Multiscale mapping of transcriptomic signatures for cardiotoxic drugs.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
11 Sep 2024
Historique:
received: 24 02 2023
accepted: 27 08 2024
medline: 12 9 2024
pubmed: 12 9 2024
entrez: 11 9 2024
Statut: epublish

Résumé

Drug-induced gene expression profiles can identify potential mechanisms of toxicity. We focus on obtaining signatures for cardiotoxicity of FDA-approved tyrosine kinase inhibitors (TKIs) in human induced-pluripotent-stem-cell-derived cardiomyocytes, using bulk transcriptomic profiles. We use singular value decomposition to identify drug-selective patterns across cell lines obtained from multiple healthy human subjects. Cellular pathways affected by cardiotoxic TKIs include energy metabolism, contractile, and extracellular matrix dynamics. Projecting these pathways to published single cell expression profiles indicates that TKI responses can be evoked in both cardiomyocytes and fibroblasts. Integration of transcriptomic outlier analysis with whole genomic sequencing of our six cell lines enables us to correctly reidentify a genomic variant causally linked to anthracycline-induced cardiotoxicity and predict genomic variants potentially associated with TKI-induced cardiotoxicity. We conclude that mRNA expression profiles when integrated with publicly available genomic, pathway, and single cell transcriptomic datasets, provide multiscale signatures for cardiotoxicity that could be used for drug development and patient stratification.

Identifiants

pubmed: 39261481
doi: 10.1038/s41467-024-52145-4
pii: 10.1038/s41467-024-52145-4
doi:

Substances chimiques

Protein Kinase Inhibitors 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7968

Subventions

Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : 5U54HG008098
Organisme : U.S. Department of Health & Human Services | U.S. Food and Drug Administration (U.S. Food & Drug Administration)
ID : 75F40119C10021

Informations de copyright

© 2024. The Author(s).

