Topology and functional characterization of major outer membrane proteins of Treponema maltophilum and Treponema lecithinolyticum.
membrane
neutrophil
spirochete
surface protein
topology
treponema
Journal
Molecular oral microbiology
ISSN: 2041-1014
Titre abrégé: Mol Oral Microbiol
Pays: Denmark
ID NLM: 101524770
Informations de publication
Date de publication:
12 Sep 2024
12 Sep 2024
Historique:
revised:
21
08
2024
received:
09
05
2024
accepted:
22
08
2024
medline:
12
9
2024
pubmed:
12
9
2024
entrez:
12
9
2024
Statut:
aheadofprint
Résumé
Numerous Treponema species are prevalent in the dysbiotic subgingival microbial community during periodontitis. The major outer sheath protein is a highly expressed virulence factor of the well-characterized species Treponema denticola. Msp forms an oligomeric membrane protein complex with adhesin and porin properties and contributes to host-microbial interaction. Treponema maltophilum and Treponema lecithinolyticum species are also prominent during periodontitis but are relatively understudied. Msp-like membrane surface proteins exist in T. maltophilum (MspA) and T. lecithinolyticum (MspTL), but limited information exists regarding their structural features or functionality. Protein profiling reveals numerous differences between these species, but minimal differences between strains of the same species. Using protein modeling tools, we predict MspA and MspTL monomeric forms to be large β-barrel structures composed of 20 all-next-neighbor antiparallel β strands which most likely adopt a homotrimer formation. Using cell fractionation, Triton X-114 phase partitioning, heat modifiability, and chemical and detergent release assays, we found evidence of amphiphilic integral membrane-associated oligomerization for both native MspA and MspTL in intact spirochetes. Proteinase K accessibility and immunofluorescence assays demonstrate surface exposure of MspA and MspTL. Functionally, purified recombinant MspA or MspTL monomer proteins can impair neutrophil chemotaxis. Expressions of MspA or MspTL with a PelB leader sequence in Escherichia coli also demonstrate surface exposure and can impair neutrophil chemotaxis in an in vivo air pouch model of inflammation. Collectively, our data demonstrate that MspA and MspTL membrane proteins can contribute to pathogenesis of these understudied oral spirochete species.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIH NIDCR
ID : R01DE027073
Organisme : NIH NIDCR
ID : R01DE027023-05S1
Organisme : NIH NIDCR
ID : T32DE023526
Organisme : NIH NIDCR
ID : F31DE030705
Organisme : NIDCR NIH HHS
ID : F31 DE033627
Pays : United States
Organisme : NIH NIGMS
ID : R25GM095459
Organisme : NIH NIGMS
ID : T32GM144920
Organisme : NIH NCATS
ID : UL1TR001412
Organisme : Office of the Director, NIH
ID : S10OD025204
Informations de copyright
© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Amin, M., Ho, A. C., Lin, J. Y., Batista da Silva, A. P., Glogauer, M., & Ellen, R. P. (2004). Induction of de novo subcortical actin filament assembly by Treponema denticola major outer sheath protein. Infection and Immunity, 72(6), 3650–3654. https://doi.org/10.1128/IAI.72.6.3650‐3654.2004
Anand, A., Luthra, A., Edmond, M. E., Ledoyt, M., Caimano, M. J., & Radolf, J. D. (2013). The major outer sheath protein (Msp) of Treponema denticola has a bipartite domain architecture and exists as periplasmic and outer membrane‐spanning conformers. Journal of Bacteriology, 195(9), 2060–2071. https://doi.org/10.1128/JB.00078‐13 [Research Support, N.I.H., Extramural]
Anselmi, N. K., Bynum, K., Kay, J. G., & Visser, M. B. (2023). Analysis of neutrophil responses to biological exposures. Current Protocols, 3(6), e827. https://doi.org/10.1002/cpz1.827
