Novel Therapeutic Target for ALI/ARDS: Forkhead Box Transcription Factors.
Acute lung injury
Acute respiratory distress syndrome
Fox transcription factor
PI3K/AKT pathway
Journal
Lung
ISSN: 1432-1750
Titre abrégé: Lung
Pays: United States
ID NLM: 7701875
Informations de publication
Date de publication:
11 Sep 2024
11 Sep 2024
Historique:
received:
29
05
2024
accepted:
17
08
2024
medline:
11
9
2024
pubmed:
11
9
2024
entrez:
11
9
2024
Statut:
aheadofprint
Résumé
ALI/ARDS can be a pulmonary manifestation of a systemic inflammatory response or a result of overexpression of the body's normal inflammatory response involving various effector cells, cytokines, and inflammatory mediators, which regulate the body's immune response through different signalling pathways. Forkhead box transcription factors are evolutionarily conserved transcription factors that play a crucial role in various cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism, and DNA damage response. Transcription factors control protein synthesis by regulating gene transcription levels, resulting in diverse biological outcomes. The Fox family plays a role in activating or inhibiting the expression of various molecules related to ALI/ARDS through phosphorylation, acetylation/deacetylation, and control of multiple signalling pathways. An in-depth analysis of the integrated Fox family's role in ALI/ARDS can aid in the development of potential diagnostic and therapeutic targets for the condition.
Identifiants
pubmed: 39259274
doi: 10.1007/s00408-024-00740-z
pii: 10.1007/s00408-024-00740-z
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Nantong Science and Technology Plan Project
ID : MS12022020
Organisme : 2023 Nantong Municipal Health Commission Scientific Research Project (Directive) Youth Project
ID : QN2023003
Organisme : Jiangsu Provincial Research Hospital
ID : YJXYY202204-XKA02
Organisme : Nantong University Hospital Multicentre Clinical Collaborative Research Project
ID : LCYJ- A01
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Goatly G, Guidozzi N, Khan M (2019) Optimal ventilator strategies for trauma-related ARDS. J R Army Med Corps 165(3):193–197. https://doi.org/10.1136/jramc-2017-000889
doi: 10.1136/jramc-2017-000889
pubmed: 29599209
Aoyama H et al (2019) Assessment of therapeutic interventions and lung protective ventilation in patients with moderate to severe acute respiratory distress syndrome: a systematic review and network meta-analysis. JAMA Netw Open 2(7):e198116. https://doi.org/10.1001/jamanetworkopen.2019.8116
doi: 10.1001/jamanetworkopen.2019.8116
pubmed: 31365111
pmcid: 6669780
O’Gara B, Talmor D (2018) Perioperative lung protective ventilation. BMJ 362:k3030. https://doi.org/10.1136/bmj.k3030
doi: 10.1136/bmj.k3030
pubmed: 30201797
pmcid: 6889848
Welker C et al (2022) 2021 acute respiratory distress syndrome update, with coronavirus disease 2019 focus. J Cardiothorac Vasc Anesth 36(4):1188–1195. https://doi.org/10.1053/j.jvca.2021.02.053
doi: 10.1053/j.jvca.2021.02.053
pubmed: 33781671
Yang A et al (2021) Role of specialized pro-resolving lipid mediators in pulmonary inflammation diseases: mechanisms and development. Respir Res 22(1):204. https://doi.org/10.1186/s12931-021-01792-y
doi: 10.1186/s12931-021-01792-y
pubmed: 34261470