Références

de Vries, E. N., Ramrattan, M. A., Smorenburg, S. M., Gouma, D. J. & Boermeester, M. A. The incidence and nature of in-hospital adverse events: a systematic review. Qual. Saf. Health Care 17, 216–223 (2008).
pubmed: 18519629 doi: 10.1136/qshc.2007.023622
Drozda, K., Pacanowski, M. A., Grimstein, C. & Zineh, I. Pharmacogenetic Labeling of FDA-Approved Drugs: A Regulatory Retrospective. JACC Basic Transl. Sci. 3, 545–549 (2018).
pubmed: 30175278 pmcid: 6115648 doi: 10.1016/j.jacbts.2018.06.001
Smith, A. F., Klotz, A. & Wormstone, I. M. Improving the drug development process by reducing the impact of adverse events: the case of cataracts considered. Drug Discov. Today 21, 510–516 (2016).
pubmed: 26775751 doi: 10.1016/j.drudis.2016.01.001
Dorato, M. A. & Buckley, L. A. Toxicology in the drug discovery and development process. Curr. Protoc. Pharmacol. Chapter 10, Unit10 13 https://doi.org/10.1002/0471141755.ph1003s32 (2006).
Ma’ayan, A., Jenkins, S. L., Goldfarb, J. & Iyengar, R. Network analysis of FDA approved drugs and their targets. Mt Sinai J. Med. 74, 27–32 (2007).
pubmed: 17516560 pmcid: 2561141 doi: 10.1002/msj.20002
Vandenberg, J. I. et al. hERG K(+) channels: structure, function, and clinical significance. Physiol. Rev. 92, 1393–1478 (2012).
pubmed: 22988594 doi: 10.1152/physrev.00036.2011
Raschi, E., Vasina, V., Poluzzi, E. & De Ponti, F. The hERG K+ channel: target and antitarget strategies in drug development. Pharm. Res 57, 181–195 (2008).
doi: 10.1016/j.phrs.2008.01.009
Jain, D. & Aronow, W. Cardiotoxicity of cancer chemotherapy in clinical practice. Hosp. Pr. (1995) 47, 6–15 (2019).
doi: 10.1080/21548331.2018.1530831
Garcia-Alvarez, A., Garcia-Albeniz, X., Esteve, J., Rovira, M. & Bosch, X. Cardiotoxicity of tyrosine-kinase-targeting drugs. Cardiovasc Hematol. Agents Med Chem. 8, 11–21 (2010).
pubmed: 20210773 doi: 10.2174/187152510790796192
Yoshida, Y. & Yamanaka, S. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications. Circ. Res. 120, 1958–1968 (2017).
pubmed: 28596174 doi: 10.1161/CIRCRESAHA.117.311080
Sharma, A. et al. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci. Transl. Med. 9 https://doi.org/10.1126/scitranslmed.aaf2584 (2017).
Wang, H. et al. Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming. Cell Syst. 8, 412–426.e417 (2019).
pubmed: 31078528 pmcid: 6657491 doi: 10.1016/j.cels.2019.03.009
Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc Res 1, 263–280 (2022).
pubmed: 35959412 pmcid: 9364913 doi: 10.1038/s44161-022-00028-6
Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608, 174–180 (2022).
pubmed: 35732739 doi: 10.1038/s41586-022-04817-8
Aminkeng, F. et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat. Genet 47, 1079–1084 (2015).
pubmed: 26237429 pmcid: 4552570 doi: 10.1038/ng.3374
Schaniel, C. et al. A library of induced pluripotent stem cells from clinically well-characterized, diverse healthy human individuals. Stem Cell Rep. 16, 3036–3049 (2021).
doi: 10.1016/j.stemcr.2021.10.005
Huang, L. & Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm. Sin. B 5, 390–401 (2015).
pubmed: 26579470 pmcid: 4629442 doi: 10.1016/j.apsb.2015.07.001
Patel, P. A., Tilley, D. G. & Rockman, H. A. Beta-arrestin-mediated signaling in the heart. Circ. J. 72, 1725–1729 (2008).
pubmed: 18838825 pmcid: 2617733 doi: 10.1253/circj.CJ-08-0734
Lazou, A., Sugden, P. H. & Clerk, A. Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by the G-protein-coupled receptor agonist phenylephrine in the perfused rat heart. Biochem. J. 332, 459–465 (1998).
pubmed: 9601075 pmcid: 1219501 doi: 10.1042/bj3320459
Karliner, J. S., Motulsky, H. J., Dunlap, J., Brown, J. H. & Insel, P. A. Verapamil competitively inhibits alpha 1-adrenergic and muscarinic but not beta-adrenergic receptors in rat myocardium. J. Cardiovasc. Pharm. 4, 515–520 (1982).
doi: 10.1097/00005344-198205000-00025
Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).
pubmed: 29126136 doi: 10.1093/nar/gkx1037
Sloskey, G. E. Amiodarone: a unique antiarrhythmic agent. Clin. Pharm. 2, 330–340 (1983).
pubmed: 6349912
Cheng, W., Zhu, Y. & Wang, H. The MAPK pathway is involved in the regulation of rapid pacing-induced ionic channel remodeling in rat atrial myocytes. Mol. Med. Rep. 13, 2677–2682 (2016).
pubmed: 26847818 doi: 10.3892/mmr.2016.4862
Ma, Y. Y. et al. Use of decitabine for patients with refractory or relapsed acute myeloid leukemia: a systematic review and meta-analysis. Hematology 24, 507–515 (2019).
pubmed: 31242832 doi: 10.1080/16078454.2019.1632407