Asai, Y., Jinno, T., Igarashi, H., Ohyama, Y., & Ogawa, T. (2002). Detection and quantification of oral treponemes in subgingival plaque by real‐time PCR. Journal of Clinical Microbiology, 40(9), 3334–3340. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12202575
Bagos, P. G., Liakopoulos, T. D., Spyropoulos, I. C., & Hamodrakas, S. J. (2004). PRED‐TMBB: A web server for predicting the topology of beta‐barrel outer membrane proteins. Nucleic Acids Research, 32, W400–W404. https://doi.org/10.1093/nar/gkh417
Beher, M. G., Schnaitman, C. A., & Pugsley, A. P. (1980). Major heat‐modifiable outer membrane protein in gram‐negative bacteria: Comparison with the ompA protein of Escherichia coli. Journal of Bacteriology, 143(2), 906–913. https://doi.org/10.1128/jb.143.2.906‐913.1980
Brusca, J. S., & Radolf, J. D. (1994). Isolation of integral membrane proteins by phase partitioning with Triton X‐114. Methods in Enzymology, 228, 182–193. https://doi.org/10.1016/0076‐6879(94)28019‐3
Chan, E. C., & McLaughlin, R. (2000). Taxonomy and virulence of oral spirochetes. Oral Microbiology and Immunology, 15(1), 1–9. https://doi.org/10.1034/j.1399‐302x.2000.150101.x
Chen, I. A., Chu, K., Palaniappan, K., Ratner, A., Huang, J., Huntemann, M., Hajek, P., Ritter, S. J., Webb, C., Wu, D., Varghese, N. J., Reddy, T. B. K., Mukherjee, S., Ovchinnikova, G., Nolan, M., Seshadri, R., Roux, S., Visel, A., Woyke, T., … Ivanova, N. N. (2023). The IMG/M data management and analysis system v.7: Content updates and new features. Nucleic Acids Research, 51(D1), D723–D732. https://doi.org/10.1093/nar/gkac976
Chen, T., Marsh, P. D., & Al‐Hebshi, N. N. (2022). SMDI: An index for measuring subgingival microbial dysbiosis. Journal of Dental Research, 101(3), 331–338. https://doi.org/10.1177/00220345211035775
Choi, B. K., Jung, J. H., Suh, H. Y., Yoo, Y. J., Cho, K. S., Chai, J. K., & Kim, C. K. (2001). Activation of matrix metalloproteinase‐2 by a novel oral spirochetal species Treponema lecithinolyticum. Journal of Periodontology, 72(11), 1594–1600. https://doi.org/10.1902/jop.2001.72.11.1594
Choi, B. K., Ohk, S. H., Lee, H. J., Kang, J. H., Jeong, G. J., & Yoo, Y. J. (2001). Effects of whole cell sonicates of Treponema lecithinolyticum on osteoclast differentiation. Journal of Periodontology, 72(9), 1172–1177. https://doi.org/10.1902/jop.2000.72.9.1172
Choi, B. K., Paster, B. J., Dewhirst, F. E., & Gobel, U. B. (1994). Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infection and Immunity, 62(5), 1889–1895. https://www.ncbi.nlm.nih.gov/pubmed/8168954
Cox, D. L. (1994). Culture of Treponema pallidum. Methods in Enzymology, 236, 390–405. https://doi.org/10.1016/0076‐6879(94)36029‐4
Curtis, M. A., Diaz, P. I., & Van Dyke, T. E. (2020). The role of the microbiota in periodontal disease. Periodontology 2000, 83(1), 14–25. https://doi.org/10.1111/prd.12296
Darveau, R. P. (2010). Periodontitis: A polymicrobial disruption of host homeostasis. Nature Reviews Microbiology, 8(7), 481–490. https://doi.org/10.1038/nrmicro2337
Dewhirst, F. E., Tamer, M. A., Ericson, R. E., Lau, C. N., Levanos, V. A., Boches, S. K., Galvin, J. L., & Paster, B. J. (2000). The diversity of periodontal spirochetes by 16S rRNA analysis. Oral Microbiology and Immunology, 15(3), 196–202. https://doi.org/10.1034/j.1399‐302x.2000.150308.x
Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang, L. P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R., & Pande, V. S. (2017). OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Computational Biology, 13(7), e1005659. https://doi.org/10.1371/journal.pcbi.1005659
Eddy, S. R. (2011). Accelerated profile HMM searches. PLoS Computational Biology, 7(10), e1002195. https://doi.org/10.1371/journal.pcbi.1002195