pmcid: 8279385
Quinton LJ, Walkey AJ, Mizgerd JP (2018) Integrative physiology of pneumonia. Physiol Rev 98(3):1417–1464. https://doi.org/10.1152/physrev.00032.2017
doi: 10.1152/physrev.00032.2017
pubmed: 29767563
pmcid: 6088146
Lambert SA et al (2018) The human transcription factors. Cell 172(4):650–665. https://doi.org/10.1016/j.cell.2018.01.029
doi: 10.1016/j.cell.2018.01.029
pubmed: 29425488
Zhu H (2016) Forkhead box transcription factors in embryonic heart development and congenital heart disease. Life Sci 144:194–201. https://doi.org/10.1016/j.lfs.2015.12.001
doi: 10.1016/j.lfs.2015.12.001
pubmed: 26656470
Moparthi L, Koch S (2020) A uniform expression library for the exploration of FOX transcription factor biology. Differentiation 115:30–36. https://doi.org/10.1016/j.diff.2020.08.002
doi: 10.1016/j.diff.2020.08.002
pubmed: 32858261
Song L et al (2009) A role for forkhead box A1 in acute lung injury. Inflammation 32(5):322–332. https://doi.org/10.1007/s10753-009-9139-x
doi: 10.1007/s10753-009-9139-x
pubmed: 19649697
Wei S et al (2019) Knockdown of the lncRNA MALAT1 alleviates lipopolysaccharide-induced A549 cell injury by targeting the miR-17-5p/FOXA1 axis. Mol Med Rep 20(2):2021–2029. https://doi.org/10.3892/mmr.2019.10392
doi: 10.3892/mmr.2019.10392
pubmed: 31257497
Mu X, Wang H, Li H (2021) Silencing of long noncoding RNA H19 alleviates pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome through regulating the microRNA-423–5p/FOXA1 axis. Exp Lung Res 47(4):183–197. https://doi.org/10.1080/01902148.2021.1887967
doi: 10.1080/01902148.2021.1887967
pubmed: 33629893
Mei M et al (2020) LncRNA-NEF regulated the hyperoxia-induced injury of lung epithelial cells by FOXA2. Am J Transl Res 12(9):5563–5574
pubmed: 33042438
pmcid: 7540126
Kang L et al (2024) SENP1 knockdown-mediated CTCF SUMOylation enhanced its stability and alleviated lipopolysaccharide-evoked inflammatory injury in human lung fibroblasts via regulation of FOXA2 transcription. Biochim Biophys Acta Gen Subj 1868(1):130500. https://doi.org/10.1016/j.bbagen.2023.130500
doi: 10.1016/j.bbagen.2023.130500
pubmed: 37914145
Cai Y et al (2016) FOXF1 maintains endothelial barrier function and prevents edema after lung injury. Sci Signal 9(424):ra40. https://doi.org/10.1126/scisignal.aad1899
doi: 10.1126/scisignal.aad1899
pubmed: 27095594
Kalin TV et al (2008) Pulmonary mastocytosis and enhanced lung inflammation in mice heterozygous null for the Foxf1 gene. Am J Respir Cell Mol Biol 39(4):390–399. https://doi.org/10.1165/rcmb.2008-0044OC
doi: 10.1165/rcmb.2008-0044OC
pubmed: 18421012
pmcid: 2551700
Pradhan A et al (2023) Novel FOXF1-stabilizing compound TanFe stimulates lung angiogenesis in alveolar capillary dysplasia. Am J Respir Crit Care Med 207(8):1042–1054. https://doi.org/10.1164/rccm.202207-1332OC
doi: 10.1164/rccm.202207-1332OC
pubmed: 36480964
Huang X et al (2019) Endothelial hypoxia-inducible factor-1alpha is required for vascular repair and resolution of inflammatory lung injury through forkhead box protein M1. Am J Pathol 189(8):1664–1679. https://doi.org/10.1016/j.ajpath.2019.04.014
doi: 10.1016/j.ajpath.2019.04.014
pubmed: 31121134
pmcid: 6680254
Mirza MK et al (2010) FoxM1 regulates re-annealing of endothelial adherens junctions through transcriptional control of beta-catenin expression. J Exp Med 207(8):1675–1685. https://doi.org/10.1084/jem.20091857
