Seminal plasma inhibits Chlamydia trachomatis infection in vitro, and may have consequences on mucosal immunity.
C. trachomatis
Female mucosa
Inflammation
Neutrophil
STI
Seminal plasma
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 09 2024
09 09 2024
Historique:
received:
12
10
2023
accepted:
28
08
2024
medline:
10
9
2024
pubmed:
10
9
2024
entrez:
9
9
2024
Statut:
epublish
Résumé
Seminal plasma (SP) is the main vector of C. trachomatis (CT) during heterosexual transmission from male to female. It has immunomodulatory properties and impacts the susceptibility to HIV-1 infection, but its role has not been explored during CT infection. In the female reproductive tract (FRT), CT infection induces cytokine production and neutrophil recruitment. The role of neutrophils during CT infection is partially described, they could be at the origin of the pathology observed during CT infection. During this study, we developed an experimental in vitro model to characterize the impact of CT infection and SP on endocervical epithelial cell immune response in the FRT. We also studied the impact of the epithelial cell response on neutrophil phenotype and functions. We showed that the production by epithelial cells of pro-inflammatory cytokines increased during CT infection. Moreover, the pool of SP as well as individuals SP inhibited CT infection in a dose-dependent manner. The pool of SP inhibited cytokine production in a dose-dependent manner. The pool of SP altered gene expression profiles of infected cells. The culture supernatants of cells infected or not with CT, in presence or not of the pool of SP, had an impact on neutrophil phenotype and functions: they affected markers of neutrophil maturation, activation and adhesion capacity, as well as the survival, ROS production and phagocytosis ability. This study proposes a novel approach to study the impact of the environment on the phenotype and functions of neutrophils in the FRT. It highlights the impact of the factors of the FRT environment, in particular SP and CT infection, on the mucosal inflammation and the need to take into account the SP component while studying sexually transmitted infections during heterosexual transmission from male to female.
Identifiants
pubmed: 39251689
doi: 10.1038/s41598-024-71499-9
pii: 10.1038/s41598-024-71499-9
doi:
Substances chimiques
Cytokines
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
21050Subventions
Organisme : Agence Nationale de Recherches sur le Sida et les Hépatites Virales
ID : AO 2020-1
Informations de copyright
© 2024. The Author(s).
Références
Rowley, J. et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull. World Health Organ. 97, 32 (2019).
doi: 10.2471/BLT.18.228486
Chlamydia Infection. https://www.ecdc.europa.eu/en/chlamydia-infection .
Agrawal, T., Vats, V., Salhan, S. & Mittal, A. The mucosal immune response to Chlamydia trachomatis infection of the reproductive tract in women. J. Reprod. Immunol. 83, 173–178 (2009).
pubmed: 19896206
doi: 10.1016/j.jri.2009.07.013
Lu, H., Shen, C. & Brunham, R. C. Chlamydia trachomatis infection of epithelial cells induces the activation of caspase-1 and release of mature IL-18. J. Immunol. 165, 1463–1469 (2000).
pubmed: 10903751
doi: 10.4049/jimmunol.165.3.1463
Buckner, L. R., Lewis, M. E., Greene, S. J., Foster, T. P. & Quayle, A. J. Chlamydia trachomatis infection results in a modest pro-inflammatory cytokine response and a decrease in T cell chemokine secretion in human polarized endocervical epithelial cells. Cytokine 63, 151–165 (2013).
pubmed: 23673287
pmcid: 3703936
doi: 10.1016/j.cyto.2013.04.022
Darville, T. & Hiltke, T. J. Pathogenesis of genital tract disease due to Chlamydia trachomatis. J. Infect. Dis. 201, S114 (2010).
pubmed: 20524234
doi: 10.1086/652397
Poston, T. B. et al. Cervical cytokines associated with Chlamydia trachomatis susceptibility and protection. J. Infect. Dis. 220, 330–339 (2019).
pubmed: 30820577
pmcid: 6581900
doi: 10.1093/infdis/jiz087
Lijek, R. S., Helble, J. D., Olive, A. J., Seiger, K. W. & Starnbach, M. N. Pathology after Chlamydia trachomatis infection is driven by nonprotective immune cells that are distinct from protective populations. Proc. Natl. Acad. Sci. USA 115, 2216–2221 (2018).
pubmed: 29440378
pmcid: 5834673
doi: 10.1073/pnas.1711356115
Lehr, S., Vier, J., Häcker, G. & Kirschnek, S. Activation of neutrophils by Chlamydia trachomatis-infected epithelial cells is modulated by the chlamydial plasmid. Microbes Infect. 20, 284–292 (2018).
pubmed: 29499390
doi: 10.1016/j.micinf.2018.02.007
Rajeeve, K., Das, S., Prusty, B. K. & Rudel, T. Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response. Nat. Microbiol. 3, 824–835 (2018).
pubmed: 29946164
doi: 10.1038/s41564-018-0182-y
Naglak, E. K., Morrison, S. G. & Morrison, R. P. Neutrophils are central to antibody-mediated protection against genital Chlamydia. Infect. Immun. 85, 11 (2017).
doi: 10.1128/IAI.00409-17
Schjenken, J. E. et al. Sperm modulate uterine immune parameters relevant to embryo implantation and reproductive success in mice. Commun. Biol. 4, 1–14 (2021).
doi: 10.1038/s42003-021-02038-9
Cavarelli, M. & le Grand, R. The Importance of Semen Leukocytes in HIV-1 Transmission and the Development of Prevention Strategies. 2018–2032. https://doi.org/10.1080/21645515.2020.1765622 (2020).
Owen, D. H. & Katz, D. F. A review of the physical and chemical properties of human semen and the formulation of a semen simulant. J. Androl. 26, 459–469 (2005).
pubmed: 15955884
doi: 10.2164/jandrol.04104
Song, Z. H. et al. Seminal plasma induces inflammation in the uterus through the γδ T/IL-17 pathway. Sci. Rep. 6, 1–8 (2016).
Katila, T. Post-mating inflammatory responses of the uterus. Reprod. Domest. Anim. 47(Suppl 5), 31–41 (2012).
pubmed: 22913558
doi: 10.1111/j.1439-0531.2012.02120.x
Adefuye, A., Katz, A. A. & Sales, K. J. The regulation of inflammatory pathways and infectious disease of the cervix by seminal fluid. Patholog. Res. Int. 2014, 45 (2014).
Abdulhaqq, S. A. et al. Repeated semen exposure decreases cervicovaginal SIVmac251 infection in rhesus macaques. Nat. Commun. 10, 1–10 (2019).
doi: 10.1038/s41467-019-11814-5
Edström, A. M. L. et al. The major bactericidal activity of human seminal plasma is zinc-dependent and derived from fragmentation of the semenogelins. J. Immunol. 181, 3413 (2008).
pubmed: 18714013
doi: 10.4049/jimmunol.181.5.3413
Rodriguez-Martinez, H., Martinez, E. A., Calvete, J. J., Peña Vega, F. J. & Roca, J. Seminal plasma: Relevant for fertility?. Int. J. Mol. Sci. 22, 13 (2021).
doi: 10.3390/ijms22094368
Herbst-Kralovetz, M. M. et al. Quantification and comparison of toll-like receptor expression and responsiveness in primary and immortalized human female lower genital tract epithelia. Am. J. Reprod. Immunol. 59, 212–224 (2008).
pubmed: 18201283
doi: 10.1111/j.1600-0897.2007.00566.x
Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).
pubmed: 34623391
pmcid: 8652018
doi: 10.1093/bioinformatics/btab705
Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242
pmcid: 6137996
doi: 10.1093/bioinformatics/bty191
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959
pmcid: 5600148
doi: 10.1038/nmeth.4197
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
doi: 10.1186/s13059-014-0550-8
Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 1–14 (2013).
doi: 10.1186/1471-2105-14-S18-S1
Xie, Z. et al. Gene set knowledge discovery with enrichr. Curr. Protoc. 1, 23 (2021).
doi: 10.1002/cpz1.90
Huang, R. et al. The NCATS BioPlanet—An integrated platform for exploring the universe of cellular signaling pathways for toxicology, systems biology, and chemical genomics. Front. Pharmacol. 10, 56 (2019).
doi: 10.3389/fphar.2019.00445
Sharkey, D. J., Tremellen, K. P., Briggs, N. E., Dekker, G. A. & Robertson, S. A. Seminal plasma transforming growth factor-β, activin A and follistatin fluctuate within men over time. Hum. Reprod. 31, 2183–2191 (2016).
pubmed: 27609985
doi: 10.1093/humrep/dew185
Sharkey, D. J., Macpherson, A. M., Tremellen, K. P. & Robertson, S. A. Seminal plasma differentially regulates inflammatory cytokine gene expression in human cervical and vaginal epithelial cells. Mol. Hum. Reprod. 13, 491–501 (2007).
pubmed: 17483528
doi: 10.1093/molehr/gam028
Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).
pubmed: 23435331
doi: 10.1038/nri3399
Passmore, J. A. S., Jaspan, H. B. & Masson, L. Genital inflammation, immune activation and risk of sexual HIV acquisition. Curr. Opin. HIV AIDS 11, 156 (2016).
pubmed: 26628324
pmcid: 6194860
doi: 10.1097/COH.0000000000000232
Anderson, D. J. & Politch, J. A. Role of seminal plasma in human female reproductive failure: Immunomodulation, inflammation, and infections. Adv. Exp. Med. Biol. 868, 159–169 (2015).
pubmed: 26178849
doi: 10.1007/978-3-319-18881-2_7
Belland, R. J. et al. From the cover: Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 100, 8478 (2003).
pubmed: 12815105
pmcid: 166254
doi: 10.1073/pnas.1331135100
Elwell, C., Mirrashidi, K. & Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 14, 385–400 (2016).
pubmed: 27108705
pmcid: 4886739
doi: 10.1038/nrmicro.2016.30
Zupin, L. et al. Human β-defensin 1 in follicular fluid and semen: impact on fertility. J. Assist. Reprod. Genet. 36, 787 (2019).
pubmed: 30712073
pmcid: 6504998
doi: 10.1007/s10815-019-01409-w
Buckner, L. R. et al. Innate immune mediator profiles and their regulation in a novel polarized immortalized epithelial cell model derived from human endocervix. J. Reprod. Immunol. 92, 8–20 (2011).
pubmed: 21943934
pmcid: 3894833
doi: 10.1016/j.jri.2011.08.002
Sharkey, D. J. et al. TGF-β mediates proinflammatory seminal fluid signaling in human cervical epithelial cells. J. Immunol. 189, 1024–1035 (2012).
pubmed: 22706080
doi: 10.4049/jimmunol.1200005
Schjenken, J. E. & Robertson, S. A. The female response to seminal fluid. Physiol. Rev. 100, 1077–1117 (2020).
pubmed: 31999507
doi: 10.1152/physrev.00013.2018
Ng, L. G., Ostuni, R. & Hidalgo, A. Heterogeneity of neutrophils. Nat. Rev. Immunol. 19, 255–265 (2019).
pubmed: 30816340
doi: 10.1038/s41577-019-0141-8
Gasson, J. C. Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77, 1131–1145 (1991).
pubmed: 2001448
doi: 10.1182/blood.V77.6.1131.1131
Kamp, V. M. et al. Modulation of granulocyte kinetics by GM-CSF/IFN-γ in a human LPS rechallenge model. J. Leukoc. Biol. 94, 513–520 (2013).
pubmed: 23794709
doi: 10.1189/jlb.0213066
Momose, T. et al. Interferon-gamma increases CD62L expression on human eosinophils. Int. Arch. Allergy Immunol. 120(Suppl 1), 30–33 (1999).
pubmed: 10529600
doi: 10.1159/000053590
Daniels, R. H., Finnen, M. J., Hill, M. E. & Lackie, J. M. Recombinant human monocyte IL-8 primes NADPH-oxidase and phospholipase A2 activation in human neutrophils. Immunology 75, 157 (1992).
pubmed: 1537592
pmcid: 1384818
Mol, S. et al. Efficient neutrophil activation requires two simultaneous activating stimuli. Int. J. Mol. Sci. 22, 10106 (2021).
pubmed: 34576270
pmcid: 8467451
doi: 10.3390/ijms221810106