Edwards, A. M., Jenkinson, H. F., Woodward, M. J., & Dymock, D. (2005). Binding properties and adhesion‐mediating regions of the major sheath protein of Treponema denticola ATCC 35405. Infection and Immunity, 73(5), 2891–2898. https://doi.org/10.1128/IAI.73.5.2891‐2898.2005
Egli, C., Leung, W. K., Muller, K. H., Hancock, R. E., & McBride, B. C. (1993). Pore‐forming properties of the major 53‐kilodalton surface antigen from the outer sheath of Treponema denticola. Infection and Immunity, 61(5), 1694–1699. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7682993
Eke, P. I., Dye, B. A., Wei, L., Slade, G. D., Thornton‐Evans, G. O., Borgnakke, W. S., Taylor, G. W., Page, R. C., Beck, J. D., & Genco, R. J. (2015). Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. Journal of Periodontology, 86(5), 611–622. https://doi.org/10.1902/jop.2015.140520
Ellen, R. P., & Galimanas, V. B. (2005). Spirochetes at the forefront of periodontal infections. Periodontology 2000, 38, 13–32. https://doi.org/10.1111/j.1600‐0757.2005.00108.x
Fenno, J. C. (2006). Laboratory maintenance of Treponema denticola. Current Protocols in Microbiology, Chapter 12(1), Unit 12B 11. https://doi.org/10.1002/9780471729259.mc12b01s00
Fenno, J. C. (2012). Treponema denticola interactions with host proteins. Journal of Oral Microbiology, 4(1). https://doi.org/10.3402/jom.v4i0.9929
Fenno, J. C., Hannam, P. M., Leung, W. K., Tamura, M., Uitto, V. J., & McBride, B. C. (1998). Cytopathic effects of the major surface protein and the chymotrypsinlike protease of Treponema denticola. Infection and Immunity, 66(5), 1869–1877. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC108137/pdf/ii001869.pdf
Fenno, J. C., Wong, G. W., Hannam, P. M., Muller, K. H., Leung, W. K., & McBride, B. C. (1997). Conservation of msp, the gene encoding the major outer membrane protein of oral Treponema spp. Journal of Bacteriology, 179(4), 1082–1089. https://doi.org/10.1128/jb.179.4.1082‐1089.1997
Ge, X., Rodriguez, R., Trinh, M., Gunsolley, J., & Xu, P. (2013). Oral microbiome of deep and shallow dental pockets in chronic periodontitis. PLoS One, 8(6), e65520. https://doi.org/10.1371/journal.pone.0065520
Godovikova, V., Goetting‐Minesky, M. P., & Fenno, J. C. (2011). Composition and localization of Treponema denticola outer membrane complexes. Infection and Immunity, 79(12), 4868–4875. https://doi.org/10.1128/IAI.05701‐11
Godovikova, V., Goetting‐Minesky, M. P., Timm, J. C., & Fenno, J. C. (2019). Immunotopological analysis of the Treponema denticola major surface protein (Msp). Journal of Bacteriology, 201(2), e00528–18. https://doi.org/10.1128/JB.00528‐18
Goetting‐Minesky, M. P., Godovikova, V., Zheng, W., & Fenno, J. C. (2022). Characterization of Treponema denticola major surface protein (Msp) by deletion analysis and advanced molecular modeling. Journal of Bacteriology, 204(9), e0022822. https://doi.org/10.1128/jb.00228‐22
Griffen, A. L., Beall, C. J., Campbell, J. H., Firestone, N. D., Kumar, P. S., Yang, Z. K., Podar, M., & Leys, E. J. (2012). Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. The ISME Journal, 6(6), 1176–1185. https://doi.org/10.1038/ismej.2011.191
Haapasalo, M., Muller, K. H., Uitto, V. J., Leung, W. K., & McBride, B. C. (1992). Characterization, cloning, and binding properties of the major 53‐kilodalton Treponema denticola surface antigen. Infection and Immunity, 60(5), 2058–2065. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1563796
Heltzel, J. M., Maul, R. W., Scouten Ponticelli, S. K., & Sutton, M. D. (2009). A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12664–12669. https://doi.org/10.1073/pnas.0903460106
Heuner, K., Choi, B. K., Schade, R., Moter, A., Otto, A., & Gobel, U. B. (1999). Cloning and characterization of a gene (mspA) encoding the major sheath protein of Treponema maltophilum ATCC 51939(T). Journal of Bacteriology, 181(3), 1025–1029. https://doi.org/10.1128/JB.181.3.1025‐1029.1999