doi: 10.1084/jem.20091857
pubmed: 20660612
pmcid: 2916140
Liu Y et al (2019) CD28 deficiency ameliorates blast exposure-induced lung inflammation, oxidative stress, apoptosis, and T cell accumulation in the lungs via the PI3K/Akt/FoxO1 signaling pathway. Oxid Med Cell Longev 2019:4848560. https://doi.org/10.1155/2019/4848560
doi: 10.1155/2019/4848560
pubmed: 31565151
pmcid: 6745179
Mock JR et al (2019) Transcriptional analysis of Foxp3+ Tregs and functions of two identified molecules during resolution of ALI. JCI Insight. https://doi.org/10.1172/jci.insight.124958
doi: 10.1172/jci.insight.124958
pubmed: 30753170
pmcid: 6482998
Zhu X et al (2024) Foxq1 promotes alveolar epithelial cell death through Tle1-mediated inhibition of the NFkappaB signaling pathway. Am J Respir Cell Mol Biol. https://doi.org/10.1165/rcmb.2023-0317OC
doi: 10.1165/rcmb.2023-0317OC
pubmed: 39236286
Yu C et al (2023) The role of FOXA family transcription factors in glucolipid metabolism and NAFLD. Front Endocrinol (Lausanne) 14:1081500. https://doi.org/10.3389/fendo.2023.1081500
doi: 10.3389/fendo.2023.1081500
pubmed: 36798663
Besnard V et al (2004) Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues. Gene Expr Patterns 5(2):193–208. https://doi.org/10.1016/j.modgep.2004.08.006
doi: 10.1016/j.modgep.2004.08.006
pubmed: 15567715
Jimenez FR et al (2014) Developmental lung expression and transcriptional regulation of claudin-6 by TTF-1, Gata-6, and FoxA2. Respir Res 15(1):70. https://doi.org/10.1186/1465-9921-15-70
doi: 10.1186/1465-9921-15-70
pubmed: 24970044
pmcid: 4082679
Yanez DC et al (2022) The pioneer transcription factor Foxa2 modulates T helper differentiation to reduce mouse allergic airway disease. Front Immunol 13:890781. https://doi.org/10.3389/fimmu.2022.890781
doi: 10.3389/fimmu.2022.890781
pubmed: 36003391
pmcid: 9393229
Rajavelu P et al (2015) Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation. J Clin Invest 125(5):2021–2031. https://doi.org/10.1172/JCI79422
doi: 10.1172/JCI79422
pubmed: 25866971
pmcid: 4463206
Swarr DT et al (2019) The long noncoding RNA Falcor regulates Foxa2 expression to maintain lung epithelial homeostasis and promote regeneration. Genes Dev 33(11–12):656–668. https://doi.org/10.1101/gad.320523.118
doi: 10.1101/gad.320523.118
pubmed: 30923168
pmcid: 6546060
Huang C et al (2019) Expression and prognosis analyses of forkhead box A (FOXA) family in human lung cancer. Gene 685:202–210. https://doi.org/10.1016/j.gene.2018.11.022
doi: 10.1016/j.gene.2018.11.022
pubmed: 30415009
Rojas DA et al (2023) Pneumocystis exacerbates inflammation and mucus hypersecretion in a murine. Elastase-Induc-COPD Model J Fungi (Basel). https://doi.org/10.3390/jof9040452
doi: 10.3390/jof9040452
pubmed: 37108906
Glasser SW et al (2013) Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice. Am J Respir Cell Mol Biol 49(5):845–854. https://doi.org/10.1165/rcmb.2012-0374OC
doi: 10.1165/rcmb.2012-0374OC
pubmed: 23795648
pmcid: 3931093
Yoshimi T et al (2005) Homeobox B3, FoxA1 and FoxA2 interactions in epithelial lung cell differentiation of the multipotent M3E3/C3 cell line. Eur J Cell Biol 84(5):555–566. https://doi.org/10.1016/j.ejcb.2004.12.026
