, Khan P, Chang CT, Nair SR (1979) Abnormal neutrophil chemotaxis and random migration induced by aminoglycoside antibiotics. J Lab Clin Med 93(2):295–300
pubmed: 429840
Khanna S, Shin A, Kelly CP (2017) Management of clostridium difficile infection in inflammatory bowel disease: expert review from the clinical practice updates Committee of the AGA Institute. Clin Gastroenterol Hepatol 15(2):166–174. https://doi.org/10.1016/j.cgh.2016.10.024
doi: 10.1016/j.cgh.2016.10.024 pubmed: 28093134
Kirsner JB, Elchlepp J (1957) The production of an experimental ulcerative colitis in rabbits. Trans Assoc Am Physicians 70:102–119
pubmed: 13496119
Knight-Sepulveda K, Kais S, Santaolalla R, Abreu MT (2015) Diet and inflammatory bowel disease. Gastroenterol Hepatol (n y) 11(8):511–520
pubmed: 27118948
Koboziev I, Karlsson F, Zhang S, Grisham MB (2011) Pharmacological intervention studies using mouse models of the inflammatory bowel diseases: translating preclinical data into new drug therapies. Inflamm Bowel Dis 17(5):1229–1245. https://doi.org/10.1002/ibd.21557
doi: 10.1002/ibd.21557 pubmed: 21312318
Kosiewicz MM, Nast CC, Krishnan A, Rivera-Nieves J, Moskaluk CA, Matsumoto S, Kozaiwa K, Cominelli F (2001) Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn’s disease. J Clin Invest 107(6):695–702. https://doi.org/10.1172/JCI10956
doi: 10.1172/JCI10956 pubmed: 11254669 pmcid: 208944
Kuppens IELM, Witteveen EO, Jewell RC, Radema SA, Paul EM, Mangum SG, Beijnen JH, Voest EE, Schellens JHM (2007) A phase I, randomized, open-label, parallel-cohort, dose-finding study of Elacridar (GF120918) and oral topotecan in cancer patients. Clin Cancer Res 13(11):3276–3285. https://doi.org/10.1158/1078-0432.CCR-06-2414
doi: 10.1158/1078-0432.CCR-06-2414 pubmed: 17545533
Kwon YH, Banskota S, Wang H, Rossi L, Grondin JA, Syed SA, Yousefi Y, Schertzer JD, Morrison KM, Wade MG et al (2022) Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat Commun 13(1):7617. https://doi.org/10.1038/s41467-022-35309-y
doi: 10.1038/s41467-022-35309-y pubmed: 36539404 pmcid: 9768151
Lai K-P, Chung Y-T, Li R, Wan H-T, Wong CK-C (2016) Bisphenol A alters gut microbiome: comparative metagenomics analysis. Environ Pollut 218:923–930. https://doi.org/10.1016/j.envpol.2016.08.039
doi: 10.1016/j.envpol.2016.08.039 pubmed: 27554980
Laredo V, García-Mateo S, Martínez-Domínguez SJ, de la Cruz JL, Gargallo-Puyuelo CJ, Gomollón F (2023) Risk of cancer in patients with inflammatory bowel diseases and keys for patient management. Cancers 15(3):871. https://doi.org/10.3390/cancers15030871
doi: 10.3390/cancers15030871 pubmed: 36765829 pmcid: 9913122
Laudisi F, Di Fusco D, Dinallo V, Stolfi C, Di Grazia A, Marafini I, Colantoni A, Ortenzi A, Alteri C, Guerrieri F et al (2019) The food additive maltodextrin promotes endoplasmic reticulum stress-driven mucus depletion and exacerbates intestinal inflammation. Cell Mol Gastroenterol Hepatol 7(2):457–473. https://doi.org/10.1016/j.jcmgh.2018.09.002
doi: 10.1016/j.jcmgh.2018.09.002 pubmed: 30765332
Le Berre C, Ananthakrishnan AN, Danese S, Singh S, Peyrin-Biroulet L (2020) Ulcerative colitis and Crohn’s disease have similar burden and goals for treatment. Clin Gastroenterol Hepatol 18(1):14–23. https://doi.org/10.1016/j.cgh.2019.07.005
doi: 10.1016/j.cgh.2019.07.005 pubmed: 31301452
Lea T. 2015. Caco-2 Cell Line. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H, editors (2022) The Impact of Food Bioactives on Health: in vitro and ex vivo models [Internet]. Cham (CH): Springer; [accessed 2022 Nov 30]. http://www.ncbi.nlm.nih.gov/books/NBK500149/
Lee GR (2018) The balance of Th17 versus treg cells in autoimmunity. Int J Mol Sci 19(3):730. https://doi.org/10.3390/ijms19030730
doi: 10.3390/ijms19030730 pubmed: 29510522 pmcid: 5877591
Lee T, Russell L, Deng M, Gibson PR (2013) Association of doxycycline use with the development of gastroenteritis, irritable bowel syndrome and inflammatory bowel disease in A ustralians deployed abroad. Intern Med J 43(8):919–926
doi: 10.1111/imj.12179 pubmed: 23656210
Lee C, Hong S-N, Kim E-R, Chang D-K, Kim Y-H (2021) Epithelial Regeneration Ability of Crohn’s Disease Assessed Using Patient-Derived Intestinal Organoids. Int J Mol Sci 22(11):6013. https://doi.org/10.3390/ijms22116013
doi: 10.3390/ijms22116013 pubmed: 34199463 pmcid: 8199630
Leenaars CHC, Kouwenaar C, Stafleu FR, Bleich A, Ritskes-Hoitinga M, De Vries RBM, Meijboom FLB (2019) Animal to human translation: a systematic scoping review of reported concordance rates. J Transl Med 17(1):223. https://doi.org/10.1186/s12967-019-1976-2
doi: 10.1186/s12967-019-1976-2 pubmed: 31307492 pmcid: 6631915
Leso V, Ricciardi W, Iavicoli I (2015) Occupational risk factors in inflammatory bowel disease. Eur Rev Med Pharmacol Sci 19(15):2838–2851
pubmed: 26241538
