Agonist antibody to guanylate cyclase receptor NPR1 regulates vascular tone.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
11 Sep 2024
Historique:
received: 17 04 2023
accepted: 02 08 2024
medline: 12 9 2024
pubmed: 12 9 2024
entrez: 11 9 2024
Statut: aheadofprint

Résumé

Heart failure is a leading cause of morbidity and mortality

Identifiants

pubmed: 39261724
doi: 10.1038/s41586-024-07903-1
pii: 10.1038/s41586-024-07903-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Investigateurs

Daniel J Rader (DJ)
Marylyn D Ritchie (MD)
JoEllen Weaver (J)
Nawar Naseer (N)
Afiya Poindexter (A)
Khadijah Hu-Sain (K)
Yi-An Ko (YA)
Meghan Livingstone (M)
Fred Vadivieso (F)
Stephanie DerOhannessian (S)
Teo Tran (T)
Julia Stephanowski (J)
Monica Zielinski (M)
Ned Haubein (N)
Joseph Dunn (J)
Anurag Verma (A)
Colleen Morse Kripke (CM)
Marjorie Risman (M)
Renae Judy (R)
Shefali S Verma (SS)
Yuki Bradford (Y)
Scott Dudek (S)
Theodore Drivas (T)
Lance J Adams (LJ)
Jackie Blank (J)
Dale Bodian (D)
Derek Boris (D)
Adam Buchanan (A)
David J Carey (DJ)
Ryan D Colonie (RD)
F Daniel Davis (FD)
Dustin N Hartzel (DN)
Melissa Kelly (M)
H Lester Kirchner (HL)
Joseph B Leader (JB)
David H Ledbetter (DH)
J Neil Manus (JN)
Christa L Martin (CL)
Raghu P Metpally (RP)
Michelle Meyer (M)
Tooraj Mirshahi (T)
Matthew Oetjens (M)
Thomas Nate Person (TN)
Christopher Still (C)
Natasha Strande (N)
Amy Sturm (A)
Jen Wagner (J)
Marc Williams (M)
Goncalo Abecasis (G)
Michael Cantor (M)
Giovanni Coppola (G)
Andrew Deubler (A)
Aris Economides (A)
John D Overton (JD)
Jeffrey G Reid (JG)
Katherine Siminovitch (K)
Alan Shuldiner (A)
Christina Beechert (C)
Caitlin Forsythe (C)
Erin D Fuller (ED)
Zhenhua Gu (Z)
Michael Lattari (M)
Alexander Lopez (A)
Maria Sotiropoulos Padilla (MS)
Manasi Pradhan (M)
Kia Manoochehri (K)
Thomas D Schleicher (TD)
Louis Widom (L)
Sarah E Wolf (SE)
Ricardo H Ulloa (RH)
Amelia Averitt (A)
Nilanjana Banerjee (N)
Dadong Li (D)
Sameer Malhotra (S)
Deepika Sharma (D)
Jeffrey C Staples (JC)
Xiaodong Bai (X)
Suganthi Balasubramanian (S)
Suying Bao (S)
Boris Boutkov (B)
Siying Chen (S)
Gisu Eom (G)
Lukas Habegger (L)
Alicia Hawes (A)
Shareef Khalid (S)
Olga Krasheninina (O)
Rouel Lanche (R)
Adam J Mansfield (AJ)
Evan K Maxwell (EK)
George Mitra (G)
Mona Nafde (M)
Sean O'Keeffe (S)
Max Orelus (M)
Razvan Panea (R)
Tommy Polanco (T)
Ayesha Rasool (A)
William Salerno (W)
Kathie Sun (K)
Joshua Backman (J)
Amy Damask (A)
Lee Dobbyn (L)
Manuel Allen Revez Ferreira (MAR)
Arkopravo Ghosh (A)
Christopher Gillies (C)
Lauren Gurski (L)
Eric Jorgenson (E)
Hyun Min Kang (HM)
Michael Kessler (M)
Jack Kosmicki (J)
Alexander Li (A)
Nan Lin (N)
Daren Liu (D)
Jonathan Marchini (J)
Anthony Marcketta (A)
Joelle Mbatchou (J)
Arden Moscati (A)
Charles Paulding (C)
Carlo Sidore (C)
Eli Stahl (E)
Kyoko Watanabe (K)
Bin Ye (B)
Blair Zhang (B)
Andrey Ziyatdinov (A)
Ariane Ayer (A)
Aysegul Guvenek (A)
George Hindy (G)
Jan Freudenberg (J)
Jonas Bovijn (J)
Kavita Praveen (K)
Manav Kapoor (M)
Mary Haas (M)
Moeen Riaz (M)
Olukayode Sosina (O)
Parsa Akbari (P)
Priyanka Nakka (P)
Sahar Gelfman (S)
Sujit Gokhale (S)
Veera Rajagopal (V)
Gannie Tzoneva (G)
Juan Rodriguez-Flores (J)
Esteban Chen (E)
Marcus B Jones (MB)
Michelle G LeBlanc (MG)
Jason Mighty (J)
Lyndon J Mitnaul (LJ)
Nirupama Nishtala (N)
Nadia Rana (N)
Jaimee Hernandez (J)
Jennifer Rico Varela (JR)