doi: 10.1016/j.ejcb.2004.12.026
pubmed: 16003909
Mahlapuu M, Enerback S, Carlsson P (2001) Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. Development 128(12):2397–2406. https://doi.org/10.1242/dev.128.12.2397
doi: 10.1242/dev.128.12.2397
pubmed: 11493558
Stankiewicz P et al (2009) Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am J Hum Genet 84(6):780–791. https://doi.org/10.1016/j.ajhg.2009.05.005
doi: 10.1016/j.ajhg.2009.05.005
pubmed: 19500772
pmcid: 2694971
Kalinichenko VV et al (2001) Differential expression of forkhead box transcription factors following butylated hydroxytoluene lung injury. Am J Physiol Lung Cell Mol Physiol 280(4):L695-704. https://doi.org/10.1152/ajplung.2001.280.4.L695
doi: 10.1152/ajplung.2001.280.4.L695
pubmed: 11238010
Kalinichenko VV et al (2002) Wild-type levels of the mouse Forkhead Box f1 gene are essential for lung repair. Am J Physiol Lung Cell Mol Physiol 282(6):L1253–L1265. https://doi.org/10.1152/ajplung.00463.2001
doi: 10.1152/ajplung.00463.2001
pubmed: 12003781
Aitola M et al (2000) Forkhead transcription factor FoxF2 is expressed in mesodermal tissues involved in epithelio-mesenchymal interactions. Dev Dyn 218(1):136–149
doi: 10.1002/(SICI)1097-0177(200005)218:1<136::AID-DVDY12>3.0.CO;2-U
pubmed: 10822266
Fulton CT et al (2018) Gene expression signatures point to a male sex-specific lung mesenchymal cell PDGF receptor signaling defect in infants developing bronchopulmonary dysplasia. Sci Rep 8(1):17070. https://doi.org/10.1038/s41598-018-35256-z
doi: 10.1038/s41598-018-35256-z
pubmed: 30459472
pmcid: 6244280
Cui TX et al (2020) CCR2 mediates chronic LPS-induced pulmonary inflammation and hypoalveolarization in a murine model of bronchopulmonary dysplasia. Front Immunol 11:579628. https://doi.org/10.3389/fimmu.2020.579628
doi: 10.3389/fimmu.2020.579628
pubmed: 33117383
pmcid: 7573800
Tharappel JC et al (2010) Effects of cigarette smoke on the activation of oxidative stress-related transcription factors in female A/J mouse lung. J Toxicol Environ Health A 73(19):1288–1297. https://doi.org/10.1080/15287394.2010.484708
doi: 10.1080/15287394.2010.484708
pubmed: 20711931
pmcid: 2924761
Tan Y, Raychaudhuri P, Costa RH (2007) Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol 27(3):1007–1016. https://doi.org/10.1128/MCB.01068-06
doi: 10.1128/MCB.01068-06
pubmed: 17101782
Huang X, Zhao YY (2012) Transgenic expression of FoxM1 promotes endothelial repair following lung injury induced by polymicrobial sepsis in mice. PLoS ONE 7(11):e50094. https://doi.org/10.1371/journal.pone.0050094
doi: 10.1371/journal.pone.0050094
pubmed: 23185540
pmcid: 3502353
Zhao YY et al (2006) Endothelial cell-restricted disruption of FoxM1 impairs endothelial repair following LPS-induced vascular injury. J Clin Invest 116(9):2333–2343. https://doi.org/10.1172/JCI27154
doi: 10.1172/JCI27154
pubmed: 16955137
pmcid: 1555637
Huang X et al (2023) Endothelial FoxM1 reactivates aging-impaired endothelial regeneration for vascular repair and resolution of inflammatory lung injury. Sci Transl Med 15(709):eabm5755. https://doi.org/10.1126/scitranslmed.abm5755
doi: 10.1126/scitranslmed.abm5755
pubmed: 37585502
pmcid: 10894510