Sarno, G. et al. New-onset diabetes mellitus: predictive factors and impact on the outcome of patients undergoing liver transplantation. Curr. Diabetes Rev. 9, 78–85 (2013).
pubmed: 22974360 doi: 10.2174/157339913804143234
Yanagihara, H., Ushijima, K., Arakawa, Y., Aizawa, K. & Fujimura, A. Effects of telmisartan and olmesartan on insulin sensitivity and renal function in spontaneously hypertensive rats fed a high fat diet. J. Pharm. Sci. 131, 190–197 (2016).
doi: 10.1016/j.jphs.2016.06.003
Derosa, G. et al. Olmesartan/amlodipine combination versus olmesartan or amlodipine monotherapies on blood pressure and insulin resistance in a sample of hypertensive patients. Clin. Exp. Hypertens. 35, 301–307 (2013).
pubmed: 22954201 doi: 10.3109/10641963.2012.721841
Hansen, J., Meretzky, D., Woldesenbet, S., Stolovitzky, G. & Iyengar, R. A flexible ontology for inference of emergent whole cell function from relationships between subcellular processes. Sci. Rep. 7, 17689 (2017).
pubmed: 29255142 pmcid: 5735158 doi: 10.1038/s41598-017-16627-4
Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).
pubmed: 32971526 pmcid: 7681775 doi: 10.1038/s41586-020-2797-4
Hnia, K., Clausen, T. & Moog-Lutz, C. Shaping Striated Muscles with Ubiquitin Proteasome System in Health and Disease. Trends Mol. Med. 25, 760–774 (2019).
pubmed: 31235369 doi: 10.1016/j.molmed.2019.05.008
Vikhorev, P. G. & Vikhoreva, N. N. Cardiomyopathies and Related Changes in Contractility of Human Heart Muscle. Int. J. Mol. Sci. 19 https://doi.org/10.3390/ijms19082234 (2018).
Chun, Y. W. et al. Impaired Reorganization of Centrosome Structure Underlies Human Infantile Dilated Cardiomyopathy. Circulation 147, 1291–1303 (2023).
pubmed: 36970983 pmcid: 10133173 doi: 10.1161/CIRCULATIONAHA.122.060985
Dalo, J. D., Weisman, N. D. & White, C. M. Mavacamten, a First-in-Class Cardiac Myosin Inhibitor for Obstructive Hypertrophic Cardiomyopathy. Ann. Pharmacother. https://doi.org/10.1177/10600280221117812 (2022).
Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac Energy Metabolism in Heart Failure. Circ. Res. 128, 1487–1513 (2021).
pubmed: 33983836 pmcid: 8136750 doi: 10.1161/CIRCRESAHA.121.318241
Verdonschot, J. A. J. et al. Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long-term life-threatening arrhythmias. Eur. Heart J. 39, 864–873 (2018).
pubmed: 29377983 doi: 10.1093/eurheartj/ehx808
Schafer, S. et al. Titin-truncating variants affect heart function in disease cohorts and the general population. Nat. Genet. 49, 46–53 (2017).
pubmed: 27869827 doi: 10.1038/ng.3719
Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366, 619–628 (2012).
pubmed: 22335739 pmcid: 3660031 doi: 10.1056/NEJMoa1110186
Yang, X., Kawasaki, N. K., Min, J., Matsui, T. & Wang, F. Ferroptosis in heart failure. J. Mol. Cell Cardiol. 173, 141–153 (2022).
pubmed: 36273661 pmcid: 11225968 doi: 10.1016/j.yjmcc.2022.10.004
Lee, J. Y. et al. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc. Natl Acad. Sci. USA 117, 32433–32442 (2020).
pubmed: 33288688 pmcid: 7768719 doi: 10.1073/pnas.2006828117
Blahova, Z., Harvey, T. N., Psenicka, M. & Mraz, J. Assessment of Fatty Acid Desaturase (Fads2) Structure-Function Properties in Fish in the Context of Environmental Adaptations and as a Target for Genetic Engineering. Biomolecules 10 https://doi.org/10.3390/biom10020206 (2020).
Huang, J. et al. Understanding Anthracycline Cardiotoxicity From Mitochondrial Aspect. Front Pharm. 13, 811406 (2022).
doi: 10.3389/fphar.2022.811406
Voest, E. E., van Acker, S. A., van der Vijgh, W. J., van Asbeck, B. S. & Bast, A. Comparison of different iron chelators as protective agents against acute doxorubicin-induced cardiotoxicity. J. Mol. Cell Cardiol. 26, 1179–1185 (1994).
pubmed: 7815460 doi: 10.1006/jmcc.1994.1136
Jones, I. C. & Dass, C. R. Doxorubicin-induced cardiotoxicity: causative factors and possible interventions. J. Pharm. Pharm. 74, 1677–1688 (2022).
doi: 10.1093/jpp/rgac063
Kim, J., Nishimura, Y., Kewcharoen, J. & Yess, J. Statin Use Can Attenuate the Decline in Left Ventricular Ejection Fraction and the Incidence of Cardiomyopathy in Cardiotoxic Chemotherapy Recipients: A Systematic Review and Meta-Analysis. J. Clin. Med. 10 https://doi.org/10.3390/jcm10163731 (2021).
McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).
pubmed: 25176015 doi: 10.1056/NEJMoa1409077
Velazquez, E. J. et al. Angiotensin-Neprilysin Inhibition in Acute Decompensated Heart Failure. N. Engl. J. Med. 380, 539–548 (2019).
pubmed: 30415601 doi: 10.1056/NEJMoa1812851