Heuner, K., Meltzer, U., Choi, B. K., & Gobel, U. B. (2001). Outer sheath associated proteins of the oral spirochete Treponema maltophilum. FEMS Microbiology Letters, 197(2), 187–193. https://doi.org/10.1111/j.1574‐6968.2001.tb10602.x
Ishihara, K., Kuramitsu, H. K., Miura, T., & Okuda, K. (1998). Dentilisin activity affects the organization of the outer sheath of Treponema denticola. Journal of Bacteriology, 180(15), 3837–3844. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC107367/pdf/jb003837.pdf
Izard, J., Hsieh, C. E., Limberger, R. J., Mannella, C. A., & Marko, M. (2008). Native cellular architecture of Treponema denticola revealed by cryo‐electron tomography. Journal of Structural Biology, 163(1), 10–17. https://doi.org/10.1016/j.jsb.2008.03.009
Jones, M. M., Vanyo, S. T., & Visser, M. B. (2017). The C‐terminal region of the major outer sheath protein of Treponema denticola inhibits neutrophil chemotaxis. Molecular Oral Microbiology, 32(5), 375–389. https://doi.org/10.1111/omi.12180
Jones, M. M., Vanyo, S. T., Ibraheem, W., Maddi, A., & Visser, M. B. (2020). Treponema denticola stimulates Oncostatin M cytokine release and de novo synthesis in neutrophils and macrophages. Journal of Leukocyte Biology, 108(5), 1527–1541. https://doi.org/10.1002/JLB.4MA0620‐072RR
Jones, M. M., Vanyo, S. T., & Visser, M. B. (2019). The Msp protein of Treponema denticola interrupts activity of phosphoinositide processing in neutrophils. Infection and Immunity, 87(11), e00553–19. https://doi.org/10.1128/IAI.00553‐19
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera‐Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586‐021‐03819‐2
Jun, H.‐K., Kang, Y.‐M., Lee, H.‐R., Lee, S.‐H., & Choi, B.‐K. (2008). Highly conserved surface proteins of oral spirochetes as adhesins and potent inducers of proinflammatory and osteoclastogenic factors. Infection and Immunity, 76(6), 2428–2438. http://iai.asm.org/cgi/content/abstract/76/6/2428
Jun, H. K., Lee, H. R., Lee, S. H., & Choi, B. K. (2007). Mapping of the proinflammatory domains of MspTL of Treponema lecithinolyticum. Microbiology, 153(Pt 8), 2386–2392. https://doi.org/10.1099/mic.0.2007/006650‐0
Jung, I. Y., Choi, B. K., Kum, K. Y., Yoo, Y. J., Yoon, T. C., Lee, S. J., & Lee, C. Y. (2001). Identification of oral spirochetes at the species level and their association with other bacteria in endodontic infections. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 92(3), 329–334. https://doi.org/10.1067/moe.2001.117263
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
Koebnik, R., Locher, K. P., & Van Gelder, P. (2000). Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Molecular Microbiology, 37(2), 239–253. https://doi.org/10.1046/j.1365‐2958.2000.01983.x
Krissinel, E., & Henrick, K. (2007a). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372(3), 774–797. https://doi.org/10.1016/j.jmb.2007.05.022
Lamont, R. J., & Hajishengallis, G. (2015). Polymicrobial synergy and dysbiosis in inflammatory disease. Trends in Molecular Medicine, 21(3), 172–183. https://doi.org/10.1016/j.molmed.2014.11.004
Lee, S. H., Kim, K. K., & Choi, B. K. (2005). Upregulation of intercellular adhesion molecule 1 and proinflammatory cytokines by the major surface proteins of Treponema maltophilum and Treponema lecithinolyticum, the phylogenetic group IV oral spirochetes associated with periodontitis and endodontic infections. Infection and Immunity, 73(1), 268–276. https://doi.org/10.1128/IAI.73.1.268‐276.2005
Listgarten, M. A. (1976). Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study. Journal of Periodontology, 47(1), 1–18. https://doi.org/10.1902/jop.1976.47.1.1
Liu, J., Guo, Z., Wu, T., Roy, R. S., Quadir, F., Chen, C., & Cheng, J. (2023). Enhancing AlphaFold‐multimer‐based protein complex structure prediction with MULTICOM in CASP15. Commun Biol, 6, 1140. https://doi.org/10.1101/2023.05.16.541055
Luthra, A., Anand, A., & Radolf, J. D. (2015). Treponema pallidum in gel microdroplets: A method for topological analysis of BamA (TP0326) and localization of rare outer membrane proteins. Methods in Molecular Biology, 1329, 67–75. https://doi.org/10.1007/978‐1‐4939‐2871‐2_6
Magalhaes, M. A., Sun, C. X., Glogauer, M., & Ellen, R. P. (2008). The major outer sheath protein of Treponema denticola selectively inhibits Rac1 activation in murine neutrophils. Cellular Microbiology, 10(2), 344–354. https://doi.org/10.1111/j.1462‐5822.2007.01045.x
Marchler‐Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., Geer, R. C., He, J., Gwadz, M., Hurwitz, D. I., Lanczycki, C. J., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C., … Bryant, S. H. (2015). CDD: NCBI's conserved domain database. Nucleic Acids Research, 43, D222–226. https://doi.org/10.1093/nar/gku1221(Database issue)
Miller, D. P., McDowell, J. V., Rhodes, D. V., Allard, A., Caimano, M., Bell, J. K., & Marconi, R. T. (2013). Sequence divergence in the Treponema denticola FhbB protein and its impact on factor H binding. Molecular Oral Microbiology, 28(4), 316–330. https://doi.org/10.1111/omi.12027
Mirdita, M., Schutze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: Making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/s41592‐022‐01488‐1
Mirdita, M., Steinegger, M., & Soding, J. (2019). MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics, 35(16), 2856–2858. https://doi.org/10.1093/bioinformatics/bty1057
Mirdita, M., von den Driesch, L., Galiez, C., Martin, M. J., Soding, J., & Steinegger, M. (2017). Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Research, 45(D1), D170–D176. https://doi.org/10.1093/nar/gkw1081
Mirdita, M. E. A. (2023). ColabFold v1.5.2: AlphaFold2 using MMseqs2. https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
Mitchell, A. L., Almeida, A., Beracochea, M., Boland, M., Burgin, J., Cochrane, G., Crusoe, M. R., Kale, V., Potter, S. C., Richardson, L. J., Sakharova, E., Scheremetjew, M., Korobeynikov, A., Shlemov, A., Kunyavskaya, O., Lapidus, A., & Finn, R. D. (2020). MGnify: The microbiome analysis resource in 2020. Nucleic Acids Research, 48(D1), D570–D578. https://doi.org/10.1093/nar/gkz1035
Moter, A., Hoenig, C., Choi, B. K., Riep, B., & Gobel, U. B. (1998). Molecular epidemiology of oral treponemes associated with periodontal disease. Journal of Clinical Microbiology, 36(5), 1399–1403. https://www.ncbi.nlm.nih.gov/pubmed/9574713
Moter, A., Riep, B., Haban, V., Heuner, K., Siebert, G., Berning, M., Wyss, C., Ehmke, B., Flemmig, T. F., & Gobel, U. B. (2006). Molecular epidemiology of oral treponemes in patients with periodontitis and in periodontitis‐resistant subjects. Journal of Clinical Microbiology, 44(9), 3078–3085. https://doi.org/10.1128/JCM.00322‐06
Nobrega, L. M., Delboni, M. G., Martinho, F. C., Zaia, A. A., Ferraz, C. C., & Gomes, B. P. (2013). Treponema diversity in root canals with endodontic failure. European Journal of Dentistry, 7(1), 61–68. https://www.ncbi.nlm.nih.gov/pubmed/23408792
Noinaj, N., Kuszak, A. J., Gumbart, J. C., Lukacik, P., Chang, H., Easley, N. C., Lithgow, T., & Buchanan, S. K. (2013). Structural insight into the biogenesis of beta‐barrel membrane proteins. Nature, 501(7467), 385–390. https://doi.org/10.1038/nature12521
Opitz, B., Schroder, N. W., Spreitzer, I., Michelsen, K. S., Kirschning, C. J., Hallatschek, W., Zahringer, U., Hartung, T., Gobel, U. B., & Schumann, R. R. (2001). Toll‐like receptor‐2 mediates Treponema glycolipid and lipoteichoic acid‐induced NF‐kappaB translocation. Journal of Biological Chemistry, 276(25), 22041–22047. https://doi.org/10.1074/jbc.M010481200
Park, K. K., Heuner, K., Gobel, U. B., Yoo, Y. J., Kim, C. K., & Choi, B. K. (2002). Cloning and characterization of a major surface protein (MspTL) of Treponema lecithinolyticum associated with rapidly progressive periodontitis. FEMS Microbiology Letters, 207(2), 185–192. https://doi.org/10.1111/j.1574‐6968.2002.tb11049.x
Paster, B. J., Boches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., Sahasrabudhe, A., & Dewhirst, F. E. (2001). Bacterial diversity in human subgingival plaque. Journal of Bacteriology, 183(12), 3770–3783. https://doi.org/10.1128/JB.183.12.3770‐3783.2001
Potter, S. C., Luciani, A., Eddy, S. R., Park, Y., Lopez, R., & Finn, R. D. (2018). HMMER web server: 2018 update. Nucleic Acids Research, 46(W1), W200–W204. https://doi.org/10.1093/nar/gky448
Puertas, J. M., Nannenga, B. L., Dornfeld, K. T., Betton, J. M., & Baneyx, F. (2010). Enhancing the secretory yields of leech carboxypeptidase inhibitor in Escherichia coli: Influence of trigger factor and signal recognition particle. Protein Expression and Purification, 74(1), 122–128. https://doi.org/10.1016/j.pep.2010.06.008
Puthengady Thomas, B., Sun, C. X., Bajenova, E., Ellen, R. P., & Glogauer, M. (2006). Modulation of human neutrophil functions in vitro by Treponema denticola major outer sheath protein. Infection and Immunity, 74(3), 1954–1957. https://doi.org/10.1128/IAI.74.3.1954‐1957.2006
Puthenveetil, R., Kumar, S., Caimano, M. J., Dey, A., Anand, A., Vinogradova, O., & Radolf, J. D. (2017). The major outer sheath protein forms distinct conformers and multimeric complexes in the outer membrane and periplasm of Treponema denticola. Scientific Reports, 7(1), 13260. https://doi.org/10.1038/s41598‐017‐13550‐6
Robertson, K. E., Truong, C. D., Craciunescu, F. M., Yang, J. H., Chiu, P. L., Fromme, P., & Hansen, D. T. (2019). Membrane directed expression in Escherichia coli of BBA57 and other virulence factors from the Lyme disease agent Borrelia burgdorferi. Scientific Reports, 9(1), 17606. https://doi.org/10.1038/s41598‐019‐53830‐x
Robertson, K. E., Truong, C. D., Craciunescu, F. M., Yang, J. H., Chiu, P. L., Fromme, P., & Hansen, D. T. (2020). Author correction: Membrane directed expression in Escherichia coli of BBA57 and other virulence factors from the Lyme disease agent Borrelia burgdorferi. Scientific Reports, 10(1), 4163. https://doi.org/10.1038/s41598‐020‐60882‐x
Rocque, W. J., & McGroarty, E. J. (1989). Isolation and preliminary characterization of wild‐type OmpC porin dimers from Escherichia coli K‐12. Biochemistry, 28(9), 3738–3743. https://doi.org/10.1021/bi00435a017
Rosa, T. P., Signoretti, F. G., Montagner, F., Gomes, B. P., & Jacinto, R. C. (2015). Prevalence of Treponema spp. in endodontic retreatment‐resistant periapical lesions. Brazilian Oral Research, 29, S1806–83242015000100228. https://doi.org/10.1590/1807‐3107BOR‐2015.vol29.0031
Rosen, G., Genzler, T., & Sela, M. N. (2008). Coaggregation of Treponema denticola with Porphyromonas gingivalis and Fusobacterium nucleatum is mediated by the major outer sheath protein of Treponema denticola. FEMS Microbiology Letters, 289(1), 59–66. https://doi.org/10.1111/j.1574‐6968.2008.01373.x
Schroder, N. W., Pfeil, D., Opitz, B., Michelsen, K. S., Amberger, J., Zahringer, U., Gobel, U. B., & Schumann, R. R. (2001). Activation of mitogen‐activated protein kinases p42/44, p38, and stress‐activated protein kinases in myelo‐monocytic cells by Treponema lipoteichoic acid. Journal of Biological Chemistry, 276(13), 9713–9719. https://doi.org/10.1074/jbc.M008954200
Schrodinger, LLC. The PyMOL molecular graphics system (Version 2.5.2). Schrodinger, LLC.
Schultz, C. P., Wolf, V., Lange, R., Mertens, E., Wecke, J., Naumann, D., & Zahringer, U. (1998). Evidence for a new type of outer membrane lipid in oral spirochete Treponema denticola. Functioning permeation barrier without lipopolysaccharides. Journal of Biological Chemistry, 273(25), 15661–15666. https://www.ncbi.nlm.nih.gov/pubmed/9624160
Schulz, G. E. (1996). Structure‐function relationships in the membrane channel porin. Acta Crystallographica A—Foundation and Advances, 52, C141–C142. https://doi.org/10.1107/S0108767396093579
Seshadri, R., Myers, G. S., Tettelin, H., Eisen, J. A., Heidelberg, J. F., Dodson, R. J., Davidsen, T. M., DeBoy, R. T., Fouts, D. E., Haft, D. H., Selengut, J., Ren, Q., Brinkac, L. M., Madupu, R., Kolonay, J., Durkin, S. A., Daugherty, S. C., Shetty, J., Shvartsbeyn, A., … Paulsen, I. T. (2004). Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proceedings of the National Academy of Sciences of the United States of America, 101(15), 5646–5651. https://doi.org/10.1073/pnas.0307639101
Siqueira, J. F., Jr., & Rocas, I. N. (2003). PCR‐based identification of Treponema maltophilum, T. amylovorum, T. medium, and T. lecithinolyticum in primary root canal infections. Archives of Oral Biology, 48(7), 495–502. https://doi.org/10.1016/s0003‐9969(03)00092‐x
Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C., & Kent, R. L., Jr. (1998). Microbial complexes in subgingival plaque. Journal of Clinical Periodontology, 25(2), 134–144. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9495612
Stamm, L. V., Hodinka, R. L., Wyrick, P. B., & Bassford, P. J., Jr. (1987). Changes in the cell surface properties of Treponema pallidum that occur during in vitro incubation of freshly extracted organisms. Infection and Immunity, 55(9), 2255–2261. https://doi.org/10.1128/iai.55.9.2255‐2261.1987
Steinegger, M., Mirdita, M., & Soding, J. (2019). Protein‐level assembly increases protein sequence recovery from metagenomic samples manyfold. Nature Methods, 16(7), 603–606. https://doi.org/10.1038/s41592‐019‐0437‐4
Steinegger, M., & Soding, J. (2018). Clustering huge protein sequence sets in linear time. Nature Communications, 9(1), 2542. https://doi.org/10.1038/s41467‐018‐04964‐5
Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu, C. H., & UniProt, C. (2015). UniRef clusters: A comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics, 31(6), 926–932. https://doi.org/10.1093/bioinformatics/btu739
Tamm, L. K., Hong, H., & Liang, B. (2004). Folding and assembly of beta‐barrel membrane proteins. Biochimica et Biophysica Acta, 1666(1–2), 250–263. https://doi.org/10.1016/j.bbamem.2004.06.011
Teufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gislason, M. H., Pihl, S. I., Tsirigos, K. D., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2022). SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology, 40(7), 1023–1025. https://doi.org/10.1038/s41587‐021‐01156‐3
Van Dyke, T. E., & Hoop, G. A. (1990). Neutrophil function and oral disease. Critical Reviews in Oral Biology & Medicine, 1(2), 117–133. https://doi.org/10.1177/10454411900010020201
Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zidek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold protein structure database: Massively expanding the structural coverage of protein‐sequence space with high‐accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
Veith, P. D., Glew, M. D., Gorasia, D. G., Chen, D., O'Brien‐Simpson, N. M., & Reynolds, E. C. (2019). Localization of outer membrane proteins in Treponema denticola by quantitative proteome analyses of outer membrane vesicles and cellular fractions. Journal of Proteome Research, 18(4), 1567–1581. https://doi.org/10.1021/acs.jproteome.8b00860
Velsko, I. M., Harrison, P., Chalmers, N., Barb, J., Huang, H., Aukhil, I., & Shaddox, L. (2020). Grade C molar‐incisor pattern periodontitis subgingival microbial profile before and after treatment. Journal of Oral Microbiology, 12(1), 1814674. https://doi.org/10.1080/20002297.2020.1814674