Zhao YD et al (2014) Endothelial FoxM1 mediates bone marrow progenitor cell-induced vascular repair and resolution of inflammation following inflammatory lung injury. Stem Cells 32(7):1855–1864. https://doi.org/10.1002/stem.1690
doi: 10.1002/stem.1690
pubmed: 24578354
Luo Y et al (2023) Overexpression of FoxM1 enhanced the protective effect of bone marrow-derived mesenchymal stem cells on lipopolysaccharide-induced acute lung injury through the activation of Wnt/beta-catenin signaling. Oxid Med Cell Longev 2023:8324504. https://doi.org/10.1155/2023/8324504
doi: 10.1155/2023/8324504
pubmed: 36820407
pmcid: 9938779
Luo Y et al (2023) Overexpression of FoxM1 optimizes the therapeutic effect of bone marrow mesenchymal stem cells on acute respiratory distress syndrome. Stem Cell Res Ther 14(1):27. https://doi.org/10.1186/s13287-023-03240-8
doi: 10.1186/s13287-023-03240-8
pubmed: 36788588
pmcid: 9926819
Sher G et al (2022) Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol 86(Pt 3):107–121. https://doi.org/10.1016/j.semcancer.2022.07.009
doi: 10.1016/j.semcancer.2022.07.009
pubmed: 35931301
Teh MT (2012) FOXM1 coming of age: time for translation into clinical benefits? Front Oncol 2:146. https://doi.org/10.3389/fonc.2012.00146
doi: 10.3389/fonc.2012.00146
pubmed: 23087907
pmcid: 3471356
Guan S et al (2022) FOXM1 variant contributes to gefitinib resistance via activating Wnt/beta-catenin signal pathway in patients with non-small cell lung cancer. Clin Cancer Res 28(17):3770–3784. https://doi.org/10.1158/1078-0432.CCR-22-0791
doi: 10.1158/1078-0432.CCR-22-0791
pubmed: 35695863
Eijkelenboom A, Burgering BM (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14(2):83–97. https://doi.org/10.1038/nrm3507
doi: 10.1038/nrm3507
pubmed: 23325358
Liu M et al (2023) Rapid access to icetexane diterpenes: their protective effects against lipopolysaccharides-induced acute lung injury via PI3K/AKT/NF-kappaB axis in macrophages. Eur J Med Chem 260:115769. https://doi.org/10.1016/j.ejmech.2023.115769
doi: 10.1016/j.ejmech.2023.115769
pubmed: 37683363
Cui H, Zhang Q (2021) Dexmedetomidine ameliorates lipopolysaccharide-induced acute lung injury by inhibiting the PI3K/Akt/FoxO1 signaling pathway. J Anesth 35(3):394–404. https://doi.org/10.1007/s00540-021-02909-9
doi: 10.1007/s00540-021-02909-9
pubmed: 33821300
pmcid: 8021217
Zhang Z et al (2022) Gclc overexpression inhibits apoptosis of bone marrow mesenchymal stem cells through the PI3K/AKT/Foxo1 pathway to alleviate inflammation in acute lung injury. Int Immunopharmacol 110:109017. https://doi.org/10.1016/j.intimp.2022.109017
doi: 10.1016/j.intimp.2022.109017
pubmed: 35792274
Liu Y et al (2020) Tanshinone IIA alleviates blast-induced inflammation, oxidative stress and apoptosis in mice partly by inhibiting the PI3K/Akt/FoxO1 signaling pathway. Free Radic Biol Med 152:52–60. https://doi.org/10.1016/j.freeradbiomed.2020.02.032
doi: 10.1016/j.freeradbiomed.2020.02.032
pubmed: 32131025
Li N et al (2023) HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control. Redox Biol 63:102746. https://doi.org/10.1016/j.redox.2023.102746
doi: 10.1016/j.redox.2023.102746
pubmed: 37244125
pmcid: 10199751
Ding N et al (2022) Twist2 reduced NLRP3-induced inflammation of infantile pneumonia via regulation of mitochondrial permeability transition by FOXO1. Int Arch Allergy Immunol 183(10):1098–1113. https://doi.org/10.1159/000525063
doi: 10.1159/000525063
pubmed: 35700708
Chen L et al (2020) MiR-222 inhibition alleviates staphylococcal enterotoxin B-induced inflammatory acute lung injury by targeting Foxo3. J Biosci. https://doi.org/10.1007/s12038-020-00037-2
doi: 10.1007/s12038-020-00037-2
pubmed: 33184249
Hong J et al (2021) lncRNA-SNHG14 plays a role in acute lung injury induced by lipopolysaccharide through regulating autophagy via miR-223–3p/Foxo3a. Mediators Inflamm 2021:7890288. https://doi.org/10.1155/2021/7890288
doi: 10.1155/2021/7890288
pubmed: 34539244
pmcid: 8443345
Guo W, Hu Z (2023) SRPK1 promotes sepsis-induced acute lung injury via regulating PI3K/AKT/FOXO3 signaling. Immunopharmacol Immunotoxicol 45(2):203–212. https://doi.org/10.1080/08923973.2022.2134789
doi: 10.1080/08923973.2022.2134789
pubmed: 36226860
Artham S et al (2019) Endothelial stromelysin1 regulation by the forkhead box-O transcription factors is crucial in the exudative phase of acute lung injury. Pharmacol Res 141:249–263. https://doi.org/10.1016/j.phrs.2019.01.006
doi: 10.1016/j.phrs.2019.01.006
pubmed: 30611853
pmcid: 6532785
Yi H et al (2006) The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells. Cell Mol Immunol 3(3):189–195
pubmed: 16893499
Shin DS et al (2023) Lung injury induces a polarized immune response by self-antigen-specific CD4(+) Foxp3(+) regulatory T cells. Cell Rep 42(8):112839. https://doi.org/10.1016/j.celrep.2023.112839
doi: 10.1016/j.celrep.2023.112839
pubmed: 37471223
pmcid: 10529088
Lin S et al (2018) Regulatory T cells and acute lung injury: cytokines, uncontrolled inflammation, and therapeutic implications. Front Immunol 9:1545. https://doi.org/10.3389/fimmu.2018.01545
doi: 10.3389/fimmu.2018.01545
pubmed: 30038616
pmcid: 6046379
Shen M et al (2022) Taxifolin ameliorates sepsis-induced lung capillary leak through inhibiting the JAK/STAT3 pathway. Allergol Immunopathol (Madr) 50(2):7–15. https://doi.org/10.15586/aei.v50i2.550
doi: 10.15586/aei.v50i2.550
pubmed: 35257540
Cheng L et al (2022) IL-33 deficiency attenuates lung inflammation by inducing Th17 response and impacting the Th17/Treg balance in LPS-induced ARDS mice via dendritic cells. J Immunol Res 2022:9543083. https://doi.org/10.1155/2022/9543083
doi: 10.1155/2022/9543083
pubmed: 36570798
pmcid: 9788894
Wen L et al (2022) Gut microbiota protected against pseudomonas aeruginosa pneumonia via restoring Treg/Th17 balance and metabolism. Front Cell Infect Microbiol 12:856633. https://doi.org/10.3389/fcimb.2022.856633
doi: 10.3389/fcimb.2022.856633
pubmed: 35782123
pmcid: 9243233
Zhang ZT et al (2023) Dexmedetomidine alleviates acute lung injury by promoting Tregs differentiation via activation of AMPK/SIRT1 pathway. Inflammopharmacology 31(1):423–438. https://doi.org/10.1007/s10787-022-01117-5
doi: 10.1007/s10787-022-01117-5
pubmed: 36534240
Chen Y et al (2023) Mechanism of exosomes from adipose-derived mesenchymal stem cells on sepsis-induced acute lung injury by promoting TGF-beta secretion in macrophages. Surgery 174(5):1208–1219. https://doi.org/10.1016/j.surg.2023.06.017
doi: 10.1016/j.surg.2023.06.017
pubmed: 37612209
Chen YQ et al (2020) Progranulin improves acute lung injury through regulating the differentiation of regulatory T cells and interleukin-10 immunomodulation to promote macrophage polarization. Mediat Inflamm 2020:9704327. https://doi.org/10.1155/2020/9704327
doi: 10.1155/2020/9704327
Zhu D et al (2016) Evaluating the impact of human amnion epithelial cells on angiogenesis. Stem Cells Int 2016:4565612. https://doi.org/10.1155/2016/4565612
doi: 10.1155/2016/4565612
pubmed: 26880964
Xia S et al (2019) Overexpression of forkhead box C1 attenuates oxidative stress, inflammation and apoptosis in chronic obstructive pulmonary disease. Life Sci 216:75–84. https://doi.org/10.1016/j.lfs.2018.11.023
doi: 10.1016/j.lfs.2018.11.023
pubmed: 30428305
Chen J et al (1998) Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J Clin Invest 102(6):1077–1082. https://doi.org/10.1172/JCI4786
doi: 10.1172/JCI4786
pubmed: 9739041
pmcid: 509090
Tadokoro T et al (2014) IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci USA 111(35):E3641–E3649. https://doi.org/10.1073/pnas.1409781111
doi: 10.1073/pnas.1409781111
pubmed: 25136113
pmcid: 4156689
Sato A et al (2012) CCAAT/enhancer binding protein-alpha regulates the protease/antiprotease balance required for bronchiolar epithelium regeneration. Am J Respir Cell Mol Biol 47(4):454–463. https://doi.org/10.1165/rcmb.2011-0239OC
doi: 10.1165/rcmb.2011-0239OC
pubmed: 22652201
pmcid: 3488626
Lehmann OJ et al (2003) Fox’s in development and disease. Trends Genet 19(6):339–344. https://doi.org/10.1016/S0168-9525(03)00111-2
doi: 10.1016/S0168-9525(03)00111-2
pubmed: 12801727
Aoki R et al (2016) Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche. Cell Mol Gastroenterol Hepatol 2(2):175–188. https://doi.org/10.1016/j.jcmgh.2015.12.004
doi: 10.1016/j.jcmgh.2015.12.004
pubmed: 26949732
Miyashita N et al (2020) FOXL1 regulates lung fibroblast function via multiple mechanisms. Am J Respir Cell Mol Biol 63(6):831–842. https://doi.org/10.1165/rcmb.2019-0396OC
doi: 10.1165/rcmb.2019-0396OC
pubmed: 32946266
pmcid: 8017595
Wang P et al (2017) FOXQ1 regulates senescence-associated inflammation via activation of SIRT1 expression. Cell Death Dis 8(7):e2946. https://doi.org/10.1038/cddis.2017.340
doi: 10.1038/cddis.2017.340
pubmed: 28726780
pmcid: 5550881
Feuerborn A et al (2011) The forkhead factor FoxQ1 influences epithelial differentiation. J Cell Physiol 226(3):710–719. https://doi.org/10.1002/jcp.22385
doi: 10.1002/jcp.22385
pubmed: 20717954
Revenko A et al (2022) Direct targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer. J Immunother Cancer. https://doi.org/10.1136/jitc-2021-003892
doi: 10.1136/jitc-2021-003892
pubmed: 35387780
pmcid: 8987763
Radulovic S et al (2008) Grass pollen immunotherapy induces Foxp3-expressing CD4+ CD25+ cells in the nasal mucosa. J Allergy Clin Immunol 121(6):1467-1472 e1. https://doi.org/10.1016/j.jaci.2008.03.013
doi: 10.1016/j.jaci.2008.03.013
pubmed: 18423565
Walters KA et al (2015) Prior infection with type A Francisella tularensis antagonizes the pulmonary transcriptional response to an aerosolized toll-like receptor 4 agonist. BMC Genom 16:874. https://doi.org/10.1186/s12864-015-2022-2
doi: 10.1186/s12864-015-2022-2
Harada Y et al (2010) Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med 207(7):1381–1391. https://doi.org/10.1084/jem.20100004
doi: 10.1084/jem.20100004
pubmed: 20439537
pmcid: 2901074