Extreme solar storms and the quest for exact dating with radiocarbon.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Sep 2024
Historique:
received: 11 02 2023
accepted: 05 06 2024
medline: 12 9 2024
pubmed: 12 9 2024
entrez: 11 9 2024
Statut: ppublish

Résumé

Radiocarbon (

Identifiants

pubmed: 39261612
doi: 10.1038/s41586-024-07679-4
pii: 10.1038/s41586-024-07679-4
doi:

Substances chimiques

Carbon Radioisotopes 0

Types de publication

Journal Article Review Historical Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

306-317

Informations de copyright

© 2024. Springer Nature Limited.

Références

Ruben, S. & Kamen, M. D. Radioactive carbon of long half-life. Phys. Rev. 57, 549 (1940).
doi: 10.1103/PhysRev.57.549
Taylor, R. E. & Bar-Yosef, O. Radiocarbon Dating: An Archaeological Perspective (Routledge, 2014). https://doi.org/10.4324/9781315421216 .
Heaton, T. J. et al. Radiocarbon: a key tracer for studying Earth’s dynamo, climate system, carbon cycle, and Sun. Science 374, eabd7096 (2021).
pubmed: 34735228 doi: 10.1126/science.abd7096
Arnold, J. R. & Libby, W. F. Age determinations by radiocarbon content: checks with samples of known age. Science 110, 678–680 (1949).
pubmed: 15407879 doi: 10.1126/science.110.2869.678
Libby, W. F., Anderson, E. C. & Arnold, J. R. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109, 227–228 (1949).
pubmed: 17818054 doi: 10.1126/science.109.2827.227
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
doi: 10.1017/RDC.2020.41
Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).
doi: 10.1017/RDC.2020.68
Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778 (2020).
doi: 10.1017/RDC.2020.59
Bronk Ramsey, C., Manning, S. W. & Galimberti, M. Dating the volcanic eruption at Thera. Radiocarbon 46, 325–344 (2004).
doi: 10.1017/S0033822200039631
Pearson, C., Sbonias, K., Tzachili, I. & Heaton, T. J. Olive shrub buried on Therasia supports a mid-16th century BCE date for the Thera eruption. Sci. Rep. 13, 6994 (2023).
pubmed: 37117199 pmcid: 10147620 doi: 10.1038/s41598-023-33696-w
Bruins, H. J. et al. Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. J. Archaeol. Sci. 35, 191–212 (2008).
doi: 10.1016/j.jas.2007.08.017
Buck, C. E., Cavanagh, W. G. & Litton, C. D. Bayesian Approach to Interpreting Archaeological Data (John Wiley, 1996).
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
doi: 10.1017/S0033822200033865
Bayliss, A. & Marshall, P. Radiocarbon Dating and Chronological Modelling: Guidelines and Best Practice (Historic England, 2022).
Bronk Ramsey, C. et al. Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice. Quat. Sci. Rev. 118, 18–32 (2015).
doi: 10.1016/j.quascirev.2014.11.007
Bayliss, A. et al. Informing conservation: towards
doi: 10.1017/RDC.2016.61
Bard, E., Raisbeck, G. M., Yiou, F. & Jouzel, J. Solar modulation of cosmogenic nuclide production over the last millennium: comparison between
doi: 10.1016/S0012-821X(97)00082-4
Muscheler, R. et al. Solar activity during the last 1000 yr inferred from radionuclide records. Quat. Sci. Rev. 26, 82–97 (2007).
doi: 10.1016/j.quascirev.2006.07.012
Stuiver, M. & Braziunas, T. F. Sun, ocean, climate and atmospheric
doi: 10.1177/095968369300300401
Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486, 240–242 (2012). This is the publication of the first (ad 774) Miyake event, initially assumed to be caused by a supernova.