Lopez, B., Querejeta, R., Gonzalez, A., Larman, M. & Diez, J. Collagen cross-linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure: potential role of lysyl oxidase. Hypertension 60, 677–683 (2012).
pubmed: 22824984 doi: 10.1161/HYPERTENSIONAHA.112.196113
Lopez, B. et al. Myocardial Collagen Cross-Linking Is Associated With Heart Failure Hospitalization in Patients With Hypertensive Heart Failure. J. Am. Coll. Cardiol. 67, 251–260 (2016).
pubmed: 26796388 doi: 10.1016/j.jacc.2015.10.063
Spencer, D. M. et al. DNA repair in response to anthracycline-DNA adducts: a role for both homologous recombination and nucleotide excision repair. Mutat. Res. 638, 110–121 (2008).
pubmed: 17961607 doi: 10.1016/j.mrfmmm.2007.09.005
van der Zanden, S. Y., Qiao, X. & Neefjes, J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 288, 6095–6111 (2021).
pubmed: 33022843 doi: 10.1111/febs.15583
Fu, H. Y. et al. Protein Quality Control Dysfunction in Cardiovascular Complications Induced by Anti-Cancer Drugs. Cardiovasc. Drugs Ther. 31, 109–117 (2017).
pubmed: 28120277 doi: 10.1007/s10557-016-6709-7
Sawicki, K. T. et al. Preventing and Treating Anthracycline Cardiotoxicity: New Insights. Annu Rev. Pharm. Toxicol. 61, 309–332 (2021).
doi: 10.1146/annurev-pharmtox-030620-104842
Scott, S. S. et al. Intracellular Signaling Pathways Mediating Tyrosine Kinase Inhibitor Cardiotoxicity. Heart Fail Clin. 18, 425–442 (2022).
pubmed: 35718417 pmcid: 10391230 doi: 10.1016/j.hfc.2022.02.003
Miyamoto, S. et al. Drug review: Pazopanib. Jpn J. Clin. Oncol. 48, 503–513 (2018).
pubmed: 29684209 doi: 10.1093/jjco/hyy053
Justice, C. N. et al. The Impact of Pazopanib on the Cardiovascular System. J. Cardiovasc Pharm. Ther. 23, 387–398 (2018).
doi: 10.1177/1074248418769612
Bronte, E. et al. What links BRAF to the heart function? New insights from the cardiotoxicity of BRAF inhibitors in cancer treatment. Oncotarget 6, 35589–35601 (2015).
pubmed: 26431495 pmcid: 4742127 doi: 10.18632/oncotarget.5853
Clerk, A. et al. Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo. Biochem J. 479, 401–424 (2022).
pubmed: 35147166 doi: 10.1042/BCJ20210615
Consortium, G. T. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).
doi: 10.1126/science.aaz1776
Aminkeng, F. et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharm. 82, 683–695 (2016).
doi: 10.1111/bcp.13008
Magdy, T. et al. RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy. Cell Stem Cell 28, 2076–2089.e2077 (2021).
pubmed: 34525346 doi: 10.1016/j.stem.2021.08.006
Liang, L. et al. Dkk1 exacerbates doxorubicin-induced cardiotoxicity by inhibiting the Wnt/beta-catenin signaling pathway. J. Cell Sci. 132, https://doi.org/10.1242/jcs.228478 (2019).
El-Ela, S. R. A., Zaghloul, R. A. & Eissa, L. A. Promising cardioprotective effect of baicalin in doxorubicin-induced cardiotoxicity through targeting toll-like receptor 4/nuclear factor-kappaB and Wnt/beta-catenin pathways. Nutrition 102, 111732 (2022).
pubmed: 35816809 doi: 10.1016/j.nut.2022.111732
Feng, D. et al. DDX3X alleviates doxorubicin-induced cardiotoxicity by regulating Wnt/beta-catenin signaling pathway in an in vitro model. J. Biochem Mol. Toxicol. 36, e23077 (2022).
pubmed: 35467791 pmcid: 9539463 doi: 10.1002/jbt.23077
Yu, W., Clyne, M., Khoury, M. J. & Gwinn, M. Phenopedia and Genopedia: disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics 26, 145–146 (2010).
pubmed: 19864262 doi: 10.1093/bioinformatics/btp618
Pirruccello, J. P. et al. Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nat. Commun. 11, 2254 (2020).
pubmed: 32382064 pmcid: 7206184 doi: 10.1038/s41467-020-15823-7
Harper, A. R. et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat. Genet 53, 135–142 (2021).
pubmed: 33495597 pmcid: 8240954 doi: 10.1038/s41588-020-00764-0
van Hasselt, J. G. C. et al. Transcriptomic profiling of human cardiac cells predicts protein kinase inhibitor-associated cardiotoxicity. Nat. Commun. 11, 4809 (2020).
pubmed: 32968055 pmcid: 7511315 doi: 10.1038/s41467-020-18396-7
Burke, M. A., Cook, S. A., Seidman, J. G. & Seidman, C. E. Clinical and Mechanistic Insights Into the Genetics of Cardiomyopathy. J. Am. Coll. Cardiol. 68, 2871–2886 (2016).
pubmed: 28007147 pmcid: 5843375 doi: 10.1016/j.jacc.2016.08.079
Mamoshina, P., Bueno-Orovio, A. & Rodriguez, B. Dual Transcriptomic and Molecular Machine Learning Predicts all Major Clinical Forms of Drug Cardiotoxicity. Front Pharm. 11, 639 (2020).
doi: 10.3389/fphar.2020.00639
Hansen, J. et al. Systems pharmacology-based integration of human and mouse data for drug repurposing to treat thoracic aneurysms. JCI Insight, 4 https://doi.org/10.1172/jci.insight.127652 (2019).
Porter, C. et al. Permissive Cardiotoxicity: The Clinical Crucible of Cardio-Oncology. JACC Cardio. Oncol. 4, 302–312 (2022).
doi: 10.1016/j.jaccao.2022.07.005
Porter, K. E. & Turner, N. A. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharm. Ther. 123, 255–278 (2009).
doi: 10.1016/j.pharmthera.2009.05.002
Daily, N. J., Yin, Y., Kemanli, P., Ip, B. & Wakatsuki, T. Improving Cardiac Action Potential Measurements: 2D and 3D Cell Culture. J. Bioeng. Biomed. Sci. 5, https://doi.org/10.4172/2155-9538.1000168 (2015).
Kawalec, P. et al. Differential impact of doxorubicin dose on cell death and autophagy pathways during acute cardiotoxicity. Toxicol. Appl. Pharm. 453, 116210 (2022).
doi: 10.1016/j.taap.2022.116210
Kurokawa, Y. K., Shang, M. R., Yin, R. T. & George, S. C. Modeling trastuzumab-related cardiotoxicity in vitro using human stem cell-derived cardiomyocytes. Toxicol. Lett. 285, 74–80 (2018).
pubmed: 29305325 doi: 10.1016/j.toxlet.2018.01.001
L’Ecuyer, T., Horenstein, M. S., Thomas, R. & Vander Heide, R. Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies. Mol. Genet Metab. 74, 370–379 (2001).
pubmed: 11708868 doi: 10.1006/mgme.2001.3243
Li, D. L. et al. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation 133, 1668–1687 (2016).
pubmed: 26984939 pmcid: 4856587 doi: 10.1161/CIRCULATIONAHA.115.017443
Orsolits, B., Kovacs, Z., Kriston-Vizi, J., Merkely, B. & Foldes, G. New Modalities of 3D Pluripotent Stem Cell-Based Assays in Cardiovascular Toxicity. Front Pharm. 12, 603016 (2021).
doi: 10.3389/fphar.2021.603016
Takasuna, K. et al. Comprehensive in vitro cardiac safety assessment using human stem cell technology: Overview of CSAHi HEART initiative. J. Pharm. Toxicol. Methods 83, 42–54 (2017).
doi: 10.1016/j.vascn.2016.09.004
Toldo, S. et al. Comparative cardiac toxicity of anthracyclines in vitro and in vivo in the mouse. PLoS One 8, e58421 (2013).
pubmed: 23516478 pmcid: 3597611 doi: 10.1371/journal.pone.0058421
Zhou, P. & Pu, W. T. Recounting Cardiac Cellular Composition. Circ. Res. 118, 368–370 (2016).
pubmed: 26846633 pmcid: 4755297 doi: 10.1161/CIRCRESAHA.116.308139
Xiong, Y. et al. A Comparison of mRNA Sequencing with Random Primed and 3’-Directed Libraries. Sci. Rep. 7, 14626 (2017).
pubmed: 29116112 pmcid: 5676863 doi: 10.1038/s41598-017-14892-x
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).
pubmed: 30783653 pmcid: 6486549 doi: 10.1093/nar/gkz114
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Alter, O., Brown, P. O. & Botstein, D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97, 10101–10106 (2000).
pubmed: 10963673 pmcid: 27718 doi: 10.1073/pnas.97.18.10101
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell https://doi.org/10.1016/j.cell.2021.04.048 (2021).
doi: 10.1016/j.cell.2021.04.048 pubmed: 34062119 pmcid: 8238499
Tucker, N. R. et al. Transcriptional and Cellular Diversity of the Human Heart. Circulation 142, 466–482 (2020).
pubmed: 32403949 pmcid: 7666104 doi: 10.1161/CIRCULATIONAHA.119.045401
Asp, M. et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart. Cell 179, 1647–1660.e1619 (2019).
pubmed: 31835037 doi: 10.1016/j.cell.2019.11.025
Lachmann, A. et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26, 2438–2444 (2010).
pubmed: 20709693 pmcid: 2944209 doi: 10.1093/bioinformatics/btq466
Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224 (2019).
pubmed: 31114921 pmcid: 6602523 doi: 10.1093/nar/gkz446
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Rauluseviciute, I. et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 52, D174–D182 (2024).
pubmed: 37962376 doi: 10.1093/nar/gkad1059
Han, H. et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46, D380–D386 (2018).
pubmed: 29087512 doi: 10.1093/nar/gkx1013
Lachmann, A. & Ma’ayan, A. KEA: kinase enrichment analysis. Bioinformatics 25, 684–686 (2009).
pubmed: 19176546 pmcid: 2647829 doi: 10.1093/bioinformatics/btp026
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961 pmcid: 4987924 doi: 10.1093/nar/gkw377
Blake, J. A. et al. Mouse Genome Database (MGD): Knowledgebase for mouse-human comparative biology. Nucleic Acids Res. 49, D981–D987 (2021).
pubmed: 33231642 doi: 10.1093/nar/gkaa1083
Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 40, D13–D25 (2012).
pubmed: 22140104 doi: 10.1093/nar/gkr1184
Hansen, J. et al. DToxS/SVD-curated_transcriptomic_signatures_cardiotoxic_drugs: Multiscale Mapping of Transcriptomic Signatures for Cardiotoxic Drugs) https://doi.org/10.5281/zenodo.12728022 (2024).