Informations de copyright

© 2024. The Author(s).

Références

Lippi, G. & Sanchis-Gomar, F. Global epidemiology and future trends of heart failure. AME Med. J. 5, 15 (2020).
doi: 10.21037/amj.2020.03.03
Bowen, R. E. S., Graetz, T. J., Emmert, D. A. & Avidan, M. S. Statistics of heart failure and mechanical circulatory support in 2020. Ann. Transl. Med. 8, 827 (2020).
pubmed: 32793672 pmcid: 7396255 doi: 10.21037/atm-20-1127
Ledsome, J. R., Wilson, N., Courneya, C. A. & Rankin, A. J. Release of atrial natriuretic peptide by atrial distension. Can. J. Physiol. Pharmacol. 63, 739–742 (1985).
pubmed: 2931169 doi: 10.1139/y85-121
Levin, E. R., Gardner, D. G. & Samson, W. K. Natriuretic peptides. N. Engl. J. Med. 339, 321–328 (1998).
pubmed: 9682046 doi: 10.1056/NEJM199807303390507
Ramos, H. & de Bold, A. J. Gene expression, processing, and secretion of natriuretic peptides: physiologic and diagnostic implications. Heart Fail. Clin. 2, 255–268 (2006).
pubmed: 17386895 doi: 10.1016/j.hfc.2006.08.005
Ogawa, T. & de Bold, A. J. The heart as an endocrine organ. Endocr. Connect. 3, R31–R44 (2014).
pubmed: 24562677 pmcid: 3987289 doi: 10.1530/EC-14-0012
Toyoshima, Y. et al. Atrial natriuretic peptide (ANP)-granules of auricular cardiocytes in dehydrated and rehydrated mice. Exp. Anim. 45, 135–140 (1996).
pubmed: 8726137 doi: 10.1538/expanim.45.135
DeBold, A. J., Borenstein, H. B., Verres, A. T. & Sonnenberg, H. A rapid and potent natriuretic response to intravenous injection of atrial extracts in rats. Life Sci. 28, 89–94 (1981).
doi: 10.1016/0024-3205(81)90370-2
Katz, S. D. Nesiritide (hbNP): a new class of therapeutic peptide for the treatment of decompensated congestive heart failure. Congest. Heart Fail. 7, 78–87 (2007).
doi: 10.1111/j.1527-5299.2001.00231.x
Fu, S., Ping, P., Wang, F. & Luo, L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J. Biol. Eng. 12, 2 (2018).
Cautela, J. et al. Management of low blood pressure in ambulatory heart failure with reduced ejection fraction patients. Eur. J. Heart Fail. 22, 1357–1365 (2020).
pubmed: 32353213 doi: 10.1002/ejhf.1835
Gidlof, O. Toward a new paradigm for targeted natriuretic peptide enhancement in heart failure. Front. Physiol. 12, 650124 (2021).
pubmed: 34721050 pmcid: 8548580 doi: 10.3389/fphys.2021.650124
Kuhn, K. P. et al. Outcome in 91 consecutive patients with pulmonary arterial hypertension receiving epoprostenol. Am. J. Respir. Crit. Care Med. 167, 580–586 (2003).
pubmed: 12446266 doi: 10.1164/rccm.200204-333OC
Schmitt, M. et al. Atrial natriuretic peptide regulates regional vascular volume and venous tone in humans. Arterioscler. Thromb. Vasc. Biol. 23, 1833–1838 (2003).
pubmed: 12842844 doi: 10.1161/01.ATV.0000084826.86349.1D
Vandenwijngaert, S. et al. Blood pressure-associated genetic variants in the natriuretic peptide receptor 1 gene modulate guanylate cyclase activity. Circ. Genom. Precis. Med. 12, e002472 (2019).
pubmed: 31430210 doi: 10.1161/CIRCGEN.119.002472
Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016).
pubmed: 27618448 pmcid: 5320952 doi: 10.1038/ng.3660
Surendran, P. et al. Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nat. Genet. 52, 1314–1332 (2020).
pubmed: 33230300 pmcid: 7610439 doi: 10.1038/s41588-020-00713-x
Novartis Pharmaceuticals. Entresto prescribing information. Novartis https://www.novartis.com/us-en/sites/novartis_us/files/entresto.pdf (April 2024).
Saito, Y. et al. Clinical application of atrial natriuretic polypeptide in patients with congestive heart failure: beneficial effects on left ventricular function. Circulation 76, 115–124 (1987).
pubmed: 2954723 doi: 10.1161/01.CIR.76.1.115
Lakatta, E. in The Heart and Cardiovascular System (ed. Fozzard, H.A.) 1325–1351 (Raven Press, 1992).
Macdonald, L. E. et al. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proc. Natl Acad. Sci. USA 111, 5147–5152 (2014).
pubmed: 24706858 pmcid: 3986150 doi: 10.1073/pnas.1323896111
Murphy, A. J. et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc. Natl Acad. Sci. USA 111, 5153–5158 (2014).
pubmed: 24706856 pmcid: 3986188 doi: 10.1073/pnas.1324022111
Wunder, F. et al. A cell-based cGMP assay useful for ultra-high-throughput screening and identification of modulators of the nitric oxide/cGMP pathway. Anal. Biochem. 339, 104–112 (2005).
pubmed: 15766716 doi: 10.1016/j.ab.2004.12.025
Ogawa, H., Qiu, Y., Ogata, C. M. & Misono, K. S. Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J. Biol. Chem. 279, 28625–28631 (2004).
pubmed: 15117952 doi: 10.1074/jbc.M313222200
van den Akker, F. et al. Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature 406, 101–104 (2000).
pubmed: 10894551 doi: 10.1038/35017602
Thomas, C. J. & Woods, R. L. Haemodynamic action of B-type natriuretic peptide substantially outlasts its plasma half-life in conscious dogs. Clin. Exp. Pharmacol. Physiol. 30, 369–375 (2003).
pubmed: 12859428 doi: 10.1046/j.1440-1681.2003.03841.x
Hobbs, R. E. et al. Hemodynamic effects of a single intravenous injection of synthetic human brain natriuretic peptide in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 78, 896–901 (1996).
pubmed: 8888662 doi: 10.1016/S0002-9149(96)00464-X
Potter, L. R. Natriuretic peptide metabolism, clearance and degradation. FEBS J. 278, 1808–1817 (2011).
pubmed: 21375692 pmcid: 4495883 doi: 10.1111/j.1742-4658.2011.08082.x
Kostis, J. B. et al. Omapatrilat and enalapril in patients with hypertension: the omapatrilat cardiovascular treatment vs. enalapril (OCTAVE) trial. Am. J. Hypertens. 17, 103–111 (2004).
pubmed: 14751650 doi: 10.1016/j.amjhyper.2003.09.014
Gottlieb, S. S. et al. Effects of nesiritide and predictors of urine output in acute decompensated heart failure: results from ASCEND-HF (acute study of clinical effectiveness of nesiritide and decompensated heart failure). J. Am. Coll. Cardiol. 62, 1177–1183 (2013).
pubmed: 23747790 doi: 10.1016/j.jacc.2013.04.073
Wagner, B. M. et al. Guanylyl cyclase-A phosphorylation decreases cardiac hypertrophy and improves systolic function in male, but not female, mice. FASEB J. 36, e22069 (2022).
pubmed: 34859913 doi: 10.1096/fj.202100600RRR
Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).
pubmed: 34662886 pmcid: 8596853 doi: 10.1038/s41586-021-04103-z
Verweij, N. et al. Germline mutations in CIDEB and protection against liver disease. N. Engl. J. Med. 387, 332–344 (2022).
pubmed: 35939579 doi: 10.1056/NEJMoa2117872
Tobin, M. D., Sheehan, N. A., Scurrah, K. J. & Burton, P. R. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat. Med. 24, 2911–2935 (2005).
pubmed: 16152135 doi: 10.1002/sim.2165
Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).
pubmed: 30224653 pmcid: 6284793 doi: 10.1038/s41588-018-0205-x
Sun, B. B. et al. Genetic regulation of the human plasma proteome in 54,306 UK Biobank participants. Preprint at bioRxiv https://doi.org/10.1101/2022.06.17.496443 (2022).
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).
pubmed: 33568819 pmcid: 7875770 doi: 10.1038/s41586-021-03205-y
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
pubmed: 27571263 pmcid: 5157836 doi: 10.1038/ng.3656
Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation. Bioinformatics 31, 782–784 (2015).
pubmed: 25338720 doi: 10.1093/bioinformatics/btu704
Akbari, P. et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 373, eabf8683 (2021).
pubmed: 34210852 pmcid: 10275396 doi: 10.1126/science.abf8683
Akbari, P. et al. Multiancestry exome sequencing reveals INHBE mutations associated with favorable fat distribution and protection from diabetes. Nat. Commun. 13, 4844 (2022).
pubmed: 35999217 pmcid: 9399235 doi: 10.1038/s41467-022-32398-7
Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).
pubmed: 34017140 doi: 10.1038/s41588-021-00870-7
Johnsson, B., Lofas, S. & Lindquist, G. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal. Biochem. 198, 268–277 (1991).
pubmed: 1724720 doi: 10.1016/0003-2697(91)90424-R
Myszka, D. G. Improving biosensor analysis. J. Mol. Recognit. 12, 279–284 (1999).
pubmed: 10556875 doi: 10.1002/(SICI)1099-1352(199909/10)12:5<279::AID-JMR473>3.0.CO;2-3
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Afonine, P., Headd, J., Terwiliger, T. & Adams, P. New tool: phenix.real_space_refine. Comput. Crystallogr. Newsl. 4, 43–44 (2013).
Valenzuela, D. M. et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 21, 652–659 (2003).
pubmed: 12730667 doi: 10.1038/nbt822
Mulvany, M. J. & Halpern, W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ. Res. 41, 19–26 (1977).
pubmed: 862138 doi: 10.1161/01.RES.41.1.19
Zhang, F. et al. Decreased levels of cytochrome P450 2E1-derived eicosanoids sensitize renal arteries to constrictor agonists in spontaneously hypertensive rats. Hypertension 45, 103–108 (2005).
pubmed: 15569854 doi: 10.1161/01.HYP.0000150782.28485.91
Zhang, F. et al. CO modulates pulmonary vascular response to acute hypoxia: relation to endothelin. Am. J. Physiol. Heart Circ. Physiol. 286, H137–H144 (2004).
pubmed: 12969895 doi: 10.1152/ajpheart.00678.2002
US Department of Agriculture. Animal Welfare Act and Animal Welfare Regulations (USDA, 2019); www.aphis.usda.gov/animal_welfare/downloads/bluebook-ac-awa.pdf .
National Research Council of the National Academies. Guide For The Care Of and Use Of Laboratory Animals 8th edn (National Academies Press, 2011); grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals.pdf .

Auteurs

Michael E Dunn (ME)

Regeneron Pharmaceuticals, Tarrytown, NY, USA. michael.dunn@regeneron.com.

Aaron Kithcart (A)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Jee Hae Kim (JH)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Andre Jo-Hao Ho (AJ)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Matthew C Franklin (MC)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Annabel Romero Hernandez (A)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Jan de Hoon (J)

Center for Clinical Pharmacology, University Hospitals Leuven, Leuven, Belgium.

Wouter Botermans (W)

Center for Clinical Pharmacology, University Hospitals Leuven, Leuven, Belgium.

Jonathan Meyer (J)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Ximei Jin (X)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Dongqin Zhang (D)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Justin Torello (J)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Daniel Jasewicz (D)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Vishal Kamat (V)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Elena Garnova (E)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Nina Liu (N)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Michael Rosconi (M)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Hao Pan (H)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Satyajit Karnik (S)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Michael E Burczynski (ME)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Wenjun Zheng (W)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Ashique Rafique (A)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Jonas B Nielsen (JB)

Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Tanima De (T)

Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Niek Verweij (N)

Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Anita Pandit (A)

Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Adam Locke (A)

Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Naga Chalasani (N)

Indiana University School of Medicine & Indiana University Health, Indianapolis, IN, USA.

Olle Melander (O)

The Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden.

Tae-Hwi Schwantes-An (TH)

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.

Aris Baras (A)

Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Luca A Lotta (LA)

Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Bret J Musser (BJ)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Jason Mastaitis (J)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Kishor B Devalaraja-Narashimha (KB)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Andrew J Rankin (AJ)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Tammy Huang (T)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Gary Herman (G)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

William Olson (W)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Andrew J Murphy (AJ)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

George D Yancopoulos (GD)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Benjamin A Olenchock (BA)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Lori Morton (L)

Regeneron Pharmaceuticals, Tarrytown, NY, USA.

Classifications MeSH