pubmed: 22699615 doi: 10.1038/nature11123
Mekhaldi, F. et al. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nat. Commun. 6, 8611 (2015).
pubmed: 26497389 doi: 10.1038/ncomms9611
Usoskin, I. G. et al. The AD775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 552, L3 (2013). This is the proof of a solar origin for the ad 774 Miyake event and the introduction of the term ESPE.
doi: 10.1051/0004-6361/201321080
Ritter, S. et al. International legal and ethical issues of a future Carrington Event: existing frameworks, shortcomings, and recommendations. New Space 8, 23–30 (2020).
doi: 10.1089/space.2019.0026
Oughton, E. J., Skelton, A., Horne, R. B., Thomson, A. W. P. & Gaunt, C. T. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space Weather 15, 65–83 (2017).
doi: 10.1002/2016SW001491
Atwater, B. F. Evidence for great Holocene earthquakes along the outer coast of Washington state. Science 236, 942–944 (1987).
pubmed: 17812748 doi: 10.1126/science.236.4804.942
Winkler, T. S. et al. Revising evidence of hurricane strikes on Abaco Island (The Bahamas) over the last 700 years. Sci. Rep. 10, 16556 (2020).
pubmed: 33024182 pmcid: 7538955 doi: 10.1038/s41598-020-73132-x
Wilhelm, B. et al. Impact of warmer climate periods on flood hazard in the European Alps. Nat. Geosci. 15, 118–123 (2022).
doi: 10.1038/s41561-021-00878-y
Sukhodolov, T. et al. Atmospheric impacts of the strongest known solar particle storm of 775 AD. Sci. Rep. 7, 45257 (2017).
pubmed: 28349934 pmcid: 5368659 doi: 10.1038/srep45257
Koldobskiy, S., Mekhaldi, F., Kovaltsov, G. & Usoskin, I. Multiproxy reconstructions of integral energy spectra for extreme solar particle events of 7176 BCE, 660 BCE, 775 CE, and 994 CE. J. Geophys. Res. Space Phys. 128, e2022JA031186 (2023).
doi: 10.1029/2022JA031186
Clette, F. et al. Recalibration of the sunspot-number: status report. Sol. Phys. 298, 44 (2023).
doi: 10.1007/s11207-023-02136-3
Hudson, H. S. Carrington events. Annu. Rev. Astron. Astrophys. 59, 445–477 (2021).
doi: 10.1146/annurev-astro-112420-023324
Uusitalo, J. et al. Transient offset in
doi: 10.1029/2023GL106632
Suter, M., Huber, R., Jacob, S. A. W., Synal, H.-A. & Schroeder, J. B. A new small accelerator for radiocarbon dating. AIP Conf. Proc. 475, 665–667 (1999).
doi: 10.1063/1.59210
Synal, H.-A., Stocker, M. & Suter, M. MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. B 259, 7–13 (2007).
doi: 10.1016/j.nimb.2007.01.138
Synal, H.-A. & Wacker, L. AMS measurement technique after 30 years: possibilities and limitations of low energy systems. Nucl. Instrum. Methods Phys. Res. B 268, 701–707 (2010).
doi: 10.1016/j.nimb.2009.10.009
O’Hare, P. et al. Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (∼660 BC). Proc. Natl Acad. Sci. USA 116, 5961–5966 (2019). This reports the discovery of a confirmed 660 bc ESPE with multi-proxy analysis.
pubmed: 30858311 pmcid: 6442557 doi: 10.1073/pnas.1815725116
Brehm, N. et al. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings. Nat. Geosci. 14, 10–15 (2021).
doi: 10.1038/s41561-020-00674-0
Brehm, N. et al. Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE. Nat. Commun. 13, 1196 (2022). This paper reports the discovery of confirmed 7176 bc and 5259 bc ESPEs.
pubmed: 35256613 pmcid: 8901681 doi: 10.1038/s41467-022-28804-9
Paleari, C. I. et al. Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP. Nat. Commun. 13, 214 (2022).
pubmed: 35017519 pmcid: 8752676 doi: 10.1038/s41467-021-27891-4
Miyake, F. et al. A single-year cosmic ray event at 5410 BCE registered in
pubmed: 34433990 pmcid: 8365682 doi: 10.1029/2021GL093419
Bard, E. et al. A radiocarbon spike at 14,300 cal yr BP in subfossil trees provides the impulse response function of the global carbon cycle during the Late Glacial. Philos. Trans. A Math. Phys. Eng. Sci. 381, 20220206 (2023). This paper reports the largest annual increase in Δ
pubmed: 37807686 pmcid: 10586540
Miyake, F., Masuda, K. & Nakamura, T. Another rapid event in the carbon-14 content of tree rings. Nat. Commun. 4, 1748 (2013). This paper provides evidence of a second (ad 993) Miyake event, showing that these events recur.
pubmed: 23612289 doi: 10.1038/ncomms2783
Stuiver, M. A note on single-year calibration of the radiocarbon time scale, AD 1510–1954. Radiocarbon 35, 67–72 (1993).
doi: 10.1017/S0033822200013813
Southon, J., Noronha, A. L., Cheng, H., Edwards, R. L. & Wang, Y. A high-resolution record of atmospheric
doi: 10.1016/j.quascirev.2011.11.022
Cheng, H. et al. Atmospheric
pubmed: 30545886 doi: 10.1126/science.aau0747
Cooper, A. et al. A global environmental crisis 42,000 years ago. Science 371, 811–818 (2021).
pubmed: 33602851 doi: 10.1126/science.abb8677
Hogg, A. G. et al. Advances and limitations in establishing a contiguous high-resolution atmospheric radiocarbon record derived from subfossil kauri tree rings for the interval 60–27 cal kyr BP. Quat. Geochronol. 68, 101251 (2022).
doi: 10.1016/j.quageo.2021.101251
Reimer, P. J. et al. Selection and treatment of data for radiocarbon calibration: an update to the international calibration (IntCal) criteria. Radiocarbon 55, 1923–1945 (2013).
doi: 10.2458/azu_js_rc.55.16955
Heaton, T. J. et al. The IntCal20 approach to radiocarbon calibration curve construction: a new methodology using Bayesian splines and errors-in-variables. Radiocarbon 62, 821–863 (2020).
doi: 10.1017/RDC.2020.46
Büntgen, U. et al. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nat. Commun. 9, 3605 (2018). This is the evidence of global ESPE signatures that enables them to be used for annual-precision
pubmed: 30190505 pmcid: 6127282 doi: 10.1038/s41467-018-06036-0
Wacker, L. et al. Radiocarbon dating to a single year by means of rapid atmospheric
doi: 10.2458/56.17634
Hakozaki, M. et al. Verification of the annual dating of the 10th century Baitoushan volcano eruption based on an AD 774–775 radiocarbon spike. Radiocarbon 60, 261–268 (2018).
doi: 10.1017/RDC.2017.75
Kuitems, M. et al. Radiocarbon-based approach capable of subannual precision resolves the origins of the site of Por-Bajin. Proc. Natl Acad. Sci. USA 117, 14038–14041 (2020).
pubmed: 32513700 pmcid: 7321958 doi: 10.1073/pnas.1921301117
Oppenheimer, C. et al. Multi-proxy dating the ‘millennium eruption’ of Changbaishan to late 946 CE. Quat. Sci. Rev. 158, 164–171 (2017).
doi: 10.1016/j.quascirev.2016.12.024
Meadows, J., Zunde, M., Lēģere, L., Dee, M. W. & Hamann, C. in Radiocarbon. (ed Jull, A.J.T.) https://doi.org/10.1017/RDC.2023.24 (Cambridge Univ. Press, 2023).
Philippsen, B., Feveile, C., Olsen, J. & Sindbæk, S. M. Single-year radiocarbon dating anchors Viking Age trade cycles in time. Nature 601, 392–396 (2022). This provides an annual date for the start of the Viking Age using the ad 774 ESPE.