Lian P, Braber S, Varasteh S, Wichers HJ, Folkerts G (2021) Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture. Sci Rep 11(1):13186. https://doi.org/10.1038/s41598-021-92574-5
doi: 10.1038/s41598-021-92574-5 pubmed: 34162953 pmcid: 8222227
Liang Q, Ren X, Chalamaiah M, Ma H (2020) Simulated gastrointestinal digests of corn protein hydrolysate alleviate inflammation in caco-2 cells and a mouse model of colitis. J Food Sci Technol 57(6):2079–2088. https://doi.org/10.1007/s13197-020-04242-7
doi: 10.1007/s13197-020-04242-7 pubmed: 32431334 pmcid: 7230093
Libertucci J, Dutta U, Kaur S, Jury J, Rossi L, Fontes ME, Shajib MS, Khan WI, Surette MG, Verdu EF, Armstrong D (2018) Inflammation-related differences in mucosa-associated microbiota and intestinal barrier function in colonic Crohn’s disease. Am J Physiol-Gastrointestal and Liver Physiology. 315(3):G420–G431. https://doi.org/10.1152/ajpgi.00411.2017
Lin X, Sun Q, Zhou L, He M, Dong X, Lai M, Liu M, Su Y, Jia C, Han Z et al (2018) Colonic epithelial mTORC1 promotes ulcerative colitis through COX-2-mediated Th17 responses. Mucosal Immunol 11(6):1663–1673. https://doi.org/10.1038/s41385-018-0018-3
doi: 10.1038/s41385-018-0018-3 pubmed: 30082707
Linares R, Fernández MF, Gutiérrez A, García-Villalba R, Suárez B, Zapater P, Martínez-Blázquez JA, Caparrós E, Tomás-Barberán FA, Francés R (2021) Endocrine disruption in Crohn’s disease: Bisphenol A enhances systemic inflammatory response in patients with gut barrier translocation of dysbiotic microbiota products. FASEB J 35(7):e21697. https://doi.org/10.1096/fj.202100481R
doi: 10.1096/fj.202100481R pubmed: 34085740
Llewellyn SR, Britton GJ, Contijoch EJ, Vennaro OH, Mortha A, Colombel J-F, Grinspan A, Clemente JC, Merad M, Faith JJ (2018) Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice. Gastroenterology 154(4):1037-1046.e2. https://doi.org/10.1053/j.gastro.2017.11.030
doi: 10.1053/j.gastro.2017.11.030 pubmed: 29174952
Loftus EV (2004) Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 126(6):1504–1517. https://doi.org/10.1053/j.gastro.2004.01.063
doi: 10.1053/j.gastro.2004.01.063 pubmed: 15168363
Lombardo L, Foti M, Ruggia O, Chiecchio A (2010) Increased incidence of small intestinal bacterial overgrowth during proton pump inhibitor therapy. Clin Gastroenterol Hepatol 8(6):504–508
doi: 10.1016/j.cgh.2009.12.022 pubmed: 20060064
Lomer MCE, Harvey RSJ, Evans SM, Thompson RPH, Powell JJ (2001) Efficacy and tolerability of a low microparticle diet in a double blind, randomized, pilot study in Crohn’s disease. Eur J Gastroenterol Hepatol 13(2):101
doi: 10.1097/00042737-200102000-00003 pubmed: 11246607
Lomer MCE, Hutchinson C, Volkert S, Greenfield SM, Catterall A, Thompson RPH, Powell JJ (2004) Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br J Nutr 92(6):947–955. https://doi.org/10.1079/bjn20041276
doi: 10.1079/bjn20041276 pubmed: 15613257
Lu Y-C, Yeh W-C, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42(2):145–151. https://doi.org/10.1016/j.cyto.2008.01.006
doi: 10.1016/j.cyto.2008.01.006 pubmed: 18304834
Mahadevan U, Loftus EV Jr, Tremaine WJ, Sandborn WJ (2002) Safety of selective cyclooxygenase-2 inhibitors in inflammatory bowel disease. Am J Gastroenterol 97(4):910–914
doi: 10.1111/j.1572-0241.2002.05608.x pubmed: 12008668
Maloy KJ, Powrie F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474(7351):298–306. https://doi.org/10.1038/nature10208
doi: 10.1038/nature10208 pubmed: 21677746
Maresca M, Fantini J (2010) Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon 56(3):282–294. https://doi.org/10.1016/j.toxicon.2010.04.016
doi: 10.1016/j.toxicon.2010.04.016 pubmed: 20466014
Marescotti D, Lo Sasso G, Guerrera D, Renggli K, Ruiz Castro PA, Piault R, Jaquet V, Moine F, Luettich K, Frentzel S, et al. 2021. Development of an Advanced Multicellular Intestinal Model for Assessing Immunomodulatory Properties of Anti-Inflammatory Compounds. Frontiers in Pharmacology [Internet]. [accessed 2023 Oct 4] 12. https://www.frontiersin.org/articles/ https://doi.org/10.3389/fphar.2021.639716
Margolis DJ, Fanelli M, Hoffstad O, Lewis JD. 2010. Potential association between the oral tetracycline class of antimicrobials used to treat acne and inflammatory bowel disease. Official journal of the American College of Gastroenterology| ACG. 105(12):2610–2616.
Maria-Ferreira D, Nascimento AM, Cipriani TR, Santana-Filho AP, da Watanabe P, S, Sant´Ana D de MG, Luciano FB, Bocate KCP, van den Wijngaard RM, Werner MF de P, Baggio CH. (2018) Rhamnogalacturonan, a chemically-defined polysaccharide, improves intestinal barrier function in DSS-induced colitis in mice and human Caco-2 cells. Sci Rep 8(1):12261. https://doi.org/10.1038/s41598-018-30526-2
doi: 10.1038/s41598-018-30526-2 pubmed: 30115942 pmcid: 6095889
Marsee A, Roos FJM, Verstegen MMA, Marsee A, Roos F, Verstegen M, Clevers H, Vallier L, Takebe T, Huch M et al (2021) Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 28(5):816–832. https://doi.org/10.1016/j.stem.2021.04.005