Auteurs

Jens Hansen (J)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. jens.hansen@mssm.edu.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. jens.hansen@mssm.edu.

Yuguang Xiong (Y)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Mustafa M Siddiq (MM)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Priyanka Dhanan (P)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Bin Hu (B)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Bhavana Shewale (B)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Arjun S Yadaw (AS)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Gomathi Jayaraman (G)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Rosa E Tolentino (RE)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Yibang Chen (Y)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Pedro Martinez (P)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Kristin G Beaumont (KG)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Robert Sebra (R)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Dusica Vidovic (D)

Institute for Data Science and Computing, University of Miami, Coral Gables, FL, 33146, USA.

Stephan C Schürer (SC)

Institute for Data Science and Computing, University of Miami, Coral Gables, FL, 33146, USA.

Joseph Goldfarb (J)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

James M Gallo (JM)

Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
School of Pharmacy and Pharmaceutical Sciences, University of Buffalo SUNY System, Buffalo, NY, 14260, USA.

Marc R Birtwistle (MR)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA.

Eric A Sobie (EA)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Evren U Azeloglu (EU)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New, York, NY, 10029, USA.

Seth I Berger (SI)

Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20012, USA.

Angel Chan (A)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Cardiology Division, Department of Medicine, Memorial Sloan Kettering Cancer Center New York, New York, NY, 10065, USA.

Christoph Schaniel (C)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Nicole C Dubois (NC)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. Dubois@mssm.edu.
Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. Dubois@mssm.edu.

Ravi Iyengar (R)

Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. ravi.iyengar@mssm.edu.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. ravi.iyengar@mssm.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH