Investigation of effect peripheral kisspeptin treatment on hypothalamo-pituitary-gonadal axis and hypothalamo-pituitary-adrenal axis in male rats.

Corticotropic releasing hormone HPA axis HPG axis Kisspeptin Oxytocin Paraventricular nucleus

Journal

Biologia futura
ISSN: 2676-8607
Titre abrégé: Biol Futur
Pays: Switzerland
ID NLM: 101738236

Informations de publication

Date de publication:
09 Sep 2024
Historique:
received: 06 03 2024
accepted: 25 08 2024
medline: 9 9 2024
pubmed: 9 9 2024
entrez: 9 9 2024
Statut: aheadofprint

Résumé

Kisspeptin is an endogenous peptide hormone that is the most potent stimulator of the hypothalamo-pituitary-gonadal (HPG) axis. The HPG axis can be suppressed by the activation of the hypothalamo-pituitary-adrenal (HPA) axis. The physiological role of kisspeptin in the interaction of the HPG axis and the HPA axis is not fully understood yet. The purpose of the current study was to investigate the possible effects of peripheral injection (intraperitoneally) of kisspeptin on HPG axis and HPA axis activity as well. Adult male Wistar rats were randomly divided into seven groups as sham (control), kisspeptin (10 nmol), p234 (10 nmol), kisspeptin + p234, kisspeptin + antalarmin (10 mg/kg), kisspeptin + astressin2b (100 μg/kg), and kisspeptin + atosiban (0.250 mg/kg) (n = 10 each group). At the end of the experiment, the hypothalamus, pituitary gland, and serum samples of the rats were collected. Serum follicle-stimulating hormone and luteinizing hormone levels of the kisspeptin, kisspeptin + antalarmin and kisspeptin + astressin2b groups were significantly higher than the control group. Serum testosterone levels were significantly higher in the kisspeptin, kisspeptin + antalarmin, kisspeptin + astressin2b, and kisspeptin + atosiban groups that compared to the control group. There was no a significant difference in corticotropic releasing hormone immunoreactivity in the paraventricular nucleus of the hypothalamus, serum adrenocorticotropic hormone and corticosterone concentrations among all groups. Moreover, no significant difference was found in the concentration of pituitary oxytocin. Our results suggest that peripheral kisspeptin injection induces an activation in the HPG axis, but not in the HPA axis in male rats.

Identifiants

pubmed: 39249652
doi: 10.1007/s42977-024-00241-3
pii: 10.1007/s42977-024-00241-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : TUBİTAK
ID : 116S480

Informations de copyright

© 2024. Akadémiai Kiadó Zrt.

Références

Berthon A, Settas N, Delaney A et al (2020) Kisspeptin deficiency leads to abnormal adrenal glands and excess steroid hormone secretion. Hum Mol Genet 29:3443–3450. https://doi.org/10.1093/hmg/ddaa215
doi: 10.1093/hmg/ddaa215 pubmed: 33089319 pmcid: 7906779
Cagampang FRA, Cates PS, Sandhu S et al (1997) Hypoglycaemia-induced inhibition of pulsatile luteinizing hormone secretion in female rats: role of oestradiol, endogenousopioids and the adrenal medulla. J Neuroendocrinol 9:867–872. https://doi.org/10.1046/j.1365-2826.1997.00653.x
doi: 10.1046/j.1365-2826.1997.00653.x pubmed: 9419838
Caruso A, Gaetano A, Scaccianoce S (2022) Corticotropin-releasing hormone: biology and therapeutic opportunities. Biology (Basel) 11:1785. https://doi.org/10.3390/biology11121785
doi: 10.3390/biology11121785 pubmed: 36552294
Clarkson J, d’Anglemont de Tassigny X, Colledge WH et al (2009) Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol 21:673–682. https://doi.org/10.1111/j.1365-2826.2009.01892.x
doi: 10.1111/j.1365-2826.2009.01892.x pubmed: 19515163
Comninos AN, Anastasovska J, Sahuri-Arisoylu M et al (2016) Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Struct Funct 221:2035–2047. https://doi.org/10.1007/s00429-015-1024-9
doi: 10.1007/s00429-015-1024-9 pubmed: 25758403
d’Anglemont de Tassigny X, Colledge WH (2010) The role of kisspeptin signaling in reproduction. Physiol (Bethesda) 25:207–217. https://doi.org/10.1152/physiol.00009.2010
doi: 10.1152/physiol.00009.2010
De Kloet ER, Reul JMHM (1987) Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinol 12:83–105. https://doi.org/10.1016/0306-4530(87)90040-0
doi: 10.1016/0306-4530(87)90040-0
Esposito P, Chandler N, Kandere K et al (2002) Corticotropin-releasing hormone and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. J Pharmacol Exp Ther 303:1061–1066. https://doi.org/10.1124/jpet.102.038497
doi: 10.1124/jpet.102.038497 pubmed: 12438528
Gaytán F, Gaytán M, Castellano JM et al (2009) KiSS-1 in the mammalian ovary: distribution of kisspeptin in human and marmoset and alterations in KiSS-1 mRNA levels in a rat model of ovulatory dysfunction. Am J Physiol Metab 296:E520–E531. https://doi.org/10.1152/ajpendo.90895.2008
doi: 10.1152/ajpendo.90895.2008
Greives TJ, Mason AO, Scotti M-AL et al (2007) Environmental control of kisspeptin: implications for seasonal reproduction. Endocrinology 148:1158–1166. https://doi.org/10.1210/en.2006-1249
doi: 10.1210/en.2006-1249 pubmed: 17185375
Kalsbeek A, van der Spek R, Lei J et al (2012) Circadian rhythms in the hypothalamo–pituitary–adrenal (HPA) axis. Mol Cell Endocrinol 349:20–29. https://doi.org/10.1016/j.mce.2011.06.042
doi: 10.1016/j.mce.2011.06.042 pubmed: 21782883
Kannan V, Gadamsetty D, Rose M et al (2010) Quantitative determination of oxytocin receptor antagonist atosiban in rat plasma by liquid chromatography–tandem mass spectrometry. J Chromatogr B 878:1069–1076. https://doi.org/10.1016/j.jchromb.2010.03.011
doi: 10.1016/j.jchromb.2010.03.011
Katugampola H, King PJ, Chatterjee S et al (2017) Kisspeptin is a novel regulator of human fetal adrenocortical development and function: a finding with important implications for the human fetoplacental unit. J Clin Endocrinol Metab 102:3349–3359. https://doi.org/10.1210/jc.2017-00763
doi: 10.1210/jc.2017-00763 pubmed: 28911133 pmcid: 5587078
Kinsey-Jones JS, Li XF, Knox AMI et al (2010) Corticotrophin-releasing factor alters the timing of puberty in the female rat. J Neuroendocrinol 22:102–109. https://doi.org/10.1111/j.1365-2826.2009.01940.x
doi: 10.1111/j.1365-2826.2009.01940.x pubmed: 20002962
Kotani M, Detheux M, Vandenbogaerde A et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636. https://doi.org/10.1074/jbc.M104847200
doi: 10.1074/jbc.M104847200 pubmed: 11457843
Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25:150–176. https://doi.org/10.1016/j.yfrne.2004.05.001
doi: 10.1016/j.yfrne.2004.05.001 pubmed: 15589267
Lents CA, Heidorn NL, Barb CR, Ford JJ (2008) Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts. Reproduction 135:879–887. https://doi.org/10.1530/REP-07-0502
doi: 10.1530/REP-07-0502 pubmed: 18339687
Muir AI, Chamberlain L, Elshourbagy NA et al (2001) AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276:28969–28975. https://doi.org/10.1074/jbc.M102743200
doi: 10.1074/jbc.M102743200 pubmed: 11387329
Ozawa H (2022) Kisspeptin neurons as an integration center of reproductive regulation: observation of reproductive function based on a new concept of reproductive regulatory nervous system. Reprod Med Biol 21:e12419. https://doi.org/10.1002/rmb2.12419
doi: 10.1002/rmb2.12419 pubmed: 34934400
Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates, 6th edn. Journal of Anatomy, 6th edn. Academic Press, New York, pp 27–29
Ramaswamy S, Gibbs RB, Plant TM (2009) Studies of the localisation of kisspeptin within the pituitary of the rhesus monkey (Macaca mulatta) and the effect of kisspeptin on the release of non-gonadotropic pituitary hormones. J Neuroendocrinol 21:795–804. https://doi.org/10.1111/j.1365-2826.2009.01905.x
doi: 10.1111/j.1365-2826.2009.01905.x pubmed: 19686451 pmcid: 2760459
Rao YS, Mott NN, Pak TR (2011) Effects of kisspeptin on parameters of the HPA axis. Endocrine 39:220–228. https://doi.org/10.1007/s12020-011-9439-4
doi: 10.1007/s12020-011-9439-4 pubmed: 21387128
Refojo D, Holsboer F (2009) CRH signaling: molecular specificity for drug targeting in the CNS. Ann N Y Acad Sci 1179:106–119. https://doi.org/10.1111/j.1749-6632.2009.04983.x
doi: 10.1111/j.1749-6632.2009.04983.x pubmed: 19906235
Şahin Z (2015) Experimental studies on ınteraction between kisspeptin, RFRP-3 and, Nesfatin-1 in neuroendocrine regulation of the puberty and reproduction. Doctoral thesis, Fırat University Institute of Health Sciences, Department of Physiology, Elazığ
Scott V, Brown CH (2011) Kisspeptin in vivo. Endocrinol 152:3862–3870. https://doi.org/10.1210/en.2011-1181
doi: 10.1210/en.2011-1181
Seminara SB, Messager S, Chatzidaki EE et al (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627. https://doi.org/10.1056/nejmoa035322
doi: 10.1056/nejmoa035322 pubmed: 14573733
Stephens MAC, Wand G (2012) Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol Res 34:468–483
pubmed: 23584113 pmcid: 3860380
Takumi K, Iijima N, Higo S, Ozawa H (2012) Immunohistochemical analysis of the colocalization of corticotropin-releasing hormone receptor and glucocorticoid receptor in kisspeptin neurons in the hypothalamus of female rats. Neurosci Lett 531:40–45. https://doi.org/10.1016/j.neulet.2012.10.010
doi: 10.1016/j.neulet.2012.10.010 pubmed: 23069671
Thompson BL, Erickson K, Schulkin J, Rosen JB (2004) Corticosterone facilitates retention of contextually conditioned fear and increases CRH mRNA expression in the amygdala. Behav Brain Res 149:209–215. https://doi.org/10.1016/S0166-4328(03)00216-X
doi: 10.1016/S0166-4328(03)00216-X pubmed: 15129783
Van Bodegom M, Homberg JR, Henckens MJAG (2017) Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front Cell Neurosci 11:87. https://doi.org/10.3389/fncel.2017.00087
doi: 10.3389/fncel.2017.00087 pubmed: 28469557 pmcid: 5395581
Wang L, Stengel A, Goebel-Stengel M et al (2013) Intravenous injection of urocortin 1 induces a CRF2 mediated increase in circulating ghrelin and glucose levels through distinct mechanisms in rats. Peptides 39:164–170. https://doi.org/10.1016/j.peptides.2012.11.009
doi: 10.1016/j.peptides.2012.11.009 pubmed: 23183626

Auteurs

Zafer Sahin (Z)

Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey. zafersahin@ktu.edu.tr.

Osman Aktas (O)

Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.

Omer Faruk Kalkan (OF)

Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.

Gokhan Cuce (G)

Department of Histology and Embryology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.

Ahmet Alver (A)

Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.

Elif Sahin (E)

Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.

Seniz Erdem (S)

Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.

Neslihan Saglam (N)

Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.

Zulfikare Isik Solak Gormus (ZI)

Department of Physiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.

Selim Kutlu (S)

Department of Physiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.

Classifications MeSH