doi: 10.1016/j.stem.2021.04.005 pubmed: 33961769
Matsuda H, Nibe-Shirakihara Y, Tamura A, Aonuma E, Arakawa S, Otsubo K, Nemoto Y, Nagaishi T, Tsuchiya K, Shimizu S et al (2022) Nickel particles are present in Crohn’s disease tissue and exacerbate intestinal inflammation in IBD susceptible mice. Biochem Biophys Res Commun 592:74–80. https://doi.org/10.1016/j.bbrc.2021.12.111
doi: 10.1016/j.bbrc.2021.12.111 pubmed: 35032835
Matsui H, Shimokawa O, Kaneko T, Nagano Y, Rai K, Hyodo I (2011) The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J Clin Biochem Nutr 48(2):107–111. https://doi.org/10.3164/jcbn.10-79
doi: 10.3164/jcbn.10-79 pubmed: 21373261 pmcid: 3045681
Meerum Terwogt JM, Malingré MM, Beijnen JH, ten Bokkel Huinink WW, Rosing H, Koopman FJ, van Tellingen O, Swart M, Schellens JH (1999) Coadministration of oral cyclosporin A enables oral therapy with paclitaxel. Clin Cancer Res 5(11):3379–3384
pubmed: 10589748
Meira LB, Bugni JM, Green SL, Lee C-W, Pang B, Borenshtein D, Rickman BH, Rogers AB, Moroski-Erkul CA, McFaline JL et al (2008) DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest 118(7):2516–2525. https://doi.org/10.1172/JCI35073
doi: 10.1172/JCI35073 pubmed: 18521188 pmcid: 2423313
Mesnage R, Brandsma I, Moelijker N, Zhang G, Antoniou MN (2021) Genotoxicity evaluation of 2,4-D, dicamba and glyphosate alone or in combination with cell reporter assays for DNA damage, oxidative stress and unfolded protein response. Food Chem Toxicol 157:112601. https://doi.org/10.1016/j.fct.2021.112601
doi: 10.1016/j.fct.2021.112601 pubmed: 34626751
Meyer AM, Ramzan NN, Loftus EV Jr, Heigh RI, Leighton JA (2004) The diagnostic yield of stool pathogen studies during relapses of inflammatory bowel disease. J Clin Gastroenterol 38(9):772–775
doi: 10.1097/01.mcg.0000139057.05297.d6 pubmed: 15365403
Monteiro CA, Moubarac J-C, Cannon G, Ng SW, Popkin B (2013) Ultra-processed products are becoming dominant in the global food system. Obes Rev 14(S2):21–28. https://doi.org/10.1111/obr.12107
doi: 10.1111/obr.12107 pubmed: 24102801
Monteiro CA, Cannon G, Levy RB, Moubarac J-C, Louzada ML, Rauber F, Khandpur N, Cediel G, Neri D, Martinez-Steele E et al (2019) Ultra-processed foods: what they are and how to identify them. Public Health Nutr 22(5):936–941. https://doi.org/10.1017/S1368980018003762
doi: 10.1017/S1368980018003762 pubmed: 30744710 pmcid: 10260459
Nakai D, Miyake M, Hashimoto A (2020) Comparison of the Intestinal Drug Permeation and Accumulation Between Normal Human Intestinal Tissues and Human Intestinal Tissues With Ulcerative Colitis. J Pharm Sci 109(4):1623–1626. https://doi.org/10.1016/j.xphs.2019.12.015
doi: 10.1016/j.xphs.2019.12.015 pubmed: 31870787
Negoro R, Takayama K, Kawai K, Harada K, Sakurai F, Hirata K, Mizuguchi H (2018) Efficient Generation of Small Intestinal Epithelial-like Cells from Human iPSCs for Drug Absorption and Metabolism Studies. Stem Cell Reports 11(6):1539–1550. https://doi.org/10.1016/j.stemcr.2018.10.019
doi: 10.1016/j.stemcr.2018.10.019 pubmed: 30472010 pmcid: 6294172
Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14(5):329–342. https://doi.org/10.1038/nri3661
doi: 10.1038/nri3661 pubmed: 24751956
Nighot M, Liao P-L, Morris N, McCarthy D, Dharmaprakash V, Ullah Khan I, Dalessio S, Saha K, Ganapathy AS, Wang A (2023) Long-Term Use of Proton Pump Inhibitors Disrupts Intestinal Tight Junction Barrier and Exaggerates Experimental Colitis. Journal of Crohn’s and Colitis 17(4):565–579
doi: 10.1093/ecco-jcc/jjac168 pubmed: 36322638
Nitsche KS, Müller I, Malcomber S, Carmichael PL, Bouwmeester H (2022) Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review. Arch Toxicol 96(3):711–741. https://doi.org/10.1007/s00204-022-03234-0
doi: 10.1007/s00204-022-03234-0 pubmed: 35103818 pmcid: 8850248
Nitzan O, Elias M, Peretz A, Saliba W (2016) Role of antibiotics for treatment of inflammatory bowel disease. World J Gastroenterol 22(3):1078–1087. https://doi.org/10.3748/wjg.v22.i3.1078
doi: 10.3748/wjg.v22.i3.1078 pubmed: 26811648 pmcid: 4716021
Niu H, Liu S, Jiang Y, Hu Y, Li Y, He L, Xing M, Li X, Wu L, Chen Z et al (2023) Are Microplastics Toxic? A Review from Eco-Toxicity to Effects on the Gut Microbiota. Metabolites 13(6):739. https://doi.org/10.3390/metabo13060739
doi: 10.3390/metabo13060739 pubmed: 37367897 pmcid: 10304106
O’brien J, (2000) Nonsteroidal anti-inflammatory drugs in patients with inflammatory bowel disease. Off J Am Coll Gastroenterol ACG 95(8):1859–1861
doi: 10.1111/j.1572-0241.2000.02241.x
Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606. https://doi.org/10.1038/35079114
doi: 10.1038/35079114 pubmed: 11385577
Ostanin DV, Bao J, Koboziev I, Gray L, Robinson-Jackson SA, Kosloski-Davidson M, Price VH, Grisham MB (2009) T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am J Physiol-Gastrointest Liver Physiol. 296(2):G135–G146. https://doi.org/10.1152/ajpgi.90462.2008
Paschall M, Seo Y-A, Choi E (2020) Low dietary manganese levels exacerbate experimental colitis in mice. Curr Dev Nutr 4(Suppl 2):1831. https://doi.org/10.1093/cdn/nzaa067_058
doi: 10.1093/cdn/nzaa067_058 pmcid: 7259238
Pathmakanthan S, Hawkey CJ (2000) A lay doctor’s guide to the inflammatory process in the gastrointestinal tract. Postgrad Med J 76(900):611–617. https://doi.org/10.1136/pmj.76.900.611
doi: 10.1136/pmj.76.900.611 pubmed: 11009574 pmcid: 1741771
Paul MB, Schlief M, Daher H, Braeuning A, Sieg H, Böhmert L (2023) A human Caco-2-based co-culture model of the inflamed intestinal mucosa for particle toxicity studies. In Vitro Models 2(1):43–64. https://doi.org/10.1007/s44164-023-00047-y
doi: 10.1007/s44164-023-00047-y
Payros D, Ménard S, Laffitte J, Neves M, Tremblay-Franco M, Luo S, Fouche E, Snini SP, Theodorou V, Pinton P, Oswald IP (2020) The food contaminant, deoxynivalenol, modulates the Thelper/Treg balance and increases inflammatory bowel diseases. Arch Toxicol 94(9):3173–3184. https://doi.org/10.1007/s00204-020-02817-z
doi: 10.1007/s00204-020-02817-z pubmed: 32617661
Pereira C, Coelho R, Grácio D, Dias C, Silva M, Peixoto A, Lopes P, Costa C, Teixeira JP, Macedo G, Magro F (2016) DNA damage and oxidative DNA damage in inflammatory bowel disease. J Crohn’s Colitis 10(11):1316–1323. https://doi.org/10.1093/ecco-jcc/jjw088
doi: 10.1093/ecco-jcc/jjw088
Pineton de Chambrun G, Body-Malapel M, Frey-Wagner I, Djouina M, Deknuydt F, Atrott K, Esquerre N, Altare F, Neut C, Arrieta MC et al (2014) Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunol 7(3):589–601. https://doi.org/10.1038/mi.2013.78
doi: 10.1038/mi.2013.78 pubmed: 24129165
Planting AST, Sonneveld P, van der Gaast A, Sparreboom A, van der Burg MEL, Luyten GPM, de Leeuw K, de Boer-Dennert M, Wissel PS, Jewell RC et al (2005) A phase I and pharmacologic study of the MDR converter GF120918 in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother Pharmacol 55(1):91–99. https://doi.org/10.1007/s00280-004-0854-6
doi: 10.1007/s00280-004-0854-6 pubmed: 15565444
Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A, Akkerman N, Saftien A, Boot C, de Waal A, Beumer J, Dutta D, Heo I, Clevers H (2021) Intestinal organoid cocultures with microbes. Nat Protoc 16(10):4633–4649. https://doi.org/10.1038/s41596-021-00589-z
doi: 10.1038/s41596-021-00589-z pubmed: 34381208
Qiu H, Sun X, Sun M, He C, Li Z, Liu Z (2014) Serum bacterial toxins are related to the progression of inflammatory bowel disease. Scand J Gastroenterol 49(7):826–833. https://doi.org/10.3109/00365521.2014.919018
doi: 10.3109/00365521.2014.919018 pubmed: 24853095
Rahman S, Ghiboub M, Donkers JM, van de Steeg E, van Tol EAF, Hakvoort TBM, de Jonge WJ (2021) The progress of intestinal epithelial models from cell lines to Gut-on-chip. Int J Mol Sci 22(24):13472. https://doi.org/10.3390/ijms222413472
doi: 10.3390/ijms222413472 pubmed: 34948271 pmcid: 8709104
Raoul P, Cintoni M, Palombaro M, Basso L, Rinninella E, Gasbarrini A, Mele MC (2022) Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms 10(1):167. https://doi.org/10.3390/microorganisms10010167
doi: 10.3390/microorganisms10010167 pubmed: 35056616 pmcid: 8780106
Reinoso Webb C, den Bakker H, Koboziev I, Jones-Hall Y, Rao Kottapalli K, Ostanin D, Furr KL, Mu Q, Luo XM, Grisham MB (2018) Differential susceptibility to T cell-induced colitis in mice: role of the intestinal microbiota. Inflamm Bowel Dis 24(2):361–379. https://doi.org/10.1093/ibd/izx014
doi: 10.1093/ibd/izx014 pubmed: 29361089 pmcid: 6176899
Richardson A, Schwerdtfeger LA, Eaton D, Mclean I, Henry CS, Tobet SA (2020) A microfluidic organotypic device for culture of mammalian intestines ex vivo. Anal Methods 12(3):297–303. https://doi.org/10.1039/C9AY02038A
doi: 10.1039/C9AY02038A
Rivera-Nieves J, Bamias G, Vidrich A, Marini M, Pizarro TT, McDuffie MJ, Moskaluk CA, Cohn SM, Cominelli F (2003) Emergence of perianal fistulizing disease in the SAMP1/YitFc mouse, a spontaneous model of chronic ileitis. Gastroenterology 124(4):972–982. https://doi.org/10.1053/gast.2003.50148
doi: 10.1053/gast.2003.50148 pubmed: 12671894
Rizzello F, Spisni E, Giovanardi E, Imbesi V, Salice M, Alvisi P, Valerii MC, Gionchetti P (2019) Implications of the westernized diet in the onset and progression of IBD. Nutrients 11(5):1033. https://doi.org/10.3390/nu11051033
doi: 10.3390/nu11051033 pubmed: 31072001 pmcid: 6566788
Rodriguez-Palacios A, Harding A, Menghini P, Himmelman C, Retuerto M, Nickerson KP, Lam M, Croniger CM, McLean MH, Durum SK et al (2018) The Artificial Sweetener Splenda Promotes Gut Proteobacteria, Dysbiosis, and Myeloperoxidase Reactivity in Crohn’s Disease-Like Ileitis. Inflamm Bowel Dis 24(5):1005–1020. https://doi.org/10.1093/ibd/izy060
doi: 10.1093/ibd/izy060 pubmed: 29554272 pmcid: 5950546
Ruiz PA, Morón B, Becker HM, Lang S, Atrott K, Spalinger MR, Scharl M, Wojtal KA, Fischbeck-Terhalle A, Frey-Wagner I et al (2017) Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut 66(7):1216–1224. https://doi.org/10.1136/gutjnl-2015-310297
doi: 10.1136/gutjnl-2015-310297 pubmed: 26848183
Sanmarco LM, Chao C-C, Wang Y-C, Kenison JE, Li Z, Rone JM, Rejano-Gordillo CM, Polonio CM, Gutierrez-Vazquez C, Piester G et al (2022) Identification of environmental factors that promote intestinal inflammation. Nature 611(7937):801–809. https://doi.org/10.1038/s41586-022-05308-6
doi: 10.1038/s41586-022-05308-6 pubmed: 36266581 pmcid: 9898826
Sarvestani SK, Signs S, Hu B, Yeu Y, Feng H, Ni Y, Hill DR, Fisher RC, Ferrandon S, DeHaan RK et al (2021) Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun 12(1):262. https://doi.org/10.1038/s41467-020-20351-5
doi: 10.1038/s41467-020-20351-5 pubmed: 33431859 pmcid: 7801686
Schnur S, Wahl V, Metz JK, Gillmann J, Hans F, Rotermund K, Zäh R-K, Brück DA, Schneider M, Hittinger M (2022) Inflammatory bowel disease addressed by Caco-2 and monocyte-derived macrophages: an opportunity for an in vitro drug screening assay. In Vitro Models 1(4):365–383. https://doi.org/10.1007/s44164-022-00035-8
doi: 10.1007/s44164-022-00035-8 pubmed: 37520160 pmcid: 9630817
Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127(3–5):204–215. https://doi.org/10.1016/j.jsbmb.2011.08.007
doi: 10.1016/j.jsbmb.2011.08.007 pubmed: 21899826 pmcid: 3220783
Sehgal K, Yadav D, Khanna S (2021) The interplay of Clostridioides difficile infection and inflammatory bowel disease. Therap Adv Gastroenterol 14:17562848211020284. https://doi.org/10.1177/17562848211020285
doi: 10.1177/17562848211020285 pubmed: 34104215 pmcid: 8170344
Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM, Sartor RB (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66(11):5224–5231
doi: 10.1128/IAI.66.11.5224-5231.1998 pubmed: 9784526 pmcid: 108652
Shafa M, Yang F, Fellner T, Rao MS, Baghbaderani BA (2018) Human-induced pluripotent stem cells manufactured using a current good manufacturing practice-compliant process differentiate into clinically relevant cells from three germ layers. Front Med. https://doi.org/10.3389/fmed.2018.00069
Shajib M, Khan W (2015) The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol 213(3):561–574
doi: 10.1111/apha.12430
Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD et al (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1(11):1446. https://doi.org/10.1007/s42452-019-1485-1
doi: 10.1007/s42452-019-1485-1
Shaw SY, Blanchard JF, Bernstein CN (2010) Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol 105(12):2687–2692. https://doi.org/10.1038/ajg.2010.398
doi: 10.1038/ajg.2010.398 pubmed: 20940708
Shawna Kraft P (2013) Chemotherapy-induced diarrhea: options for treatment and prevention [Internet]. https://jhoponline.com/issue-archive/2012-issues/december-2012-vol-3-no-4/15408-chemotherapy-unduced-diarrhea-options . Accessed 11 April 2024
Sheng YH, Lourie R, Lindén SK, Jeffery PL, Roche D, Tran TV, Png CW, Waterhouse N, Sutton P, Florin THJ, McGuckin MA (2011) The MUC13 cell-surface mucin protects against intestinal inflammation by inhibiting epithelial cell apoptosis. Gut 60(12):1661–1670. https://doi.org/10.1136/gut.2011.239194
doi: 10.1136/gut.2011.239194 pubmed: 21636645
Shin W, Kim HJ (2018) Intestinal barrier dysfunction orchestrates the onset of inflammatory host–microbiome cross-talk in a human gut inflammation-on-a-chip. Proc Natl Acad Sci 115(45):E10539–E10547. https://doi.org/10.1073/pnas.1810819115
doi: 10.1073/pnas.1810819115 pubmed: 30348765 pmcid: 6233106
Shin YC, Shin W, Koh D, Wu A, Ambrosini YM, Min S, Eckhardt SG, Fleming RYD, Kim S, Park S et al (2020) Three-Dimensional Regeneration of Patient-Derived Intestinal Organoid Epithelium in a Physiodynamic Mucosal Interface-on-a-Chip. Micromachines 11(7):663. https://doi.org/10.3390/mi11070663
doi: 10.3390/mi11070663 pubmed: 32645991 pmcid: 7408321
Shin W, Kim HJ (2022) 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert. Nat Protoc 17(3):910–939. https://doi.org/10.1038/s41596-021-00674-3
doi: 10.1038/s41596-021-00674-3 pubmed: 35110737 pmcid: 9675318
Shioya M, Nishida A, Yagi Y, Ogawa A, Tsujikawa T, Kim-Mitsuyama S, Takayanagi A, Shimizu N, Fujiyama Y, Andoh A (2007) Epithelial overexpression of interleukin-32alpha in inflammatory bowel disease. Clin Exp Immunol 149(3):480–486. https://doi.org/10.1111/j.1365-2249.2007.03439.x
doi: 10.1111/j.1365-2249.2007.03439.x pubmed: 17590175 pmcid: 2219317
Singh S, Blanchard A, Walker JR, Graff LA, Miller N, Bernstein CN (2011) Common symptoms and stressors among individuals with inflammatory bowel diseases. Clin Gastroenterol Hepatol 9(9):769–775. https://doi.org/10.1016/j.cgh.2011.05.016