pubmed: 34937937 doi: 10.1038/s41586-021-04240-5
Kuitems, M. et al. Evidence for European presence in the Americas in AD 1021. Nature 601, 388–391 (2022). This paper identifies the year that Vikings were present in North America using the ad 993 ESPE.
pubmed: 34671168 doi: 10.1038/s41586-021-03972-8
Black, B. A. et al. A multifault earthquake threat for the Seattle metropolitan region revealed by mass tree mortality. Sci. Adv. 9, eadh4973 (2023).
pubmed: 37756412 pmcid: 10530078 doi: 10.1126/sciadv.adh4973
Maczkowski, A. et al. Absolute dating of the European Neolithic using the 5259 BC rapid
Manning, S. W., Birch, J., Conger, M. A. & Sanft, S. Resolving time among non-stratified short-duration contexts on a radiocarbon plateau: possibilities and challenges from the AD 1480–1630 example and northeastern North America. Radiocarbon 62, 1785–1807 (2020).
doi: 10.1017/RDC.2020.51
Nakao, N., Sakamoto, M. & Imamura, M.
doi: 10.2458/56.17466
Capano, M. et al. Is the dating of short tree-ring series still a challenge? New evidence from the pile dwelling of Lucone di Polpenazze (northern Italy). J. Archaeol. Sci. 121, 105190 (2020).
doi: 10.1016/j.jas.2020.105190
Djamali, M. et al. An absolute radiocarbon chronology for the world heritage site of Sarvestan (SW Iran): a late Sasanian heritage in early Islamic era. Archaeometry 64, 545–559 (2022).
doi: 10.1111/arcm.12716
Jull, A. J. T., Burr, G. S. & Hodgins, G. W. L. Radiocarbon dating, reservoir effects, and calibration. Quat. Int. 299, 64–71 (2013).
doi: 10.1016/j.quaint.2012.10.028
Gosman, J. H., Hubbell, Z. R., Shaw, C. N. & Ryan, T. M. Development of cortical bone geometry in the human femoral and tibial diaphysis. Anat. Rec. 296, 774–787 (2013).
doi: 10.1002/ar.22688
Ubelaker, D. H. et al. Lag time of modern bomb-pulse radiocarbon in human bone tissues: new data from Brazil. Forensic Sci. Int. 331, 111143 (2022).
pubmed: 34942417 doi: 10.1016/j.forsciint.2021.111143
Rose, H. A., Meadows, J. & Bjerregaard, M. High-resolution dating of a medieval multiple grave. Radiocarbon 60, 1547–1559 (2018).
doi: 10.1017/RDC.2018.43
Chmielewski, T. J. et al. Increase in
doi: 10.2478/geochr-2020-0026
Millard, A. Palace Green Library Excavations 2013 (PGL13): Chronology of the Burials. https://durham-repository.worktribe.com/output/1636149 (Durham University, 2015).
Gerrard, C., Graves, P., Millard, A., Annis, R. & Caffell, A. Lost Lives, New Voices: Unlocking the Stories of the Scottish Soldiers at the Battle of Dunbar, 1650 (Oxbow, 2018).
Douka, K. et al. Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave. Nature 565, 640–644 (2019).
pubmed: 30700871 doi: 10.1038/s41586-018-0870-z
Fowler, C. et al. A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature 601, 584–587 (2022).
pubmed: 34937939 doi: 10.1038/s41586-021-04241-4
Meadows, J. et al. High-precision Bayesian chronological modeling on a calibration plateau: the Niedertiefenbach gallery grave. Radiocarbon 62, 1261–1284 (2020).
doi: 10.1017/RDC.2020.76
Sedig, J. W., Olalde, I., Patterson, N., Harney, É. & Reich, D. Combining ancient DNA and radiocarbon dating data to increase chronological accuracy. J. Archaeol. Sci. 133, 105452 (2021).
pubmed: 34483440 pmcid: 8415703 doi: 10.1016/j.jas.2021.105452
Usoskin, I. G. et al. Solar cyclic activity over the last millennium reconstructed from annual
doi: 10.1051/0004-6361/202140711
Wu, C.-J., Krivova, N. A., Solanki, S. K. & Usoskin, I. G. Solar total and spectral irradiance reconstruction over the last 9000 years. Astron. Astrophys. 620, A120 (2018).
doi: 10.1051/0004-6361/201832956
Usoskin, I. G. et al. Revisited reference solar proton event of 23 February 1956: assessment of the cosmogenic-isotope method sensitivity to extreme solar events. J. Geophys. Res. Space Phys. 125, e2020JA027921 (2020).
doi: 10.1029/2020JA027921
Mekhaldi, F., Adolphi, F., Herbst, K. & Muscheler, R. The signal of solar storms embedded in cosmogenic radionuclides: detectability and uncertainties. J. Geophys. Res. Space Phys. 126, e2021JA029351 (2021).
doi: 10.1029/2021JA029351
Usoskin, I. G. A history of solar activity over millennia. Living Rev. Sol. Phys. 20, 2 (2023).
doi: 10.1007/s41116-023-00036-z
Maehara, H. et al. Superflares on solar-type stars. Nature 485, 478–481 (2012).
pubmed: 22622572 doi: 10.1038/nature11063
Cliver, E. W., Schrijver, C. J., Shibata, K. & Usoskin, I. G. Extreme solar events. Living Rev. Sol. Phys. 19, 2 (2022).
doi: 10.1007/s41116-022-00033-8
Hathaway, D. H.The solar cycle. Living Rev. Sol. Phys. 12, 4 (2015).
pubmed: 27194958 pmcid: 4841188 doi: 10.1007/lrsp-2015-4
Biswas, A., Karak, B. B., Usoskin, I. & Weisshaar, E. Long-term modulation of solar cycles. Space Sci. Rev. 219, 19 (2023).
doi: 10.1007/s11214-023-00968-w
Adolphi, F. et al. Radiocarbon calibration uncertainties during the last deglaciation: insights from new floating tree-ring chronologies. Quat. Sci. Rev. 170, 98–108 (2017).
doi: 10.1016/j.quascirev.2017.06.026
Raisbeck, G. M. et al. An improved north–south synchronization of ice core records around the 41 kyr
doi: 10.5194/cp-13-217-2017
Turney, C. S. M. et al. High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3: testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis australis). Quat. Sci. Rev. 137, 126–134 (2016).
doi: 10.1016/j.quascirev.2016.02.005
Wacker, L. et al. Findings from an in-depth annual tree-ring radiocarbon intercomparison. Radiocarbon 62, 873–882 (2020).
doi: 10.1017/RDC.2020.49
Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).
pubmed: 25355363 doi: 10.1038/nature13799
Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).
pubmed: 26976561 pmcid: 4822573 doi: 10.1073/pnas.1513868113
Hogg, A. et al. Punctuated shutdown of Atlantic meridional overturning circulation during Greenland Stadial 1. Sci. Rep. 6, 25902 (2016).
pubmed: 27194601 pmcid: 4872135 doi: 10.1038/srep25902
Capano, M. et al. Onset of the Younger Dryas recorded with
doi: 10.1017/RDC.2019.116
Oeschger, H., Siegenthaler, U., Schotterer, U. & Gugelmann, A. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27, 168–192 (1975).
doi: 10.3402/tellusa.v27i2.9900
Zhang, Q. et al. Modelling cosmic radiation events in the tree-ring radiocarbon record. Proc. Math. Phys. Eng. Sci. 478, 20220497 (2022).
Golubenko, K., Rozanov, E., Kovaltsov, G. & Usoskin, I. Zonal mean distribution of cosmogenic isotope (
doi: 10.1029/2022JD036726
Zheng, M. et al. Modeling atmospheric transport of cosmogenic radionuclide
doi: 10.1029/2023GL106642
Roth, R. & Joos, F. A reconstruction of radiocarbon production and total solar irradiance from the Holocene
doi: 10.5194/cp-9-1879-2013
Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).
doi: 10.5194/essd-15-5301-2023
Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO
pubmed: 30944480 doi: 10.1038/s41586-019-1078-6
Basu, S. et al. Estimating US fossil fuel CO
pubmed: 32482875 pmcid: 7306993 doi: 10.1073/pnas.1919032117
Byrne, B. et al. National CO
doi: 10.5194/essd-15-963-2023
Hua, Q. et al. Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 64, 723–745 (2022).
doi: 10.1017/RDC.2021.95
Delaygue, G., Bekki, S. & Bard, E. Modelling the stratospheric budget of beryllium isotopes. Tellus B Chem. Phys. Meteorol. 67, 28582 (2015).
doi: 10.3402/tellusb.v67.28582
Baroni, M., Bard, E., Petit, J.-R., Magand, O. & Bourlès, D. Volcanic and solar activity, and atmospheric circulation influences on cosmogenic
doi: 10.1016/j.gca.2011.09.002
Panovska, S., Korte, M. & Constable, C. G. One hundred thousand years of geomagnetic field evolution. Rev. Geophys. 57, 1289–1337 (2019).
doi: 10.1029/2019RG000656
Green, P. J. & Silverman, B. W. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach (Chapman and Hall/CRC, 1993). https://doi.org/10.1201/b15710 .
Bayliss, A. et al. IntCal20 tree rings: an archaeological Swot analysis. Radiocarbon 62, 1045–1078 (2020).
doi: 10.1017/RDC.2020.77
Kromer, B. et al. Regional
pubmed: 11743160 doi: 10.1126/science.1066114
Manning, S. W. et al. Mediterranean radiocarbon offsets and calendar dates for prehistory. Sci. Adv. 6, eaaz1096 (2020).
pubmed: 32206721 pmcid: 7080444 doi: 10.1126/sciadv.aaz1096
Kimak, A. & Leuenberger, M. Are carbohydrate storage strategies of trees traceable by early–latewood carbon isotope differences? Trees 29, 859–870 (2015).
doi: 10.1007/s00468-015-1167-6
Scott, E. M., Naysmith, P. & Cook, G. T. Why do we need
doi: 10.1016/j.quageo.2017.08.001
Blackwell, P. G. & Buck, C. E. Estimating radiocarbon calibration curves. Bayesian Anal. 3, 225–248 (2008).
doi: 10.1214/08-BA309
Geweke, J. in Bayesian Statistics 4 (eds Bernardo, J. M. et al.) 169–194 (Oxford Univ. Press, 1992).
Brooks, S. P. & Roberts, G. O. Convergence assessment techniques for Markov chain Monte Carlo. Stat. Comput. 8, 319–335 (1998).
doi: 10.1023/A:1008820505350
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Statist. Sci. 7, 457–472 (1992).
doi: 10.1214/ss/1177011136
Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).
doi: 10.1017/S0033822200030903
Geyer, C. J. Markov chain Monte Carlo maximum likelihood. In Computing Science and Statistics: Proc. 23rd Symposium on the Interface (ed. Keramidas, E. M.) 156–163 (Interface Foundation, 1991).
Robert, C. P. & Casella, G. Monte Carlo Statistical Methods (Springer, 2004). https://doi.org/10.1007/978-1-4757-4145-2 .
Heaton, T. J. Non‐parametric calibration of multiple related radiocarbon determinations and their calendar age summarisation. J. R. Statist. Soc. C 71, 1918–1956 (2022).
doi: 10.1111/rssc.12599
Betancourt, M. A conceptual introduction to Hamiltonian Monte Carlo. Preprint at https://arxiv.org/abs/1701.02434 (2017).
Dee, M. W. & Pope, B. J. S. Anchoring historical sequences using a new source of astro-chronological tie-points. Proc. Math. Phys. Eng. Sci. 472, 20160263 (2016).
pubmed: 27616924 pmcid: 5014109
Weiner, S. Microarchaeology: Beyond the Visible Archaeological Record (Cambridge Univ. Press, 2010). https://doi.org/10.1017/CBO9780511811210 .
Waterbolk, H. T. Working with radiocarbon dates. Proc. Prehist. Soc. 37, 15–33 (1971).
doi: 10.1017/S0079497X00012548
Ashmore, P. J. Radiocarbon dating: avoiding errors by avoiding mixed samples. Antiquity 73, 124–130 (1999).
doi: 10.1017/S0003598X00087901
McDonald, L. & Manning, S. W. A simulation approach to quantify the parameters and limitations of the radiocarbon wiggle-match dating technique. Quat. Geochronol. 75, 101423 (2023).
doi: 10.1016/j.quageo.2023.101423
Dellaportas, P., Forster, J. J. & Ntzoufras, I. On Bayesian model and variable selection using MCMC. Stat. Comput. 12, 27–36 (2002).
doi: 10.1023/A:1013164120801
Amaral Turkman, M. A., Paulino, C. D. & Müller, P. Computational Bayesian Statistics (Cambridge Univ. Press, 2019). https://doi.org/10.1017/9781108646185 .
Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).
doi: 10.2458/azu_js_rc.55.16947
Raukunen, O., Usoskin, I., Koldobskiy, S., Kovaltsov, G. & Vainio, R. Annual integral solar proton fluences for 1984–2019. Astron. Astrophys. 665, A65 (2022).
doi: 10.1051/0004-6361/202243736
Mook, W. G. Business meeting: recommendations/resolutions adopted by the Twelfth International Radiocarbon Conference. Radiocarbon 28, 799 (1986).
doi: 10.1017/S0033822200008043
Stuiver, M. & Polach, H. A. Discussion reporting of
doi: 10.1017/S0033822200003672
Miyake, F. et al. Verification of the cosmic-ray event in AD 993–994 by using a Japanese hinoki tree. Radiocarbon 56, 1189–1194 (2014).
doi: 10.2458/56.17769
Oswald, A. Clay Pipes for the Archaeologist (BAR, 1975).
AlQahtani, S. J., Hector, M. P. & Liversidge, H. M. Brief communication: the London atlas of human tooth development and eruption. Am. J. Phys. Anthropol. 142, 481–490 (2010).
pubmed: 20310064 doi: 10.1002/ajpa.21258
Bronk Ramsey, C. Development of the radiocarbon calibration program. Radiocarbon 43, 355–363 (2001).
doi: 10.1017/S0033822200038212
Reimer, P. J. & Reimer, R. W. A marine reservoir correction database and on-line interface. Radiocarbon 43, 461–463 (2001).
doi: 10.1017/S0033822200038339

Auteurs

T J Heaton (TJ)

Department of Statistics, School of Mathematics, University of Leeds, Leeds, UK. t.heaton@leeds.ac.uk.

E Bard (E)

CEREGE, Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, Technopole de l'Arbois BP 80, Aix en Provence Cedex 4, France.

A Bayliss (A)

Historic England, London, UK.

M Blaauw (M)

The ¹⁴CHRONO Centre for Climate, the Environment and Chronology, Geography, Archaeology and Palaeoecology, School of Natural and Built Environment, Queen's University Belfast, Belfast, UK.

C Bronk Ramsey (C)

Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, UK.

P J Reimer (PJ)

The ¹⁴CHRONO Centre for Climate, the Environment and Chronology, Geography, Archaeology and Palaeoecology, School of Natural and Built Environment, Queen's University Belfast, Belfast, UK.

C S M Turney (CSM)

Institute of Sustainable Futures, Division of Research, University of Technology Sydney, Ultimo, New South Wales, Australia.
Chronos ¹⁴Carbon-Cycle Facility, University of New South Wales, Sydney, New South Wales, Australia.

I Usoskin (I)

Space Physics and Astronomy Research Unit and Sodankylä Geophysical Observatory, University of Oulu, Oulu, Finland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH