KRAS
KRASG12C
SHP2
SOS1
pancreatic cancer
Journal
Molecular oncology
ISSN: 1878-0261
Titre abrégé: Mol Oncol
Pays: United States
ID NLM: 101308230
Informations de publication
Date de publication:
10 Sep 2024
10 Sep 2024
Historique:
revised:
06
06
2024
received:
03
11
2023
accepted:
22
08
2024
medline:
10
9
2024
pubmed:
10
9
2024
entrez:
10
9
2024
Statut:
aheadofprint
Résumé
Pancreatic ductal adenocarcinoma (PDAC) has limited treatment options, emphasizing the urgent need for effective therapies. The predominant driver in PDAC is mutated KRAS proto-oncogene, KRA, present in 90% of patients. The emergence of direct KRAS inhibitors presents a promising avenue for treatment, particularly those targeting the KRAS
Identifiants
pubmed: 39253995
doi: 10.1002/1878-0261.13725
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : SCHN959/8-1
Organisme : Deutsche Forschungsgemeinschaft
ID : SCHN959/7-1
Organisme : Deutsche Forschungsgemeinschaft
ID : SCHN 959/6-1
Organisme : Deutsche Forschungsgemeinschaft
ID : SCHN 959/3-2
Organisme : Deutsche Forschungsgemeinschaft
ID : KFO5002
Organisme : Deutsche Forschungsgemeinschaft
ID : RE 3723/4-1
Organisme : Deutsche Forschungsgemeinschaft
ID : WI 6148/1-1
Organisme : Deutsche Krebshilfe
ID : 70113760
Organisme : Deutsche Krebshilfe
ID : 70112505
Organisme : Deutsche Krebshilfe
ID : 70115444
Organisme : BMBF FAIRPACT
ID : 01KD2208B
Organisme : BMBF SATURN3
ID : 01KD2206P
Organisme : BMBF QuE-MRT
ID : 13N16450
Organisme : Wilhelm Sander-Stiftung
ID : 2022.074.1
Organisme : Wilhelm Sander-Stiftung
ID : 2023.027.1
Organisme : Wilhelm Sander-Stiftung
ID : 2021.139.1
Organisme : Volkswagenstiftung
ID : ZN3424
Organisme : Hector-Stiftung
ID : M2408
Organisme : Bavarian Ministry of Economic Affairs, Regional Development and Energy project EISglobe
ID : LSM-2104-0017
Organisme : DKTK (German Cancer Consortium) Strategic Initiative Organoid Platform
Informations de copyright
© 2024 The Author(s). Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Références
Hofmann MH, Gerlach D, Misale S, Petronczki M, Kraut N. Expanding the reach of precision oncology by drugging all KRAS mutants. Cancer Discov. 2022;12(4):924–937.
Drosten M, Barbacid M. Targeting KRAS mutant lung cancer: light at the end of the tunnel. Mol Oncol. 2022;16(5):1057–1071.
Bekaii‐Saab TS, Yaeger R, Spira AI, Pelster MS, Sabari JK, Hafez N, et al. Adagrasib in advanced solid tumors harboring a KRAS G12C mutation. J Clin Oncol. 2023;41(25):4097–4106.
Strickler JH, Satake H, George TJ, Yaeger R, Hollebecque A, Garrido‐Laguna I, et al. Sotorasib in KRAS p.G12C–mutated advanced pancreatic cancer. N Engl J Med. 2022;388(1):33–43.
Sacher A, LoRusso P, Patel MR, Miller WH, Garralda E, Forster MD, et al. Single‐agent divarasib (GDC‐6036) in solid tumors with a KRAS G12C mutation. N Engl J Med. 2023;389(8):710–721.
Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov. 2023;22(3):213–234.
von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M, et al. E‐cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology. 2009;137(1):361–371, 371.e1–5.
Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher T, et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature. 2018;554(7690):62–68.
Schneeweis C, Diersch S, Hassan Z, Krauß L, Schneider C, Lucarelli D, et al. AP1/Fra1 confers resistance to MAPK cascade inhibition in pancreatic cancer. Cell Mol Life Sci. 2023;80(1):12.
Orben F, Lankes K, Schneeweis C, Hassan Z, Jakubowsky H, Krauß L, et al. Epigenetic drug screening defines a PRMT5 inhibitor sensitive pancreatic cancer subtype. JCI Insight. 2022;7(10):e151353.
Clark NA, Hafner M, Kouril M, Williams EH, Muhlich JL, Pilarczyk M, et al. GRcalculator: an online tool for calculating and mining dose–response data. BMC Cancer. 2017;17(1):698.
Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi‐drug combination synergies. Nucleic Acids Res. 2020;48(W1):W488–W493.
Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville T, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 2018;8(9):1112–1129.
Mihara E, Hirai H, Yamamoto H, Tamura‐Kawakami K, Matano M, Kikuchi A, et al. Active and water‐soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α‐albumin. Elife. 2016;5:e11621.
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46.
Wingett SW, Andrews S. FastQ screen: a tool for multi‐genome mapping and quality control. F1000Res. 2018;7:1338.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA‐seq aligner. Bioinformatics. 2013;29(1):15–21.
Anders S, Pyl PT, Huber W. HTSeq – a Python framework to work with high‐throughput sequencing data. Bioinformatics. 2014;31(2):166–169.
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–3048.
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA‐Seq data. BMC Bioinformatics. 2013;14(1):7.
Durinck S, Moreau Y, Kasprzyk A, Davis S, Moor BD, Brazma A, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21(16):3439–3440.
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4(8):1184–1191.
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140.
Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–W570.
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier‐Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–423.
Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti‐tumour immunity. Nature. 2019;575(7781):217–223.
Falcomatà C, Bärthel S, Widholz SA, Schneeweis C, Montero JJ, Toska A, et al. Selective multi‐kinase inhibition sensitizes mesenchymal pancreatic cancer to immune checkpoint blockade by remodeling the tumor microenvironment. Nat Cancer. 2022;3(3):318–336.
Drilon A, Sharma MR, Johnson ML, Yap TA, Gadgeel S, Nepert D, et al. SHP2 inhibition sensitizes diverse oncogene‐addicted solid tumors to re‐treatment with targeted therapy. Cancer Discov. 2023;13(8):1789–1801.
Hogenson TL, Xie H, Phillips WJ, Toruner MD, Li JJ, Horn IP, et al. Culture media composition influences patient‐derived organoids ability to predict therapeutic response in gastrointestinal cancers. JCI Insight. 2022;7(22):e158060.
Demyan L, Habowski AN, Plenker D, King DA, Standring OJ, Tsang C, et al. Pancreatic cancer patient‐derived organoids can predict response to neoadjuvant chemotherapy. Ann Surg. 2022;276(3):450–462.
Keane F, Chou JF, Walch H, Schoenfeld J, Singhal A, Cowzer D, et al. Precision medicine for pancreatic cancer: characterizing the clinico‐genomic landscape and outcomes of KRAS G12C‐mutated disease. J Natl Cancer Inst. 2024;djae095. https://doi.org/10.1093/jnci/djae095
Tomihara H, Carbone F, Perelli L, Huang JK, Soeung M, Rose JL, et al. Loss of ARID1A promotes epithelial–mesenchymal transition and sensitizes pancreatic tumors to proteotoxic stress. Cancer Res. 2021;81(2):332–343.
Wang X, Allen S, Blake JF, Bowcut V, Briere DM, Calinisan A, et al. Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor. J Med Chem. 2022;65(4):3123–3133.
Maher TM. Interstitial lung disease. JAMA. 2024;331(19):1655–1665.
Yan S, Xue S, Wang T, Gao R, Zeng H, Wang Q, et al. Efficacy and safety of nintedanib in patients with non‐small cell lung cancer, and novel insights in radiation‐induced lung toxicity. Front Oncol. 2023;13:1086214.
Boland PM, Ebos JML, Attwood K, Mastri M, Fountzilas C, Iyer RV, et al. A phase I/II study of nintedanib and capecitabine for refractory metastatic colorectal cancer. JNCI Cancer Spectr. 2024;8(3):pkae017.
Frank KJ, Mulero‐Sánchez A, Berninger A, Ruiz‐Cañas L, Bosma A, Görgülü K, et al. Extensive preclinical validation of combined RMC‐4550 and LY3214996 supports clinical investigation for KRAS mutant pancreatic cancer. Cell Rep Med. 2022;3(11):100815.
Ruess DA, Heynen GJ, Ciecielski KJ, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS‐driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24(7):954–960.
Molina‐Arcas M, Downward J. Exploiting the therapeutic implications of KRAS inhibition on tumor immunity. Cancer Cell. 2024;42(3):338–357.
Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, et al. BI‐3406, a potent and selective SOS1–KRAS interaction inhibitor, is effective in KRAS‐driven cancers through combined MEK inhibition. Cancer Discov. 2021;11(1):142–157.
Thatikonda V, Lu H, Jurado S, Kostyrko K, Bristow CA, Bosch K, et al. Combined KRASG12C and SOS1 inhibition enhances and extends the anti‐tumor response in KRASG12C‐driven cancers by addressing intrinsic and acquired resistance. bioRxiv. 2023. https://doi.org/10.1101/2023.01.23.525210
Kemp SB, Cheng N, Markosyan N, Sor R, Kim I‐K, Hallin J, et al. Efficacy of a small molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer. Cancer Discov. 2022;13(2):298–311.
Mahadevan KK, McAndrews KM, LeBleu VS, Yang S, Lyu H, Li B, et al. KRASG12D inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS‐mediated killing by CD8+ T cells. Cancer Cell. 2023;41(9):1606–1620.e8.
Fedele C, Li S, Teng KW, Foster CJR, Peng D, Ran H, et al. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. J Exp Med. 2020;218(1):e20201414.
Norgard RJ, Budhani P, O'Brien SA, Xia Y, Egan JN, Flynn B, et al. Reshaping the tumor microenvironment of KRASG12D pancreatic ductal adenocarcinoma with combined SOS1 and MEK inhibition for improved immunotherapy response. Cancer Res Commun. 2024;4(6):1548–1560.
Cortesi A, Gandolfi F, Arco F, Chiaro PD, Valli E, Polletti S, et al. Activation of endogenous retroviruses and induction of viral mimicry by MEK1/2 inhibition in pancreatic cancer. Sci Adv. 2024;10(13):eadk5386.
Hallin J, Engstrom LD, Hargis L, Calinisan A, Aranda R, Briere DM, et al. The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS‐mutant cancers in mouse models and patients. Cancer Discov. 2020;10(1):54–71.
Tanaka N, Lin JJ, Li C, Ryan MB, Zhang J, Kiedrowski LA, et al. Clinical acquired resistance to KRASG12C inhibition through a novel KRAS Switch‐II pocket mutation and polyclonal alterations converging on RAS–MAPK reactivation. Cancer Discov. 2021;11(8):1913–1922.
Lietman CD, Johnson ML, McCormick F, Lindsay CR. More to the RAS story: KRAS G12C inhibition, resistance mechanisms, and moving beyond KRAS G12C. Am Soc Clin Oncol Educ Book. 2022;42(42):205–217.
Awad MM, Liu S, Rybkin II, Arbour KC, Dilly J, Zhu VW, et al. Acquired resistance to KRASG12C inhibition in cancer. N Engl J Med. 2021;384(25):2382–2393.
Holderfield M, Lee BJ, Jiang J, Tomlinson A, Seamon KJ, Mira A, et al. Concurrent inhibition of oncogenic and wild‐type RAS‐GTP for cancer therapy. Nature. 2024;629(8013):919–926.
Wasko UN, Jiang J, Dalton TC, Curiel‐Garcia A, Edwards AC, Wang Y, et al. Tumor‐selective activity of RAS‐GTP inhibition in pancreatic cancer. Nature. 2024;629(8013):927–936.
Jiang J, Jiang L, Maldonato BJ, Wang Y, Holderfield M, Aronchik I, et al. Translational and therapeutic evaluation of RAS‐GTP inhibition by RMC‐6236 in RAS‐driven cancers. Cancer Discov. 2024;14(6):994–1017.