doi: 10.1016/j.cgh.2011.05.016 pubmed: 21645640
Singh UP, Singh NP, Murphy EA, Price RL, Fayad R, Nagarkatti M, Nagarkatti PS (2016) Chemokine and cytokine levels in inflammatory bowel disease patients. Cytokine 77:44–49. https://doi.org/10.1016/j.cyto.2015.10.008
doi: 10.1016/j.cyto.2015.10.008 pubmed: 26520877
Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4(4):277–284
doi: 10.1038/nrc1318 pubmed: 15057287
Stein A, Voigt W, Jordan K (2010) Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther Adv Med Oncol 2(1):51–63. https://doi.org/10.1177/1758834009355164
doi: 10.1177/1758834009355164 pubmed: 21789126 pmcid: 3126005
Stevens LJ, van Lipzig MMH, Erpelinck SLA, Pronk A, van Gorp J, Wortelboer HM, van de Steeg E (2019) A higher throughput and physiologically relevant two-compartmental human ex vivo intestinal tissue system for studying gastrointestinal processes. Eur J Pharm Sci 137:104989. https://doi.org/10.1016/j.ejps.2019.104989
doi: 10.1016/j.ejps.2019.104989 pubmed: 31301485
Suez J, Korem T, Zilberman-Schapira G, Segal E, Elinav E (2015) Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes 6(2):149–155. https://doi.org/10.1080/19490976.2015.1017700
doi: 10.1080/19490976.2015.1017700 pubmed: 25831243 pmcid: 4615743
Susewind J, de Souza C-W, Repnik U, Collnot E-M, Schneider-Daum N, Griffiths GW, Lehr C-M (2016) A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Nanotoxicology 10(1):53–62. https://doi.org/10.3109/17435390.2015.1008065
doi: 10.3109/17435390.2015.1008065 pubmed: 25738417
Tamargo A, Molinero N, Reinosa JJ, Alcolea-Rodriguez V, Portela R, Bañares MA, Fernández JF, Moreno-Arribas MV (2022) PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Sci Rep 12(1):528. https://doi.org/10.1038/s41598-021-04489-w
doi: 10.1038/s41598-021-04489-w pubmed: 35017590 pmcid: 8752627
Tataru C, Livni M, Marean-Reardon C, Franco MC, David M (2023) Cytokine induced inflammatory bowel disease model using organ-on-a-chip technology. PLoS ONE 18(12):e0289314. https://doi.org/10.1371/journal.pone.0289314
doi: 10.1371/journal.pone.0289314 pubmed: 38091316 pmcid: 10718466
Theochari NA, Stefanopoulos A, Mylonas KS, Economopoulos KP (2018) Antibiotics exposure and risk of inflammatory bowel disease: a systematic review. Scand J Gastroenterol 53(1):1–7
doi: 10.1080/00365521.2017.1386711 pubmed: 29022402
Toutounji M, Wanes D, El-Harakeh M, El-Sabban M, Rizk S, Naim HY (2020) Dextran sodium sulfate-induced impairment of protein trafficking and alterations in membrane composition in intestinal Caco-2 cell line. Int J Mol Sci 21(8):2726. https://doi.org/10.3390/ijms21082726
doi: 10.3390/ijms21082726 pubmed: 32326391 pmcid: 7215722
Trapecar M, Communal C, Velazquez J, Maass CA, Huang Y-J, Schneider K, Wright CW, Butty V, Eng G, Yilmaz O et al (2020) Gut-Liver physiomimetics reveal paradoxical modulation of ibd-related inflammation by short-chain fatty acids. Cell Syst 10(3):223-239.e9. https://doi.org/10.1016/j.cels.2020.02.008
doi: 10.1016/j.cels.2020.02.008 pubmed: 32191873 pmcid: 8143761
Tremelling M, Cummings F, Fisher SA, Mansfield J, Gwilliam R, Keniry A, Nimmo ER, Drummond H, Onnie CM, Prescott NJ et al (2007) IL23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology 132(5):1657–1664. https://doi.org/10.1053/j.gastro.2007.02.051
doi: 10.1053/j.gastro.2007.02.051 pubmed: 17484863
Tu P, Gao B, Chi L, Lai Y, Bian X, Ru H, Lu K (2019) Subchronic low-dose 2,4-D exposure changed plasma acylcarnitine levels and induced gut microbiome perturbations in mice. Sci Rep 9(1):4363. https://doi.org/10.1038/s41598-019-40776-3
doi: 10.1038/s41598-019-40776-3 pubmed: 30867497 pmcid: 6416245
Turner D, Ricciuto A, Lewis A, D’Amico F, Dhaliwal J, Griffiths AM, Bettenworth D, Sandborn WJ, Sands BE, Reinisch W et al (2021) STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): determining therapeutic goals for treat-to-target strategies in IBD. Gastroenterology 160(5):1570–1583. https://doi.org/10.1053/j.gastro.2020.12.031
doi: 10.1053/j.gastro.2020.12.031 pubmed: 33359090
Ufer M, Häsler R, Jacobs G, Haenisch S, Lächelt S, Faltraco F, Sina C, Rosenstiel P, Nikolaus S, Schreiber S (2009) Decreased sigmoidal ABCB1 (P-glycoprotein) expression in ulcerative colitis is associated with disease activity. Pharmacogenomics 10(12):1941–1953
doi: 10.2217/pgs.09.128 pubmed: 19958093
Vaessen SFC, van Lipzig MMH, Pieters RHH, Krul CAM, Wortelboer HM, van de Steeg E (2017) Regional Expression Levels of Drug Transporters and Metabolizing Enzymes along the Pig and Human Intestinal Tract and Comparison with Caco-2 Cells. Drug Metab Dispos 45(4):353–360. https://doi.org/10.1124/dmd.116.072231
doi: 10.1124/dmd.116.072231 pubmed: 28153842
Van Antwerp DJ, Martin SJ, Verma IM, Green DR (1998) Inhibition of TNF-induced apoptosis by NF-kappa B. Trends Cell Biol 8(3):107–111. https://doi.org/10.1016/s0962-8924(97)01215-4
doi: 10.1016/s0962-8924(97)01215-4 pubmed: 9695819
Vavricka SR, Schoepfer A, Scharl M, Lakatos PL, Navarini A, Rogler G (2015) Extraintestinal manifestations of inflammatory bowel disease. Inflamm Bowel Dis 21(8):1982–1992. https://doi.org/10.1097/MIB.0000000000000392
doi: 10.1097/MIB.0000000000000392 pubmed: 26154136
Verma N, Ahuja V, Paul J (2013) Profiling of ABC transporters during active ulcerative colitis and in vitro effect of inflammatory modulators. Dig Dis Sci 58:2282–2292
doi: 10.1007/s10620-013-2636-7 pubmed: 23512405
Vethaak AD, Legler J (2021) Microplastics and human health. Science 371(6530):672–674. https://doi.org/10.1126/science.abe5041
doi: 10.1126/science.abe5041 pubmed: 33574197
Vinken M (2013) The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312:158–165. https://doi.org/10.1016/j.tox.2013.08.011
doi: 10.1016/j.tox.2013.08.011 pubmed: 23978457
Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR (2005) Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 166(2):409–419. https://doi.org/10.1016/s0002-9440(10)62264-x
doi: 10.1016/s0002-9440(10)62264-x pubmed: 15681825 pmcid: 1237049
Wang F, Schwarz BT, Graham WV, Wang Y, Su L, Clayburgh DR, Abraham C, Turner JR (2006) IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology 131(4):1153–1163. https://doi.org/10.1053/j.gastro.2006.08.022
doi: 10.1053/j.gastro.2006.08.022 pubmed: 17030185
Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J et al (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185. https://doi.org/10.1016/j.toxlet.2006.12.001
doi: 10.1016/j.toxlet.2006.12.001 pubmed: 17197136
Wang Y, DiSalvo M, Gunasekara DB, Dutton J, Proctor A, Lebhar MS, Williamson IA, Speer J, Howard RL, Smiddy NM et al (2017) Self-renewing Monolayer of Primary Colonic or Rectal Epithelial Cells. Cell Mol Gastroenterol Hepatol 4(1):165-182.e7. https://doi.org/10.1016/j.jcmgh.2017.02.011
doi: 10.1016/j.jcmgh.2017.02.011 pubmed: 29204504 pmcid: 5710741
Wang X, Guo J, Liu Y, Yu H, Qin X (2019) Sucralose increased susceptibility to colitis in rats. Inflamm Bowel Dis 25(2):e3–e4. https://doi.org/10.1093/ibd/izy196
doi: 10.1093/ibd/izy196 pubmed: 29846590
Wang S, Kang X, Alenius H, Wong SH, Karisola P, El-Nezami H (2022a) Oral exposure to Ag or TiO2 nanoparticles perturbed gut transcriptome and microbiota in a mouse model of ulcerative colitis. Food Chem Toxicol 169:113368. https://doi.org/10.1016/j.fct.2022.113368
doi: 10.1016/j.fct.2022.113368 pubmed: 36087619
Wang J, Bakker W, de Haan L, Bouwmeester H (2023) Deoxynivalenol increases pro-inflammatory cytokine secretion and reduces primary bile acid transport in an inflamed intestinal in vitro co-culture model. Food Res Int 173:113323. https://doi.org/10.1016/j.foodres.2023.113323
doi: 10.1016/j.foodres.2023.113323 pubmed: 37803634
Wang Y, Huang B, Jin T, Ocansey DKW, Jiang J, Mao F (2022) Intestinal fibrosis in inflammatory bowel disease and the prospects of mesenchymal stem cell therapy. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.835005
Westerhout J, van de Steeg E, Grossouw D, Zeijdner EE, Krul CAM, Verwei M, Wortelboer HM (2014) A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur J Pharm Sci 63:167–177. https://doi.org/10.1016/j.ejps.2014.07.003
doi: 10.1016/j.ejps.2014.07.003 pubmed: 25046168
Wilkins LJ, Monga M, Miller AW (2019) Defining dysbiosis for a cluster of chronic diseases. Sci Rep 9(1):12918. https://doi.org/10.1038/s41598-019-49452-y
doi: 10.1038/s41598-019-49452-y pubmed: 31501492 pmcid: 6733864
Wilson MS, Ramalingam TR, Rivollier A, Shenderov K, Mentink-Kane MM, Madala SK, Cheever AW, Artis D, Kelsall BL, Wynn TA (2011) Colitis and Intestinal Inflammation in IL10−/− Mice Results From IL-13Rα2–Mediated Attenuation of IL-13 Activity. Gastroenterology 140(1):254-264.e2. https://doi.org/10.1053/j.gastro.2010.09.047
doi: 10.1053/j.gastro.2010.09.047 pubmed: 20951137
Wojtal KA, Eloranta JJ, Hruz P, Gutmann H, Drewe J, Staumann A, Beglinger C, Fried M, Kullak-Ublick GA, Vavricka SR (2009) Changes in mRNA expression levels of solute carrier transporters in inflammatory bowel disease patients. Drug Metab Dispos 37(9):1871–1877
doi: 10.1124/dmd.109.027367 pubmed: 19487253
Workman MJ, Troisi E, Targan SR, Svendsen CN, Barrett RJ (2020) Modeling Intestinal Epithelial Response to Interferon-γ in Induced Pluripotent Stem Cell-Derived Human Intestinal Organoids. Int J Mol Sci 22(1):288. https://doi.org/10.3390/ijms22010288
doi: 10.3390/ijms22010288 pubmed: 33396621 pmcid: 7794932
Wu GD, Bushmanc FD, Lewis JD (2013) Diet, the human gut microbiota, and IBD. Anaerobe 24:117–120. https://doi.org/10.1016/j.anaerobe.2013.03.011
doi: 10.1016/j.anaerobe.2013.03.011 pubmed: 23548695
Xueting L, Liu Y, Wang Y, Xue Li, Liu X, Guo M, Tan Y, Qin X, Wang X, Jiang M (2020) Sucralose promotes colitis-associated colorectal cancer risk in a murine model along with changes in microbiota. Front Oncol. https://doi.org/10.3389/fonc.2020.00710
doi: 10.3389/fonc.2020.00710
Yakymenko O, Schoultz I, Gullberg E, Ström M, Almer S, Wallon C, Wang A, Keita ÅV, Campbell BJ, McKay DM, Söderholm JD (2018) Infliximab restores colonic barrier to adherent-invasive E. coli in Crohn’s disease via effects on epithelial lipid rafts. Scand J Gastroenterol 53(6):677–684. https://doi.org/10.1080/00365521.2018.1458146
doi: 10.1080/00365521.2018.1458146 pubmed: 29688802
Yamamoto-Furusho JK, Ascaño-Gutiérrez I, Furuzawa-Carballeda J, Fonseca-Camarillo G (2015) Differential expression of MUC12, MUC16, and MUC20 in patients with active and remission ulcerative colitis. Mediators Inflamm 2015:659018. https://doi.org/10.1155/2015/659018
doi: 10.1155/2015/659018 pubmed: 26770020 pmcid: 4684874
Yan J, Luo M, Chen Z, He B (2020) The Function and Role of the Th17/Treg Cell Balance in Inflammatory Bowel Disease. J Immunol Res 2020:e8813558. https://doi.org/10.1155/2020/8813558
doi: 10.1155/2020/8813558
Yan Z, Liu Y, Zhang T, Zhang F, Ren H, Zhang Y (2022) Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status. Environ Sci Technol 56(1):414–421. https://doi.org/10.1021/acs.est.1c03924
doi: 10.1021/acs.est.1c03924 pubmed: 34935363
Yin F, Huang X, Lin X, Chan TF, Lai KP, Li R (2022) Analyzing the synergistic adverse effects of BPA and its substitute, BHPF, on ulcerative colitis through comparative metabolomics. Chemosphere 287:132160. https://doi.org/10.1016/j.chemosphere.2021.132160
doi: 10.1016/j.chemosphere.2021.132160 pubmed: 34509005
Yoon MY, Yoon SS (2018) Disruption of the gut ecosystem by antibiotics. Yonsei Med J 59(1):4–12
doi: 10.3349/ymj.2018.59.1.4 pubmed: 29214770
Yoshida K, Maeda K, Sugiyama Y (2013) Hepatic and intestinal drug transporters: prediction of pharmacokinetic effects caused by drug-drug interactions and genetic polymorphisms. Annu Rev Pharmacol Toxicol 53:581–612. https://doi.org/10.1146/annurev-pharmtox-011112-140309
doi: 10.1146/annurev-pharmtox-011112-140309 pubmed: 23140240
Yu YR, Rodriguez JR (2017) Clinical presentation of Crohn’s, ulcerative colitis, and indeterminate colitis: Symptoms, extraintestinal manifestations, and disease phenotypes. Semin Pediatr Surg 26(6):349–355. https://doi.org/10.1053/j.sempedsurg.2017.10.003
doi: 10.1053/j.sempedsurg.2017.10.003 pubmed: 29126502
Zallot C, Peyrin-Biroulet L (2013) Deep remission in inflammatory bowel disease: looking beyond symptoms. Curr Gastroenterol Rep 15(3):315. https://doi.org/10.1007/s11894-013-0315-7
doi: 10.1007/s11894-013-0315-7 pubmed: 23354742
Zhang L, Liu F, Xue J, Lee SA, Liu L, Riordan SM (2022) Bacterial species associated with human inflammatory bowel disease and their pathogenic mechanisms. Front Microbiol 13:801892. https://doi.org/10.3389/fmicb.2022.801892
doi: 10.3389/fmicb.2022.801892 pubmed: 35283816 pmcid: 8908260
Zhao Y, Zhang Y, Wang G, Han R, Xie X (2016) Effects of chlorpyrifos on the gut microbiome and urine metabolome in mouse (Mus musculus). Chemosphere 153:287–293. https://doi.org/10.1016/j.chemosphere.2016.03.055
doi: 10.1016/j.chemosphere.2016.03.055 pubmed: 27018521
Zhao Y, Liu S, Xu H (2023) Effects of microplastic and engineered nanomaterials on inflammatory bowel disease: a review. Chemosphere 326:138486. https://doi.org/10.1016/j.chemosphere.2023.138486
doi: 10.1016/j.chemosphere.2023.138486 pubmed: 36963581
Zhen Y, Zhang H (2019) NLRP3 inflammasome and inflammatory bowel disease. Front Immunol. https://doi.org/10.3389/fimmu.2019.00276
doi: 10.3389/fimmu.2019.00276 pubmed: 31379844 pmcid: 6646668
Zheng H, Wang J, Wei X, Chang L, Liu S (2021) Proinflammatory properties and lipid disturbance of polystyrene microplastics in the livers of mice with acute colitis. Sci Total Environ 750:143085. https://doi.org/10.1016/j.scitotenv.2020.143085
doi: 10.1016/j.scitotenv.2020.143085 pubmed: 33182181
Zolotova N, Dzhalilova D, Tsvetkov I, Makarova O (2023) Influence of microplastics on morphological manifestations of experimental acute colitis. Toxics 11(9):730. https://doi.org/10.3390/toxics11090730
doi: 10.3390/toxics11090730 pubmed: 37755741 pmcid: 10536389

Auteurs

Tom Walraven (T)

Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands. tom.walraven@wur.nl.

Mathias Busch (M)

Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.

Jingxuan Wang (J)

Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.

Joanne M Donkers (JM)

Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands.

Marjolijn Duijvestein (M)

Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands.

Evita van de Steeg (E)

Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands.

Nynke I Kramer (NI)

Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.

Hans Bouwmeester (H)

Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.

Classifications MeSH