Villarejo, M. R., & Zabin, I. (1974). Beta‐galactosidase from termination and deletion mutant strains. Journal of Bacteriology, 120(1), 466–474. https://doi.org/10.1128/jb.120.1.466‐474.1974
Visser, M. B., & Ellen, R. P. (2011). New insights into the emerging role of oral spirochaetes in periodontal disease. Clinical Microbiology and Infection, 17(4), 502–512. https://doi.org/10.1111/j.1469‐0691.2011.03460.x
Visser, M. B., Koh, A., Glogauer, M., & Ellen, R. P. (2011). Treponema denticola major outer sheath protein induces actin assembly at free barbed ends by a PIP2‐dependent uncapping mechanism in fibroblasts. PLoS One, 6(8), e23736. https://doi.org/10.1371/journal.pone.0023736
Visser, M. B., Sun, C. X., Koh, A., Ellen, R. P., & Glogauer, M. (2013). Treponema denticola major outer sheath protein impairs the cellular phosphoinositide balance that regulates neutrophil chemotaxis. PLoS One, 8(6), e66209. https://doi.org/10.1371/journal.pone.0066209
Vollan, H. S., Tannaes, T., Vriend, G., & Bukholm, G. (2016). In silico structure and sequence analysis of bacterial porins and specific diffusion channels for hydrophilic molecules: Conservation, multimericity and multifunctionality. International Journal of Molecular Sciences, 17(4), 599. https://doi.org/10.3390/ijms17040599
Walker, S. G., Ebersole, J. L., & Holt, S. C. (1997). Identification, isolation, and characterization of the 42‐kilodalton major outer membrane protein (MompA) from Treponema pectinovorum ATCC 33768. Journal of Bacteriology, 179(20), 6441–6447. https://doi.org/10.1128/jb.179.20.6441‐6447.1997
Wyss, C., Choi, B. K., Schupbach, P., Guggenheim, B., & Gobel, U. B. (1996). Treponema maltophilum sp. nov., a small oral spirochete isolated from human periodontal lesions. International Journal of Systematic Microbiology, 46(3), 745–752. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8782684
Wyss, C., Choi, B. K., Schupbach, P., Moter, A., Guggenheim, B., & Gobel, U. B. (1999). Treponema lecithinolyticum sp. nov., a small saccharolytic spirochaete with phospholipase A and C activities associated with periodontal diseases. International Journal of Systematic Microbiology, 49(Pt 4), 1329–1339. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10555310
Yamazaki, T., Miyamoto, M., Yamada, S., Okuda, K., & Ishihara, K. (2006). Surface protease of Treponema denticola hydrolyzes C3 and influences function of polymorphonuclear leukocytes. Microbes and Infection, 8(7), 1758–1763. https://doi.org/10.1016/j.micinf.2006.02.013
Yildiz, O., Vinothkumar, K. R., Goswami, P., & Kuhlbrandt, W. (2006). Structure of the monomeric outer‐membrane porin OmpG in the open and closed conformation. The EMBO Journal, 25(15), 3702–3713. https://doi.org/10.1038/sj.emboj.7601237
You, M., Chan, Y., Lacap‐Bugler, D. C., Huo, Y. B., Gao, W., Leung, W. K., & Watt, R. M. (2017). Oral treponeme major surface protein: Sequence diversity and distributions within periodontal niches. Molecular Oral Microbiology, 32(6), 455–474. https://doi.org/10.1111/omi.12185
You, M., Mo, S., Leung, W. K., & Watt, R. M. (2013). Comparative analysis of oral treponemes associated with periodontal health and disease. BMC Infectious Diseases, 13, 174. https://doi.org/10.1186/1471‐2334‐13‐174
Zhang, C., Zheng, W., Mortuza, S. M., Li, Y., & Zhang, Y. (2020). DeepMSA: Constructing deep multiple sequence alignment to improve contact prediction and fold‐recognition for distant‐homology proteins. Bioinformatics, 36(7), 2105–2112. https://doi.org/10.1093/bioinformatics/btz863
Zhang, C., Zheng, W., Mortuza, S. M., Li, Y., & Zhang, Y. (2020). DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold‐recognition for distant‐homology proteins. Bioinformatics, 36, 2105–2112.
Zheng, W., Wuyun, Q., Li, Y., Zhang, C., Freddolino, P. L., & Zhang, Y. (2024). Improving deep learning protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data. Nature Methods, 21(2), 279–289. https://doi.org/10.1038/s41592‐023‐02130‐4